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ABSTRACT 

Thermodynamics is a relatively recent physical science that was born with calorimetry and thermometry experiments: 
so heat remains the central concept in relation with other forms of energy. The coupling between various forms is 
essential and related to conversion processes. The first conversion process that was analyzed was the 
thermomechanical one, at the time of Carnot. Equilibrium Thermodynamics was fruitful in connection with the 
efficiency concept, to qualify engines. But since that time, mass and heat transfers studies have been strongly 
developed (thermokinetics), as well as second law aspects of thermodynamics. It results new appraisal for energy 
systems and processes, relevant of a true thermodynamics approach. This was initiated by Onsager at the beginning 
of the 20th century, by analyzing the relation between fluxes and forces (gradients) from a general, but linear point of 
view. More recently, it was developed through a lumped analysis for systems by Chambadal and Novikov in 1957. It 
was rediscovered in 1975, by Curzon and Ahlborn. And since this work, a lot of books and publications have been 
proposed in the literature. A review of them is proposed here, on the basis of a synthesis due to the lack of place. The 
author’s works are analysed and compared to the literature too. It results some original remarks and proposal relative 
to the obtained results: Comparison of entropy ratio method to entropy flux method, Comparison of endoreversible 
case to irreversible case, Comparison of adiabatic and non adiabatic systems, Comparison of constrained and non 
constrained systems. Main consequences of these comparisons are given, and future perspectives evoked on the main 
systems categories (engines; reverse machines; other eventual configurations).Conclusion is that FDOT (Finite 
Dimensions Thermodynamics) appears as a promising tool to be enlarged in the future. 
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NOMENCLATURE 

A area 
.

c  heat rate 
COP coefficient of performance 
k heat transfer conductance 

.

q  heat flux 
.

s  entropy flux 
T temperature  

.

w       mechanical power  
.

'w     auxiliaries power 
X    temperature difference 
RM    Réfrigerating 
           Machine 
S        source or sink, 
          system  
 

      efficiency 

     Carnot factor 
Subscript, superscript 
C       hot (chaud) 

 CHP    Combined Heat and power 
E         Environment, energy,  
            engine 
Ex       exergy 
F         cold (froid) 
HP      Heat Pump 
I         irreversible, 
          intermediate 
L        loss 
m, n   power index 
O       imposed constant value 
T        total 
TFP   Thermofrigopump 
I         first law 
*        optimum value 
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1. INTRODUCTION 

Historically, Carnot (1824) was the first to develop a 
thermodynamical model for an engine, with an 
engineering point of view; but he considered too 
fundamental aspects: he his perhaps the father of the 
second law of thermodynamics, and its applications to 
engine and systems. He is also probably the inventor of 
the fruitful concept of efficiency. But the Carnot 
efficiency remains attached to equilibrium 
thermodynamics. 
 
This limitation occurs until what was said the 
foundation paper of F.T.T. (Finite Time 
Thermodynamics) (Curzon and Ahlborn, 1975). Here 
are introduced the finite durations of Carnot engine 
thermodynamical processes: it results a finite 
mechanical power, and the corresponding efficiency 
appears less than the one corresponding to Carnot 
value. 
 
This was first proposed in a slightly different form by 
Chambadal (1957) and simultaneously Novikov (1957). 
Today, this proposal is developed on a more 
accomplished form (Feidt 1996; Feidt 2006). Since the 
eighties, approximately twenty books have been 
published (see the specific annex), and numerous 
papers as well; the great majority of them are 
referenced in Bejan (1997), in Chen et al. (1999) and 
more recently in Durmayaz (2004). 

 
The goal of the present paper is to confirm the interest 
of the proposed approach, and to enlighten the actual 
state of the subject, showing how the present progress 
of the thermodynamics move to escape from the 
equilibrium thermodynamics in direction of irreversible 
thermodynamics applied to systems and processes. 
 
The present paper will be focused on Carnot cycles: 
direct cycle (engine) or reverse cycle (refrigerating 
machine or heat pump). The corresponding results are a 
synthesis of preceding author’s works, the main point 
being that, contrarily to the great majority of published 
paper on the subject, the internal irreversibility of the 
machines (engine; refrigerating machine or heat pump) 
is accounted for originally (Feidt 2007). Interesting 
consequences are explored. 
 
Numerous works remains to do, in order to obtain more 
complete (complex) results useful for engineers, but for 
physicists too, and developing entropy analysis (Bejan 
1997). Fundamental aspects are carefully analyzed. 

2. THE TIME DIMENSION 

Within the scope of F.T.T., it seems logical to see 
explicit influence (not of time directly) but of durations 
of thermodynamical transformations. In that case (the 
most developed using F.T.T.), the calculated fluxes are 
generally mean values corresponding to the whole 
duration over the studied cycle. However, in various 
paper or communications, the fluxes appear directly, 
without explicit time variables, even if the model refers 
to F.T.T. 
 
It seems preferable, according to the present proposal to 
characterize the corresponding model according to the 

steady state hypothesis (generally nominal conditions; 
full power for example), to rename it F.D.T. (Finite 
Dimension Thermodynamics); in that case these 
dimensions correspond to the size of the system, or 
some quantities related to this size, as we will see in the 
paper. The most used dimension in thermomechanical 
systems is relative to heat transfer conductances, K, but 

it appears too areas A, volume V, heat rates 
.

c , heat 

flux 
.

q  or power 
.

w  limitations as well as temperature 
T. 
 
The suggestion is to reserve the F.T.T. spelling for 
transient conditions, where it is mandatory to take 
account of the time dimension. 
 
Nevertheless in any case we agree with the fact that the 
time arrow is fundamentally connected to 
irreversibility, even if the time definition and concept 
remains to examine carefully. The hypothesis of steady 
state model is used hereafter, and the finite dimension 
chose is the generalized heat transfer conductance 
associated with. 

3. GENERAL MODEL OF A 

THERMOMECHANICAL MACHINE 

3.1 Fundamental laws 

The model is general because it describe a machine in 
contact with one heat source that is at constant 
temperature TSC (hot thermostat), and one heat sink at 
constant temperature TSF (cold thermostat). The 
machine could be an engine (direct cycle), a 
refrigerating machine or a heat pump (reverse cycle). 
The model is an extension of the Carnot cycle (Fig. 1 
relative to engine). The first law of thermodynamics 
applied to the machine implies: 

 

Fig. 1. Schematic of Carnot cycles with internal 
irreversibilities and external ones at contact to source 

and sink. 

. . . .

'C Fq q w w                               (1) 
.

Cq , heat flux at the hot side of the machine (> 0, if 

recepted by the machine) 
.

Fq , heat flux at the cold side of the machine 
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.

w , mechanical power (> 0, for an engine) produced or 
consumed 

.

'w , auxiliaries power (always < 0, whatever is the 
machine) 
 
The machine is connected to the heat source and heat 
sink through two heat transfer conductances 
respectively KC, KF. 

Heat fluxes 
.

Cq  and 
.

Fq  are allowed through 

temperature differences respectively XC = TSC – TC, XF 
= TSF - TF 

 

The machine connected to heat source and sink, is the 
studied thermomechanical system. 
 
If the system is non adiabatic, there are heat losses. The 
most convenient form to represent these losses is to 
suppose they occur between the maximum hot 
temperature TSC and the minimum low temperature TSF, 
as a first approximation trough an equivalent global 
heat loss conductance KL ; it correspond the heat loss 

flux 
.

Lq  (choose as a positive quantity). 

So the heat flux consumed at the hot source becomes: 
. . .

SC C Lq q q    

 
The heat flux yielded at the cold sink becomes: 

. . .

SF F Lq q q   

The second law of thermodynamics applied to the 
machine gives the entropy balance: 

. .
.

0C F
i

C F

q q
s

T T
                       (2) 

.

is , entropy flux created inside the machine, due to 
internal irreversibilities. As a first approximation we 

suppose is
.

 is a constant value parameter (for 
demonstrating purpose). This parameter is easily 
accessible through entropy analysis, as will be precised 
hereafter. 
 
The second law of thermodynamics applied to the 
system gives: 

. .
.

0SC SF
T

SC SF

q q
s

T T
                            (3) 

3.2 Heat Transfer laws 

To complete the model the heat transfer laws are to be 
given; the general definition supposed is: 

.

. ( , )Sq K f T T                (4) 

K, generalized heat transfer conductance, TS, external 
temperature relative to source of sink, T, internal 
temperature relative to cycled fluid in the machine. 
 
The heat transfer laws generally suppose the function f 
depending on X = TS – T, such that: 

.

. ( )q K f X  

 
In the literature, the most used law are: 

- the convective law 
.

nq KX  

with some particular case (n = 1,25, Dulong Petit law ; 
n = 1 Newton law ; etc.) ; Newton law corresponds to 
linear approximation (Onsager, 1931) 

- the radiative law  
.

m m
Sq K T T   

with some particular case (m = 4, Stefan law ; n = -1 ; 
phenomenological law, etc.) ; if m = 1, the radiative law 
corresponds too to linear approximation. 
 
Some publications give results corresponding to all 
these heat transfer laws. Here we limit the purpose to 

linear approximation:  
.

.Sq K T T K X    

3.3 Finite Dimensions (Non Dimensionality) 

The system is always limited in size for physical and 
also cost reasons; so it implies here to introduce a 
limitation for heat transfer conductance: 

KC + KF = KT                                      (6) 

KT, total heat transfer conductances to be allocated 
appears as a size reference for the system. 
 
The system too is immersed in an environment 
characterized by the ambient temperature TSE (but not 
only the temperature). This temperature appears as the 
reference temperature for the thermomechanical 
system. 
 
It is to be noted that: 
- for the great majority of engines, TSF = TSE (excepted 
for combined heat and power engine where TSF > TSE 
for example) 
- for refrigerating machines generally, TSC = TSE 
(excepted for cascade refrigerating machine) 
- for heat pump, TSF = TSE (excepted for cascade heat 
pump) 
- for reverse machine with two useful effects (at hot and 
cold side : thermofrigopump), we have TSF < TSE < TSC 

 

We propose to nondimensionnalize all the model 
equations with reference to KT and TSE. It comes: 

k = 
T

K

K
 ;  t = 

SE

T

T
 ;  q = 

.

T SE

q

K T
 ;  

w = 

.

T SE

w

K T
, sx t t   and 

.

T

s
s

K
  

 qC + qF = w + w'

 0C F
i

C F

q q
s

t t
  

0C F
t

SC SF

q q
s

t t
  

 kC + kF = 1
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Remark: if KT is considered as a quantity to minimize 
(design or cost objective), it is necessary to choose as 
reference a unit heat transfer conductance, in order to 
retrieve kT. 

3.4 Conclusion of Modeling 

The four equations of the model are completed by the 
two heat transfer laws: 

qC = kC· fC (xC)                          (11) 

qF = kF ·fF (xF)                           (12) 

It appears four main variables (tC, tF, kC, kF), four 
intermediate variables (qC, qF, w, sT; eventually kT), 
four parameters (tSC, tSF, w’, si). 

The model has two degrees of freedom allowing 
optimization. 

4. PERFORMANCE CRITERIONS OF 

MACHINE OR SYSTEM 

As noted in section 1, the concept of efficiency was first 
proposed by Carnot for engine. Afterwhat it was 
enlarged; we summarize and comment in the following 
subsection 4.1 the classical energy efficiencies of 
thermomechanical machines. 

4.1 Energy Efficiencies 

These efficiencies are defined according to the first law 
of thermodynamics; from a general point of view, it 
could be defined as the ratio of a Useful Effect, U.E. 
divided by Energy Consumed, E.C. (Feidt 2009 a, b, c). 

According to the sign convention used here, this 
definition gives: 

- for an engine E : 

''
EE

C C

w ww w

q q



                            (13) 

It appears that the presence of auxiliaries necessary to 
move the engine decrease the engine efficiency and 
consequently has to be accounted for. The engine 
efficiency is always less than one. 

- for a Refrigerating Machine R.M.: 

'
F

RM

q
COP

w w





           (14) 

- for a Heat Pump 

'
C

HP

q
COP

w w



           (15) 

Remark: in any case, we note that due to Eq. (7) COPHP 
= COPRM + 1; COP are generally greater than one, 
contrarily to  , engine efficiency. 

To these three classical cases, we add two common 
interesting ones related to more than one useful effect; 
this extension corresponds to more integrated systems. 

The first example is a Combined Heat and Power 
machine C.H.P.; the most common configuration is 
concerned with the water Vapour Turbine (T.V.). It 
comes: 

'
1F

CHP
C

w w q

q
  

                            (16) 

This result indicates clearly the inadequacy of the first 
law approach in that case, due to the same “value” of all 
energies used (heat or mechanical energy); the T.V. is 
functioning at a temperature in between [TF.TC] and 
consequently could not be adiabatic; consequently it 
appears internal losses of the vapor turbine to the 
environment qLTV, and the efficiency is moved to: 

1 LTV
CHP

C

q

q
    

It corresponds to an “adiabaticity” efficiency of the 
T.V. 

The same reasoning as for CHP machine is applied to 
“Thermo Frigo Pump” T.F.P., where two simultaneous 
Useful Effects are used at the hot and the cold side of 
the machine; it comes the corresponding COPTFP: 

COPTFP = 
'

C Fq q

w w




 = COPHP + COPRM    (17) 

We have to note here that the two useful effects 
correspond to heat fluxes delivered at different 
temperatures, respectively TC and TF. 

4.2 Exergy Efficiency 

The concept of exergy was first proposed by Gouy 
(1889) and Stodola. This fruitful concept is a solution to 
overcome the lack of precision due to the first law of 
thermodynamics. It could be retrieve simply subtracting 
Eq. (8) from Eq. (7) ; we obtain this way the exergy 
balance of the machine : 

1 1
1 1 'C F i

C F

q q s w w
t t

   
         

  
        (18) 

In Eq. (18) appears the Carnot factor 
1

1
t

    
 

 of 

every heat flux, and the corresponding thermal exergy, 
.q  . 

According by subtracting Eq. (9) from Eq. (7), we 
obtain the exergy balance of the system: 

1 1
1 1 'C F T

SC SF

q q s w w
t t

   
           

   
      (19) 

This system exergy balance Eq. (19) is clearly different 
from the one of the machine Eq. (18) ; they coincide 
only in the limit of equilibrium thermodynamics (tSC = 
tC ; tSF = tF). 

Further, subtracting Eq. (18) from Eq. (19), we obtain: 

st = 
1 1 1 1

C F i
C SC F SF

q q s
t t t t

   
         

   
      (20) 

So whatever is the kind of machine, the total entropy 
flux created is the sum of the entropy created at the 
external contact of the machine with source and sink 
(external irreversibilities for the machine), and the 
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internal entropy created inside the machine, si. This 
approach confirms the difference between endo and 
exoirreversibilities relative to the studied machine. This 
method of distinction between endoirreversibility and 
exoirreversibility with respect to the thermomechanical 
machine could be easily generalized. 

Consequently exergy efficiencies could be defined; but 
here, we have to differentiate between exergy efficiency 
of the machine, and exergy efficiency of the system. It 
appears that this difference is not so clear until now in 
the literature. 

 

4.2.1 Exergy Efficiencies of Machines 

The general definition of exergy efficiency is 
transposed from the energy one: it corresponds to the 
ratio of Useful Exergy U.Ex divided by Exergy 
Consumed Ex.C. It comes: 

- for the engine : 

'

1 1 /1
1

x

EE
E E

C
C

C

w w

t
q

t

 
 

 
 

 

                         (21) 

- for the Refrigerating Machine : 

1
1

1
1

'x

F
F

E RM RM
F

q
t

COP
w w t



 
       
  

         (22) 

- for the Heat Pump 

1
1

1
1

'x

C
F

E HP HP
C

q
t

COP
w w t



 
          

      (23) 

These results could be easily extended to C.H.P. 
machine and Thermo Frigo Pump. It comes: 

- for the C.H.P. machine : 

1
' 1

1
1 1

1 1
x

F
F i

E CHP

C C
C C

w w q
t s

q q
t t



 
   

   
   
    

   

      (24) 

The exergy efficiency of a C.H.P. machine is less than 
one, due to internal irreversibility of the machine. 

- for the T.F.P. machine : 

1 1
1 1

1
' '

C

x

F
C F i

E TFP

q q
t t s

w w w w


   
     

    
 

                     (25) 

The exergy efficiency of a T.F.P. machine is also less 
than one, for the same reason as for the C.H.P. machine. 

Consequently the exergy efficiency of the machine is 
representative of internal irreversibilities of the machine 
(endo efficiency of the machine or converter). 
 
4.2.2 Exergy Efficiencies of Systems 

The same demarche as developed in subsection 4.2.1. 
furnishes by analogy exergy efficiencies of machines 
connected to source and sink, EX S  : 

- for the engine system 

'
11 11

EE
E x ES

c
SCSC

w w

q tt

 
 

   
 

      (26) 

- for the refrigerating system 

1
1

1
1

'

F
SF

Ex RS RM
SF

q
t

COP
w w t



 
 

         
     (27) 

- for he heat pump system 

1
1

1
1

'

C
SC

ExHPS HP
SC

q
t

COP
w w t



 
 

        
                     (28) 

It is clear that these three system exergy efficiencies are 
dependent of Carnot factor relative to ambiance and 
respectively heat source (tSC) and heat sink (tSF). 

They differ fundamentally from the one defined for the 
machines (subsection 4.2.1). They always are inferior to 
one. 

- for the C.H.P. system it comes : 

1
' 1

1
1 1

1 1

F
SF T

ExCHPS

C C
SC SC

w w q
t s

q q
t t



 
   

   
   
    

   

               (29)                     

- fot he T.F.P. system : 

1 1
1 1

1
' '

C F
SC SF T

Ex TFPS

q q
t t s

w w w w


   
     

     
 

            (30) 

It appears that going from the machine efficiency (Eq. 
(24) or (25)) to the system efficiency (Eq. (29) or (30)) 
the exergy efficiency decreases, due to the adding of 
heat transfer irreversibilities (see Eq. (20)): internal and 
external irreversibilities occur in the system analysis. 

 

Whatever in the case the machine exergy efficiency 
could be one only in the endoreversible case and the 
system exergy efficiency only in the endo and exo 
reversible case (this reversible case corresponds to 
equilibrium thermodynamics). 

5. OPTIMIZATION WITHOUT AND WITH 

CONSTRAINTS 

5.1 Reconsideration of Objective Function: 
first law efficiency or Energy Efficiency 

As was seen in subsection 3.4, the modeling of a 
thermomechanical machine exhibits physically two 
degrees of freedom; so optimization is theoretically 
possible. 
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Without adding supplementary constraint, the present 
available literature shows that machine or system 
performance is mainly characterized by first law 
efficiency (subsection 4.1., Eqs. (13) to (17)). Due to 
the intercalation between COPHP and COPRM, 
optimization of Eq. (14), (15), or (17) gives the same 
solution ; but as has been first considered previously 
(Blanchard, 1980, Goth, 1986) for reverse cycle 
machine a constraint must be added (finite energy) due 
to the fact that tC, tF variables are not theorically 
bounded (see Fig. 1). 

Exergy efficiency 

We extent presently the performance analysis for 
machines and systems to exergy efficiencies 
(subsection 4.2.1). This approach is not fairly well 
considered today in the literature, even if it is 
developing fast: it corresponds to Eqs. (21) to (25) for 
machines, and Eqs. (26) to (30) for systems. 

Useful effect optimization 

This was the first attempt to escape from equilibrium 
Thermodynamics (Curzon and Ahlborn (1975); 
Chambadal (1957); Novikov (1957)): for an engine, the 
maximum power was sought for. 

Afterwhat, were considered the refrigerating power of a 
refrigerating machine, and (or) the heating power of a 
heat pump. 

These three cases are the basic ones; extensions are 
easy to other configurations as C.H.P. or T.F.P. 
machines. 

From a general point of view, whatever is the machine, 
it corresponds to maximization of the Useful Effect 
U.E. 

Energy Consumption optimization 

This important case is practically ignored in the 
literature. We suggest that it could be an important 
objective function corresponding to efficient use of 
available energy; for a thermomechanical engine, it 
corresponds to minimization of qC ; for a refrigerating 

machine or heat pump to minimization of 'ww . 

Ecological criterions (Angulo Brown, 1991) 

The environmental issue becomes more and more 
important today. Some specifically related to 
Thermodynamics are proposed in the literature. It 
seems that in any case these criterions are in connection 
with rejections R. 

For the thermomechanical machine presented, it 
corresponds to heat rejection (thermal pollution) ; so, it 
comes that the corresponding objective function consist 

to minimize the rejection Fq . The methodology is 

easy to generalize to any kind of rejection, and could be 
extended through L.C.A. Life Cycle Analysis. 

Economical criterions (Bejan, 1996) 

These criterions are numerous, and considered by 
engineers specifically; 

Investment cost 

 Ci could be related to the dimensions of the machine, 
through unitary cost Ci. For example, considering the 
physical dimension of the thermomechanical machine 
related to K, the heat transfer conductances (section 2), 
minimization of investment cost suppose to know Cic 
the unitary cost of KC (hot side), respectively CiF of KF 
(cold side). 

If the two costs are identical, it results a dimensional 
minimization of the machine in terms of KT, with an 
optimal allocation of the K’s too. 

Operating cost CO: it is directly related to Energy 
Consumption, this consumption being characterized by 
an unitary cost cO (for a fuel, cfo) ; but it is to be noted, 
that it could appear some extra cost in relation with 
rejection (tax for example) (cor, unitary cost for 
rejection). 

Global cost Cg 

 this cost to be minimized consists int the sum of all the 
costs. Some complementary economical criterions are 
also possible: the revenue (to maximize) or the benefit, 
and return time. 

Conclusion of the non constrained optimization 

It appears that possible objective functions are 
numerous, starting from efficiencies, to Useful Effects, 
Consumptions, Rejections, Economic criterions ; the 
last one refer to THERMOECONOMY essential for 
engineer, and environmental criterions. 

Consequently, multiobjective optimization remains to 
develop fast. 

We propose here to focus on physical 
(thermodynamical) simple objective function; taking 
account of the three main aspects enlighten, to say 

- U.E. Useful Effect 

- C. Consumption (energy or exergy) 

- R. Rejection 

These three ones are dimensional criterions. And we 
add the extended non dimensional ones related to 
Efficiency. 

To these fundamental physical criterions, we suggest 
extending work of Bejan (1997), to add the two entropy 
related criterions : minimization of si, entropy created 
inside the machine, and (or) minimization of sT, entropy 
created inside the system ; these two entropy criterions 
corresponds to a minimization of energy dissipation 
inside machine (respectively system). Minimization of 
si supposes to determine this quantity for the machine 
through entropy analysis. The same methodology is 
practicable for the system. However, minimization of sT 
is possible, even if si is supposed a given constant 
parameters (to be experimentally identified). It is the 
way we choose in the following section for simplicity. 

5.2 Constrained Optimization 

The constrained optimization proposed uses the remark 
that frequently machines and systems are designed with 
a fixed objective. For example for a thermomechanical 
engine the power to delivered coal be imposed, or today 
appears some limitations in rejections ; in other case 
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limitation could be due to the fuel availability, as in 
solar and wind energy systems. These are the three 
main possible constraints. But it is easy to define other 
ones like temperature limitations due to material (TMAX) 
for example, or limitation in pressure (PMAX). 

We propose hereafter to examine the effect of the three 
main limitations on some objective functions to define 
as seen in subsection 5.1. Table 1 gives an overview of 

the set of cases to be examined; some of them are 
existing in the literature; others are completely new to 
our knowledge. Some cases are connected: for example, 

an engine with imposed power
.

0w , is such that the 

minimum of consumed heat flux 
.

Cq  corresponds to 

maximum of energy efficiency EE  (this reduces the 

number of cases to study). 

Table 1 synthesis of constrained engine optimization cases 

Constraint 
 

    O.F. 
Without     

.

0w  
.

0Cq  
0 <

C  

. .

0Ts s  
KT = K0 

Others… 
(costs) 

.

w  MAX  MAX MAX MAX MAX  

.

cq  min min  min min min  

  MAX MAX MAX  MAX MAX  

.

Ts  min min min min  min  

KT min min min min min   

others 
(costs) 

       

5.3 Mathematical Method Used 

The method is based on variational calculus, and 
supposes to construct the lagrangian L of the study 
(lagrangian method); L is obtained knowing the 
objective function choose O.F., and all the constraints 
associated Ci: 

L = F.O. + i i
i

C            (32) 

i  is the lagrangian parameter. 

5.3.1 Optimization without Supplementary Constraint 
or With One 
 
These optimizations are respectively devoted to the 
following objective function 

- for an engine 
. . .

, , , TCw q S  with the constraints 

given by Eqs. (1), (2), (6) whatever is the heat 
transfer law. 

- For a refrigerating machine (heat pump) 
. . . .

, , , TF Cq q w COP S 
 
 

, with one constraint more 

than for the engine, as announced previously. 

When KT is the objective function (design 
optimization), the last constraint Eq. (6) disappear as 
said previously (one degree of freedom more), and Eq. 
(1) gives the mechanical power associated to the 
studied case. 

 

 

If we add one constraint more to the problem (see Table 

1 : 
. .

0 0 00, , , ,....Cw or q or orCOP ), we lose one degree of 

freedom, but optimization remains possible. 

 
5.3.2 Equations Systems to Solve 

They are obtained by derivation of the lagrangian with 
respect of variables (tC, tF, kC, kF) and Lagrange  

Parameters 

The derivation with respect to Lagrange parameter 
gives back the constraint of the problem studied: 

relation (1)  (C1) : qC + qF – ( ')w w  = 0 

relation (2)  (C2) : 0C F
i

C F

q q
s

t t
    

relation (6)  (C3) : kC + kF = kT   (or 1) 

relation (3)  (C4) : 0T F
T

SC SF

q q
s

t t
    

After elimination of Lagrange parameters, we get 4 
equations with the four variables: the corresponding 
solution is the state vector at the optimum noted (tC*, 
tF*, kC*, kF*). Consequently the value of the objective 
function at the optimum O.F.* is determined, as well as 
any other useful value. 

6. EXAMINATION OF SOME OBTAINED 

RESULTS 
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6.1 Tentative Synthesis of Results for the 
Engine 

General equations to solve, in order to get the optimum 
if it exists are summarized in Table 2. For the engine 
without supplementary constraints, same tables 
are available near the author for refrigerating machines 
and heat pumps. We use in this Table the following 
notations: 

, ,; ;i i
i k i t

i i

q q
q q

k t

 
 
 

 ,

2
,

.
( )

.
i t i i

i
i t i

q t q
q

q t


  

The Table 3 corresponds to particular results of the 
engine, when the heat transfer law is the linear one. 
This Table confirms some existing results of the 
literature. 
 
The maximum of efficiency for an endoreversible 
engine without thermal losses is the well known 
equilibrium thermodynamics limit.  

The maximum of the engine power is associated with 
the well known CNCA (Chambadal – Novikov – 
Curzon – Ahlborn) limit, generally spelled “nice 
radical” in the endoreversible limit. It seems other 
results are new formulated one, or at less unified ones.  

Indeed we remark, that whatever is the treated case 
optimum heat transfer conductances are obtained trough 
(C2) and (C3) as: 

kC* =
*

1
2
T ik s


  
 

                                                     (33) 

kF*=
*

1
2
T ik s


  
 

                                                     (34) 

Remark: however *  is different, in each case (only 
formal identity when it exists).   is defined by: 

C F

C F

x x

t t
   . 

 
Table 2 Equations to determine the non constrained engine optimum values of variables 

O.F. Equations to solve at optimum 

I  

   , ,

2 2
, ,

. .
: ;        0

. .
C C K F F K

C C F
C C t F F t

q q q q
q q q

t q t q
     

(C2) ; (C3) 

remark : (C1) gives the (w + w' ) value associated to optimum 

w + w' 
   , ,

2 2
, ,

. .
: ;       ( )

. .
C C K F F K

C F
C C t F F t

q q q q
q q

t q t q
    

(C2) ; (C3) 

qC 

  , ,

2 2
, ,

. .
: ; ,

. .
C C K F F K

F C
C C t F F t

q q q q
q q

t q t q
   monotonous functions 

(C2) ; (C3) : one equation missing, one degree of freedom more 

remark : (C1) gives the (w + w' ) value associated to optimum 

sT 

   , ,

2 2
, ,

. .
: ;         ( )

. .
C C K F F K

SC C SF F
C C t F F t

q q q q
t q t q

t q t q
    

(C2) ; (C3) : : one equation missing, one degree of freedom more 

remark : (C1) gives the (w + w' ) value associated to optimum 

                  (C4) gives the sT  value 

kT 

  , ,

2 2
, ,

. .
: ;

. .
C C K F F K

C C t F F t

q q q q

t q t q
          (qC) = (qF) 

(C2) 

remark : (C1) gives the ( w+ w' ) value ; (C4) gives the sT  value 

one equation missing, one degree of freedom more 
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Table 3 Analytical optimization results for an engine, with linear heat transfer laws, and without added constraint 

O.F. Variables values at optimum 

I  

*
1

SC
C

i

t
t

s



 ; 

2

1
* ; * 1

1 1
iSF SF

F I
SCi i

st t
t

ts s


 
   
   

 

(w + w')* = 
 11 1 1

;
2 21 1 1

SC ii i i
SC SF C i

i i i

t ss s s
t t q s

s s s

  
  

    
 

remark :  * ; * 1
2
T

i C i

k
s k s     

w + 
w' 

   * ; *
2 2
SC SF

C SC SF F SC SF

t t
t t t t t t     

(w + w')* = 

2 2

1
2

C SF SC SF
i

SC SF

t t t t
s

t t


        

        

 

 
 

1 . ; *
SC SF i SC SF SC SFSF

I
SC SC SFSC SF i SC SF

t t s t t t tt

t t tt t s t t
 

   
  

  
 

qC 

qC, monotonous with   (qF also) : qC  = 
1

2 1
i

SC

s
t






 

optimization in ki only : 

* 1 ; * 1
2 2
T i T i

C F

k s k s
k k

 
         
   

 

remark :   is parameter, or tC (xC), or tF (xF) 

sT 

sT, monotonous with  (min sT = si, when   = 0) 

sT = 
2

21
is





 

optimization in ki only : (see above)  

remark :   parameter, or tC (xC), or tF (xF) 

kT 

optimization in ti : tC* =    ; *
2 2
SC SC

SC SF F SC SF

t t
t t t t t    

kT, monotonous with kC or kF (one degree of freedom) ; kF has been choosed with limit ( Fk

)
2 *

is


   ; kC* = kF - , *

*

SC SFi

SC SF

t ts

t t








 

remark : sT = 2kF 
2

2

*

1 * 1 *
is

 


 
 

 

Persons interested by extension to non adiabatic engines 
could refer to Feidt (2009), where there is also a 
comparison between the created entropy flux method, 
and the irreversibility ratio method. Results exist too for 
non adiabatic engines (Feidt, 2009). To illustrate the 
difference, we introduce the stagnation temperature of 

the system TS (maximum attainable temperature of the 
system is too temperature limitation), and using the 
proposed methodology optimizes the engine power with 
respect to the variables including TSH new system 
variable; it comes the corresponding results: 
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Table 4 Equations and results for optimization of a Carnot engine with an added constraint and linear heat transfer 
laws 

O.F. with 
constraint optimum of I  (a) 

w + w'  = w0 

      

  

2 2

0
0

0 0

1
; 1

2( 2

4 2 ( ) 2

i SC SF
i SC SF

SC SF

SC SF i SC SF

s t t
s t t

t t w

t t w s t t w


   

    
 

    

 

kC* = 
0 0

1 ; * (1 )
2 2
T i T i

F

k s k s
k

 
 
    

 
 

qC ( 0 ) =  0
0 0

0

1
. ; /

2 1
i

SC I C

s
t w q

  






 

remark :   introduces an inequality constraint on si 

qC = qC0 

  
2

0

00
0

00

4
1

12
; * .

42 1
1

i SC SF C

SC SF C i SC SFi SC C
I

CSC C SC

i SC

s t t q
t t q s t ts t q

qt q t
s t

 




  
 

 


 

remark : sT = 

2

0

0

4

1 4

C
i

SC

C
i

SC

q
s

t

q
s

t

 
  

 

 
 ; monotonous with si, qC0 

O.F. with constraint optimum of (w + w')  (b) 

qC  =  qC0 
(w + w')* = 

  
 

2
0 0

0

1 4

1 4
C i SC SF i SC SF C

SC i C

q s t t s t t q

t s q

   
 

 

remark : solution formally identical to the above one 

0I   

  
 

 
  

0 0
0

0 0

1 2

2 2 1
i C i C

C i C

s s

s

   


   
     

 
  

 

avec      2 2 2

0 01 4 2 0i C i Cs s           

   
   

00
0 0

0 0 0

2 1
( ') * .

2 1 2 2 1
C i CSC i SC i

C i

st s t s
w w

s

   
   

  
  

   
 

O.F. with 
constraint 

optimum of qC  (c) 

0I   

        2 2 20
0 0

0

1
; 1 4 2 0

2(2 )
i C

i C i C
C

s
s s

 
    

 
   

      
 

 

Formal identity to preceding case 

 
   

0 0

0 0

(4 3 )
* .

2 4 3
C i CSC

C

C i C

st
q

s

   
   
     


     

 

w + w' = 
= w0 

  

       

0
0

2 2

0 0

1
;

2( 2 )

1 4 2

i SC SF

SC SF

i SC SF SC SF SC SF i

s t t

t t w

s t t t t w t t s w


   


 

          

 

0

0

1
*

2 1
i

C Si

s
q t








 

  
O.F. with 
constraint 

optimum of sT  (d) 

0I   

   2 2
0

1 1
; ( 1) 4 (1 ) 0

2( 1)
i

i

a s
a s a

a


   
     


 

a = 01
1

1 C








 

w+ w' = w0 
Same solution as in table 4 (a) 

Remark : if qC = qC0    (see table 4 (a) continuation) 
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KC* = 
1

TK I

I
 (irreversibility ratio method) 

or  

.

*
.

1 1
1 .

2
1 .

2

SF S SF
i

L TS SF S SFT
c

i SF

L S SF

T T T
s

K KT T T TK
K

Ts

K T T

 
  
   




        (35) 

And 

  
 

 2

2

1
* .

1 1

S SF

EES
L S SF

T

T IT
w

K T TI
K





 

    (36) 

or  

 

.

.

1
*

1 1
.1 4

S SF
i

S SF

EES

S SFi SFL

T L S SFS SFT T

T T
s

T T
w

T T TKs
K K T TT TK K



 
 

 
  

           
From these relations, it comes that internal 
irreversibilities are coupled to non adiabaticity. 
Constrained optimization results are also new ones. 
Some of them are reported hereafter for 
thermomechanical engines and linear heat transfer laws. 
Tables 4.a, 4.b, 4.c report respectively the constrained 
optimum of EE  corresponding to classical first law 

efficiency I , ', Cw w q  for the various indicated 

contraints. 
In these cases the optimum heat transfer conductances 
allocation is always given by Eqs. (33) and (34) in 
which * , the intermediate variable is becoming   
(constrained intermediate variable : see the tables). 

Table 4.d is relative to the objective function 
.

TS  to 
minimize in presence of supplementary constraint; it 
appears that only the case where the efficiency is 
imposed differs from the other ones. 
Table 5 summarizes the results of what we said the 
“design” optimization of the engine (min KT), always 
for linear heat transfer laws (particular analytical 
results). 
 

Whatever is the supplementary constraint used, the 
design optimization of the engine corresponds to: 

1 1
*

1 1
SC SF C

SC SF C

t t

t t





  

 
  

                   (37) 

with C , Carnot efficiency. 

The heat conductance allocation remains in accordance 
with Eqs. (33) and (34). 

 

Table 5 Optimum design results (min KT) for a Carnot engine with an added constraint and linear heat transfer laws 

O.F. with 
constraint 

Optimum of KT 

w + w' = 
= w0 

 
 

2

0

2

4
*

i SC SF

T

SC SF

w s t t
k

t t

 



 

 
0

0

1

2

SC
I

i SF
SF SC SF

w t
s tw t t t


 

   
  

 

     














 SFSCSFSC

SCi
SFSC

SFSCSFSC

T tttt
ts

ttw
tttt

s 4
2

1
0

qC = qC0 

 01 4
*T i SC SF

SC SF SC

q
k s t t

t t t

 
   

   
 

 
0

1
2

SF i
I SF SC SF

SC

t s
t t t

t q
      

02
.

2
SC SF SC SF

T i
SCSC SC SF

t t t tq
s s

tt t t

  
  

  
 

0I   

0

0

1 /
*

1 /
SC SF SF SC

T i

SC SF SF SC

t t t t
k s

t t t t




  
 

  
 

 
 0

1

2 / . 1 1

i SC
C SC SF

SC SF

s t
q t t

t t 
 

 
 

avec w + w' = 0 . Cq  

 
 

0

0

/ 1 1
. .

2 / 1 1

SC SF SC SFi
T

SC SC SF

t t t ts
s

t t t





  


 
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6.2 Extension to C.H.P and Series Connected 
Cycles    

6.2.1 Combined Heat and Power Carnot System 
 
This extension of the modeling is straight forward 
(Feidt, 2009), but as indicated in section 4.2.2., the most 
significant objective function becomes the maximum 

useful exergy flux uxE
.

; with heat reference relative 

to the useful fluid Tu (for example vapour temperature) 
it comes : 

Irreversibility for the ratio method : 

. .
01 F

u C
u C

T T
E x q I

T T

 
   

 
        (38) 

For the entropy flux method: 

. . .
0 01 F F

iu C
u C u

T T T T
E x q s

T T T

 
    

 
           (39) 

Equation (39) is chosen. The corresponding optimum 
is: 

     .

0 0 0.

.

4

iL S T S S

u

iT L

K T T K T T s T T
MAX E x

K s K
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        (40)         

Supposing incoming energy flux is pure exergy, this 
corresponds to: 
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          (41)    

As a partial conclusion, it can be noted that the entropy 
flux method permits a more precise identification of the 
influence of internal irreversibility and thermal losses. 

Extension to the cases with an extra constraint is 
reported in (Feidt, 2009d). 

 

6.2.2 Series Connected Carnot Engines 
 
Modeling of a two Carnot cycles have been recently 
reported (Feidt, 2010), the objective function in that 
case being the total power of the engines “cascade”, the 

constraint being the available heat flux 
.

0Cq  at the TSC 

temperature. It comes easily in the endoreversible case 
for the O.F. first law efficiency, with linear heat transfer 
laws. 

.

0

1
1 .

1 1 1
1

endo

SF
E

SC
C

SC C F

T

T q

T K Ki K

  
 

   
 

     (42) 

Ki, being the intermediate heat transfer conductance. 

Introducing the finite dimension constraint as: 

KT = KC + Ki + KF                      (43) 

We recover the equipartition of conductances for the 
endoreversible system efficiency maximum: 

*
.

0

1
1

1 9 /
endo

SF
E

SC
T SC

T

T q K T
  


                    (44) 

This interesting case corresponds in fact to O.R.C. 
systems (Organic Rankine Cycles). And it has been 
generalized to a N-O.R.C. cycles cascade, according to: 

Ki* = 
1

TK

n 
                           (45) 

And the corresponding maximum efficiency 
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7. CONCLUSION 

 A review has been proposed here showing the 
evolution of machine and system modeling from 
Carnot appraisal (equilibrium Thermodynamics) to 
today tendencies represented by F.T.T. Finite Time 
Thermodynamics. 

 We have shown how in fact great majority of 
studies are only implicitly related to time, but not 
explicitly due to steady state modeling essentially. 
It seems that F.T.T. spelling is more convenient for 
fully transient conditions machines or systems. 

 The concept of efficiency of a machine and a 
system has been revisited. The necessary use of 
exergy efficiency has been proved for C.H.P. 
configurations, but also for thermofrigopump, two 
main illustrations. Also the difference between 
exergy efficiency of a machine and the 
corresponding system efficiency has been 
enlightened. 

 Some comparison between entropy ratio method 
and entropy flux method, endoreversible and 
irreversible cases, adiabatic and non adiabatic 
configurations have been developed. 

 Reconsideration of objective function has been 
done starting from classical efficiencies, through 
power of an engine, and new extensions proposed 
by the author recently (energy consumption; heat 
rejection). 

 New results have been proposed for realistic cases 
where an added constrained is joined (mainly E.C. 
energy consumption, or U.E. useful effect, or 
imposed efficiency). 

 A general methodology has been proposed for 
thermomecanical machines, with the associated set 
of equations to solve, whatever are the heat 
transfer laws. 

 Main consequences of all the comparison are given 
and future perspectives too. Extension to reverse 
cycles machines and other combined 
configurations has been proposed; some results are 
available near of the author in this direction. 

 Lastly we propose to call this approach F.D.T. 
Finite Dimensions Thermodynamics, where 
Dimensions means every physical limited quantity; 
this methodology appears a promising one to be 
enlarged in the future.  
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