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ABSTRACT 

The effect of radiation on natural convection incompressible viscous fluid near a vertical flat plate with ramped wall 
temperature has been studied. An analytical solution of the governing equation has been obtained by employing 
Laplace transform technique. It is examined that two different solutions for the fluid velocities, one valid for fluids of 
Prandtl number  Pr  different from 1 Ra , Ra  being the radiation parameter and the other for which the Prandtl 

number equal to 1 Ra . The variations of velocities and fluid temperature are presented graphically. Furthermore, 
the radiative heat transfer on natural convection flow near a ramped plate temperature has been compared with the 
flow near a plate with the constant wall temperature. It is found that an increase in radiation parameter leads to rise 
the fluid velocity as well as temperature. 
 
Keywords: Natural convection, Radiation, Ramped temperature, Isothermal plate and Stefan-Boltzman constant. 

NOMENCLATURE 

pc      Specific heat at constant pressure 

g      Acceleration due to gravity 

H     Unit step function 
'k      Thermal conductivity 

k     Spectral mean absorption  
          coefficient of the medium 
Nu   Nusselt number 
Pr     Prandtl number 
q      Radiative heat flux 

Ra    Radiation parameter 
'T     Temperature of the fluid 

T     Temperature of the fluid 
't      Time 

0t      Characteristic time 
'u     Velocity component in x -direction 

u      Dimensionless velocity 

 ' ',x y  Cartesian co-ordinates 

      Coefficient of thermal expansion 
      Stefan-Boltzman constant 
      Non-dimensionalized width of the channel 

      Dimensionless temperature 
      Kinematic coefficient of viscosity 
      Fluid density 

       Non-dimensional time 

0     Skin friction at the plate = 0  
 

Subscripts 
 

w     Condition at wall 
     Condition at infinity 

 

Superscripts 
Differentiation with respect to   

 

1. INTRODUCTION 

Over the recent years an analyzing mode of radiation-
convection heat transfer  takes place in many practical 
applications of glass manufacturing, furnace 
technology, high temperature aerodynamics, fire 
dynamics and space craft reentry (1967). England and 
Emery (1969) have studied the thermal radiation effects 
of an optically thin gray gas bounded by a stationary 

plate. The hydromagnetic free convection flow with 
radiation heat transfer in a rotating and optically thin 
fluid has been investigated by Bestman and Adiepong 
(1988) and Naroua et al. (1998). Raptis and Perdikis 
(2003) have studied thermal radiation of an optically 
thin gray gas. Hossain and Takhar (1996) have studied 
the mixed convection flat plate boundary layer problem 
using Rosseland (diffusion) flow model. Takhar et al. 
(1996)  have studied the radiation effects on MED free 
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convection flow in a radiating gas past a semi-infinit 
vertical plate. Radiation effect on the flow past 
impulsively started infinite vertical plate with variable 
temperature was studied by Muthucumaraswamy and 
Ganesan (2003). Cheng (1965) highlighted the 
radiation-convective gas dynamic flow using a 
differential approximation. Cess (1966) presented a 
seminal study of radiating convective boundary layers 
with buoyancy effects using Rosseland diffusion 
approximation. Ghosh and Pop (2007) have considered 
thermal radiation of an optically thick gray gas in the 
presence of indirect natural convection by employing 
Rosseland approximation for diffusion concept of 
radiation heat transfer. Chandran et al. (2005) have 
studied the unsteady natural convection near a vertical 
plate with ramped wall temperature. Concerning to all 
these studies the orientation of our present problem is to 
study of radiation-convection heat transfer flow of an 
optically dense medium to boost-up effective 
temperature of a different Prandtl number. The aim of 
our present investigation is to analyze the unsteady 
radiation–convection flow resulting from the ramped 
temperature profile of the bounding plate. In an 
optically dense medium there arise a thin radiation layer 
on the border of the thermal boundary and the Prandtl 
number may have a significant relation with radiation 
parameter. Thus the variation of temperature may come 
into true for the case of a different Prandtl number due 
to the change of a different characteristics of an atomic 
gas. Although nuclear reaction does not involved in all 
these studies it is to be mentioned that a homogeneous 
reaction takes place to equal concentration of ions and 
electrons and the chemical reaction becomes ignored. 
Therefore, in a non- catalytic system, radiative heat 
transfer natural convection flow of a ramped wall 
temperature communicates a physical background of 
aerospace science for its optical measurement. 
 
The motivation of our present investigation is to study 
of a laminar viscous flow of different Prandtl number 
near an infinite vertical flat plate of a heat generating 
fluid with reference to a radiation-convection heat 
source. An attempt has been made to analyze the 
ramped temperature at the wall ( > 0)'t  to exert its 
fluid behaviour within the radiation boundary layer. It is 
assumed that a homogeneous reaction takes place in the 
direction of a radiation boundary layer flow of an 
optically dense medium. To recast a qualitative analysis 
of this problem it is essential to study of a transient 
approach on radiation-convection flow near a vertical 
plate with ramped wall temperature. The radiation heat 
transfer on natural convection flow near a ramped wall 
temperature has also been compared with the flow near 
the plate with constant temperature. 

2. FORMULATION OF THE PROBLEM AND 

ITS SOLUTION 

We consider the unsteady flow of a viscous 
incompressible fluid of arbitrary Prandtl number (Pr) 
near an infinite vertical flat plate. Choose the cartesian 

co-ordinate system in such a way that 'x -axis is taken 

along the wall in a vertically upward direction and 'y -
axis is normal to it into the fluid. Our aim is to analyze 
the radiative heat transfer of an unsteady free 

convection flow resulting from the ramped temperature 
profile of the bounding plate. At time < 0t , both the 

fluid and plate are at rest and constant temperature 'T . 

 
At time > 0t , the temperature of the plate is raised or 

lowered to  
0

'
' ' '

w

t
T T T

t    when 0
't t  and the 

constant temperature '
wT  is maintained at 0>'t t . Since 

the plate is infinite along 'x - direction, all the physical 

variables are the function of 'y  and 't  only. The flow 
is considered optically thick gray gas with natural 
convection and radiation. The radiative heat flux in the 

'x -direction is considered negligible in comparison to 
'y -direction (See Fig. 1). 

 
Fig. 1. Geometry of the problem 

 
Under Boussinesq approximation, the momentum 
equation becomes  

 
2

2
= .

' '
' '

' '

u u
g T T

t y
  

 
 

 
                        (1) 

 The energy equation becomes  
2

2

1
= ,

' '

' ' '
p p

T k T q

t c y c y 
  


  

                         (2) 

where 'u  is the velocity in the 
'x -direction, 'T - the 

temperature of the fluid, g -the acceleration due to 

gravity,  - the coefficient of thermal expansion,  - 
the kinematic coefficient of viscosity,  - the fluid 

density, k - the thermal conductivity, pc - the specific 

heat at constant pressure and q - the radiative heat flux. 
 
The initial and boundary conditions are to be satisfied  

= 0, = for 0 and 0,' ' ' ' 'u T T y t    

=0 at = 0 at > 0,' ' 'u y t  

  0
0

= at = 0 for ,
'

' ' ' ' ' '
w

t
T T T T y t t

t                  (3) 

0= at = 0 for > ,' ' ' '
wT T y t t  

0, as for > 0.' ' ' ' 'u T T y t    

We introduce dimensionless variables  

0

00

= , = , = , = .
' ' ' '

'
' '
w

y t t T T
u u

t T Tt
  









             (4) 
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The radiation heat flux can be found from Isachenko et 
al. (1969) and Brewster (1992) and its formula is 
derived from the diffusion concept of radiation heat 
transfer in the following way  

44
= ,

3

T
q

k y








                        (5) 

where   is the Stefan-Boltzman constant and k the 
spectral mean absorption coefficient of the medium. 

 
Equations (1) and (2) together  with Eq. (5) subject to 
Eq. (4) can be written in a dimensionless form  

2

2
= ,

u u 
 
 


 

                                                            (6) 

2

2
= (1 ) ,Pr Ra

 
 
 


 

                                                (7) 

 where
316

=
3

'T
Ra

k k

 
  is the radiation parameter and 

= pc
Pr

k


 is the Prandtl number. 

The characteristic time 0t  can be express as  
1

3

0 2
= .

( )' '
w

t
g T T


 

 
  

                                      (8) 

The corresponding boundary conditions are  

= 0, = 0 for 0 and 0,u      

= 0 at = 0 for > 0,u    

= for 0 < 1,                           (9) 

= 1 for > 1,   

0, 0 as for > 0.u       

By employing Laplace transform technique the Eqs. (6) 
and (7) can be solved by the defined 0t  in Eq. (8) 

subject to the boundary conditions (9) and the solutions 
for the resulting differential Eqs. (6) and (7) become  

1
3

(1 )(1 )
( , ) = ,

(1 )

Pr ss
sRaRa e

u s e e
Ra Pr s

 
 


    
    

          (10) 

1
2

1
( , ) = .

Pr ss
Rae

s e
s


 

 
 

 
 

                                    (11) 

The exact solutions can be obtained by applying inverse 
Laplace transform of the Eqs. (10) and (11) for 
temperature and velocity distribution on shifting the  -
axis and these turn into the following form  

1 1( , ) = ( , ) ( , 1) ( 1),H                                (12) 

11 12

1
( , ) = [ ( , ) ( , )

1

Ra
u u u

Ra Pr
     


 

 

 
 11 12( , 1) ( , 1) ( 1)],u u H                           (13) 

 where  
21

( , ) = erfc
2 1 2 (1 )

Pr Pr

Ra Ra

    


             
 

            

2
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e
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
 







                    (14) 

2 4 2
2

11 2
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Pr Pr
u

Ra Ra

   
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     erfc
2 (1 )

Pr

Ra




    
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2
2

4 (1 )1
10 ,

12 (1 ) 1

Pr

RaPr Pr
e

Ra Ra


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


 

    
      ( 15) 

 

4 2 2
12

1 1
= erfc

2 12 2
u

  


      
   

  

        
2

2 4
1

10 ,
12

e

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


                      (16) 

where erfc ( )x  being complementary error function and 

( 1)H    is the unit step function. It is noticed that in 

the absence of radiation parameter ( = 0)Ra , the 
solution (13) is identically satisfied with Chandran et 
al. (2005). 

2.1 Solution When Prandtl Number = 1Pr   

It has been observed from  Eq. (13) that the solution for 
velocity was not valid for fluids of Prandtl number 
unity when = 0Ra . It is seen that the solution for 
temperature ( , )    is obtained from Eq. (12) by 

substituting = 1Pr Ra . However, in the case of 
( , )u   , the solution has rederived starting from Eqs. 

(6) and (7). Following the same procedure as before, 
the solution for the velocity distribution turns into  

0 0( , ) = ( , ) ( , 1) ( 1),u u u H                            (17) 

 where  
22

4
0 ( , ) = 2

3 2
u e


    


 

 
 

 

            
2 2

erfc
2 6 2

  


       
  

                    (18) 

2.2  Solution for Isothermal  Plate  

To highlight the effects of ramped temperature 
distribution on the boundary of the flow we have solved 
the problem with constant wall temperature 
distribution. The temperature and the velocity for the 
flow near an isothermal, stationary plate can be 
expressed as  

( , ) = erfc ,
2 (1 )

Pr

Ra

  


  
 

  
                    (19) 

1 2

1
( , ) = [ ( , ) ( , )],

1

Ra
u u u

Ra Pr
     


 

                 (20) 

 where  
2

1

1
( , ) = erfc

2 1 2 (1 )

Pr Pr
u

Ra Ra

   


            
 

           

2

4 (1 ) ,
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RaPr
e
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
 





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3. NUSSELT NUMBER AND SKIN FRICTION 

AT THE PLATE  = 0  

In this section we have obtained the expressions for 
Nusselt number and skin friction at the plate = 0  
with reference to ramped temperature. Denoting 
Nusselt number by Nu  and skin friction by 0 , we 

have for ramped temperature 
 

=0

=Nu









 

= 2 1 ( 1) ,
(1 )

Pr
H

Ra
  


    

                 (23) 

0

=0

=
u










 

 
3 3

2 2
4 1

= ( 1) ( 1) ,
3 1

Ra
H

Ra Pr
  



 
   

   
         (24) 

 and for constant wall temperature  

= ,
(1 )

Pr
Nu

Ra 
                     (25) 

 0

2 (1 )
= .

1

Ra

Ra Pr







 
                     (26) 

 
 It is evident from Eqs. (23) and (25) that for a given   
the Nusselt number Nu  increases with increase in Pr  
for both ramped wall temperature as well as constant 
wall temperature while the results are reversed with 
increase in radiation parameter Ra . Solutions (24) and 
(26) reveal that for a given  , the skin friction at wall 
decreases with increase in Pr  whereas it increases 
with increase in radiation parameter Ra  for both 
ramped temperature as well as constant wall 
temperature. 

4. RESULTS AND DISCUSSION 

To gain a perspective of the physics of the flow regime, 
we have numerically evaluated the effects of Prandtl 
number Pr , radiation parameter Ra  and time  , on 

the velocity  u   and the temperature    . In Figs. 

2-7, the spatial distribution of velocity  u   and 

temperature     are plotted for various values of 

,Pr Ra  and  . In these figures, we have examined the 

flow pattern corresponding to the Prandtl number equal 
to 0.71 for air. Figure 2 shows that the velocity 
decreases with increase in Prandtl number Pr . This 
indicates that in Fig. 2, an increase in Prandtl number 
leads to fall the thermal boundary layer flow for ramped 
temperature as well as isothermal case. In the case of a 
high temperature flow, the triatomic gas corresponds to 
the value of Prandtl number greater than unity with a 
decisive importance to an effect of thermal boundary 
layer flow. Figure 3 reveals that an increase in radiation 
parameter Ra  leads to rise the thermal boundary layer 
flow due to frictional force near the bounding wall. This 
will generally happen in the case of a thermal boundary 
layer flow with the effect of Prandtl number to 

determine the transient approach on the flow behavior. 
It is seen from Fig. 4 that the velocities increase with 
increase in time   for ramped temperature as well as 
isothermal cases. An interesting feature of velocity 
profiles on Fig. 4 indicates nearly flat for small values 
of  , but assumes parabolic shape near the plate as   
increases. 
 

 
Fig. 2. Velocity profiles for four values of Pr  with 

= 2Ra  and = 2.0 . 

 
Fig. 3. Velocity profiles for four values of Ra  with 

Pr 0.71  and = 2.0 . 

 
Fig. 4. Velocity profiles for four values of   with 

Pr 0.71  and = 2Ra . 
Figure 5 demonstrates that in an optically dense 
medium its temperature decreases with increase in 
Prandtl number. It is interesting to note that for the case 
of higher Prandtl number ( >1)Pr  as for example of 

water ( = 7)Pr , the diatomic molecules can be 
transformed into triatomic gases and the lighter 
particles leads to decrease the temperature due to 
absorption of scattering medium. Figure 6 reveals that 
the temperature increases with increase in radiation 
parameter. Viscous force accelerates thermal 
temperature of the fluid caused by friction to exert its 
influence of temperature profile as given by Fig. 6. It is 
noticed from Fig. 7 that the temperature increases with 
time   due to moving layer of fluids. 
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Fig. 5. Temperature profiles for four values of Pr  with 

= 2Ra  and = 2.0 . 

 
Fig. 6. Temperature profiles for four values of Ra  with 

Pr 0.71  and = 2.0 . 

 
Fig. 7. Temperature profiles for four values of   with 

Pr 0.71  and = 2Ra . 

5. CONCLUSION 

A transient approach on radiation–convection heat 
transfer near a vertical plate with ramped wall 
temperature has been studied. This problem has been 
analyzed with a non–catalytic system of different 
Prandtl number of an optically dense medium with 
reference to diffusion concept of a thermal boundary 
layer flow. The soluion has been obtained by applying 
Laplace transform technique. It has been studied that 
two different solutions for fluid velocities out of which 
one valid for fluids of Prandtl number (Pr) different 
from 1 Ra , Ra being the radiation parameter and the 
other for which the Prandtl number equal to 1 Ra . 
The variation of velocities and fluid temperature are 
presented graphically.  
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