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ABSTRACT 

Aim of the paper is to investigate the MHD effects on the unsteady boundary layer flow of an incompressible 
micropolar fluid over a stretching sheet when the sheet is stretched in its own plane. The stretching velocity is 
assumed to vary linearly with the distance along the sheet. Two equal and opposite forces are impulsively applied 
along x axis so that the sheet is stretched, keeping the origin fixed in a micropolar fluid. The governing non-linear 
equations and their associated boundary conditions are first cast into dimensionless form by a local non-similarity 
transformation. The resulting equations are solved numerically using the Adams- Predictor Corrector method for the 
whole transient from the initial state to final steady- state flow. Numerical results are obtained and a representative set 
is diaplaced graphically to illustrate the influence of the various physical parameters on the velocity profiles, 
microrotation profiles as well as the Skin friction coefficient for various values of the material parameter K. It is 
found that there is a smooth transition from the small- time solution to the large- time solution. Results for the local 
skin friction coefficient are presented in table as well as in graph. 
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NOMENCLATURE 

0B       applied magnetic field                                            ,u v      velocity components 

 j       micro-inertia                                            ,x y       cartesian co-ordinates 

k        vortex viscocity                                                                density of the fluid 

K       matériel parameter                                                        electrical  conductivity  
M     magnetic field parameter                                        Spin gradient 
n       constant                                                                      dynamic viscosity 

N      micro rotation                                                                                             
 

1. INTRODUCTION 

The fluid dynamics over a stretching surface is 
important in extrusion process. The production of 
sheeting material arises in a number of industrial 
manufacturing process and includes both metal and 
polymer sheets. Examples are numerous and they 
include the cooling of an infinite metallic plate in a 
cooling bath, the boundary layer along material 
handling conveyers, the aerodynamic extrusion of 
plastic sheets, the boundary layer along a liquid film in 
condensation process, paper production, glass blowing, 
metal spinning, and drawing plastic films, to name just 
a few. The quality of the final product depends on the 
rate of heat transfer at the stretching surface. A 
comprehensive review of micropolar fluids 
mechanically has been presented by Ariman et al. 

(1973). Since the pioneering study by Crane (1970) 
who presented an  analytical solution for the steady two 
– dimensional stretching of a surface in a quiescent 
fluid, many authors have considered various aspects of 
this problem and obtained similar solutions. Some 
mathematical results were presented by many authors, 
and a good number of references can be found in the 
papers by Magyari and Keller (1999,2000). Sriramulu 
et al. (2001) studied steady flow and heat transfer of a 
viscous incompressible fluid through porous medium 
over a stretching sheet. 
 
On the other hand, it is well known that the theory of 
micropolar fluids has generated a lot of interest and 
many flow problems have been studied. The theory of 
micropolar fluids was originally developed by Eringen 
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(1964,1966) and has now been applied in the 
investigation of various fluids. The theory takes into 
account the microscopic effects arising from the local 
structure and micro-motions of the fluid elements and 
provides the basis for a mathematical model for non-
newtonian fluids which can be used to analysis the 
behavoiur of exotic lubricants, polymers, liquid 
crystals, animal bloods and colloidal or suspension 
solutions, etc. Since introduced by Eringen many 
researchers have considerd various problems in 
micropolar fluids. Nazar et al. (2004) studied the 
stagnation point flow of a non- Newtonian micropolar 
fluids with zero vertical velocity at the surface or heat 
generation. Rajeshwari and Nath (1992) studied 
unsteady flow over a stretching surface in a rotating 
fluid, Noor (1992) investigated Heat transfer from a 
stretching sheet. 
 
Guram and Smith (1980) investigated the stagnation 
flows of micropolar fluids with strong and weak 
interactions. They obtained numerical results using a 
fourth order Runge – Kutta method. Gorla (1983) 
obtained numerical results by a Runge – Kutta method 
for the micropolar boundary layer flow at a stagnation 
point on a moving wall. Heat transfer over a stretching 
surface with variable surface heat flux in micropolar 
fluids and MHD stagnation point flow towards a 
stretching vertical sheet in a micropolar fluid is studied 
by Ishak et al. (2008).  Recently Nazar et al. (2008) 
studied the unsteady boundary layer flow of an 
incompressible micropolar fluid over a stretching sheet. 
They solved numerically using Keller-box method.  
Viscous dissipation effects were consider on mhd 
nonlinear flow and heat transfer past a stretching porous 
surface embeded in a porous medium under a transverse 
magnetic field is studied Anjalidevi and ganga(2010). 
Sharma and singh(2009) is investigated the effect of 
variable thermal conductivity and heat source/sink on 
flow of a viscous incompressible electrically 
conducting fluid in the presence of uniform transverse 
magnetic fluid and variable free stream near a 
stagnation point on a non conducting stretching sheet. 
 
The purpose of the present paper is to study the 
magneto hydrodynamic effects on the unsteady 
boundary layer flow of an incompressible micropolar 
fluid over a stretching sheet when the sheet is stretched 
in its own plane. A numerical solution is obtained for 
the governing momentum using the Adams predictor-
corrector method. 

2. MATHEMATICAL ANALYSIS 

Consider the flow of an incompressible micropolar 
fluid in the region 0y  driven by a plane surface 

located at 0y  with a fixed end at 0x .  It is 
assumed that the surface is stretched in the x
direction such that the x component of the velocity 
varies linearly along it, i.e. cxxuw )( , where c is an 

arbitrary constant and 0c . The simplified two - 
dimensional equations governing the flow are the 
equations of the continuity, momentum equations under 
the influence of externally imposed transverse magnetic 
field in the boundary layer steady laminar and 
incompressible micropolar fluids are; 
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0u  , as y , 0N  

Where u and v  are the velocity components along the 
x and y axes, respectively, t  is time, N is the 

microrotation or angular velocity whose direction of 
rotation is in the xy    plane,   is dynamic viscosity, 

 is density, j  is microinertia per unit mass,   is spin 
gradient viscosity and k is vortex viscosity.  Further, n
is a constant and .10  n  The case 0n , which 
indicates N=0 at the wall represents concentrated 
particle flows in which the microelements close to the 
wall surface are unable to rotate.  This case is also 
known as the strong concentration of microelements. 
The case 2/1n indicates the vanishing of anti – 
symmetric part of the stress tensor and denotes weak 
concentration of microelements. The case 1n  is used 
for the modeling of turbulent boundary layer flows. We 
shall consider here both cases of 0n  and 2/1n .  

 Introducing the new variables as  
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Where   is the stream function defined in the usual 
way as  
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Substituting variables (5) in to Eqs.  (2) and (3) gives  
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Where K =

k

 is the material parameter. Here   and 

j are assumed to be given by 
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The boundary conditions Eq. (4) becomes  
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       ,0 0, ,0 1, ,0 ,0 ,f f g n f         
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The physical quantity of interest in this problem is the 
skin friction coefficient ,fC which is defined as  
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Where w is the skin friction, given by  
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Using variables (5) in Eqs. (9) and (10), we obtain  
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Further, we can obtain some particular cases of this 
problem. 

A. Early Unsteady Flow 

For early unsteady flow ,10    we have 0 , so 
Eqs. (6) and (7) reduce in the leading order 
approximation to  
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and the boundary conditions (8) become  
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B. Final steady- state Flow  

For this case, 1 and Eqs. (6) and (7) take the 
following forms: 
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Subject to the boundary conditions (14). 

3. METHOD OF SOLUTION 

To solve the Eqs. (6) and (7), we have convert into a 
system of five first order equations, we have at 
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Early unsteady flow is obtained by solving these 
equations with 0 . For 0 , the above equations 

reflect a fully implicit scheme with respect to  . In 

both cases, assuming    0,3y  and    0,5y , the 

above system is solved up to  max . 
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Once with
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and another time with 
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This procedure converging in about three iterations 
giving correct values of   and  . The system of 
Ordinary differential equation is solved by Adams 
predictor- corrector methods of fourth order. Accuracy 
is ensured by solving with different ,, max  .  

4. DISCUSSION OF THE RESULTS 

The transformed Eqs. (6) and (7) satisfying the 
boundary conditions (8) were solved numerically using 
the Adams predictor-corrector method for several 
values of the material parameter K  . Numerical results 
for Skin friction coefficients, the velocity distribution 
and microrotation distribution are shown graphically. 

To validate our method we have compared the Skin 

friction coefficients xfC 2/1Re values with Rosilinda 

Nazar (2008) is shown in Table1, there is very good 
agreement between the results when we solved fully 
unsteady boundary layer equations and final steady 
state equations. Though computations have been carried 
out for various values of the n and the material 
parameter K  are presented.  
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Table 1 Values of the skin friction coefficient
1/2

Ref xC   

for various values of K and n when 1  . 

/K n       0      1/2 
0 -1.0043 -1.0043 
1 -1.3952 -1.24005 
2 -1.6635 -1.4532 
4 -2.0092 -1.8105 

The velocity distribution of initial flow ( 0  ) and 

unsteady flow )10(   for various values of K  with 

0n  and 1 / 2n   is shown graphically in Figs. 1 and 
2 respectively. From both the figures it is observed that 
the velocity boundary layer thickness increases with the 
increasing values of K , for both the cases 0n  and

2/1n . The Figs. 3 and 4 represent for final steady 
state flow  1  for the cases 0n  and 2/1n , 
respectively.  

 
Fig. 1. Velocity distribution of initial flow ( )0 and 

early unsteady flow ( )10   for various K with 

0n  

 
Fig. 2.Velocity distribution of initial flow ( )0 and 

early unsteady flow ( )10   for various K with 

2/1n  

 

Fig. 3. Velocity distribution of final steady- state flow    
( )1 for various K with 0n   

It is observed from the figures that the velocity 
increases with the increase of K . The velocity 

distribution of fully developed unsteady flow 
 10   and final steady state flow  1  is 

represented in the Figs. 5 and 6 for the cases 0n  and 
2/1n , respectively.  

 

Fig. 4. Velocity distribution of final steady-state flow     
( )1 for various K with 1 / 2n   

 

Fig. 5. Velocity distribution of fully developed 
unsteady flow for K=1 when 0n  

 

Fig. 6. Velocity distribution of fully developed 
unsteady flow for K=1 when 2/1n  

These figures show that the velocity profiles 
corresponding to increasing of  0 1    approach 

the final steady profile corresponding to 1 . It has 
seen that there is a smooth transition from small time 
solution  0   to large time solution  1 . 

 
The effect of magnetic parameter M on velocity 
distribution ( )f  is shown in Fig. 7. The magnetic 
field parameter m, effect is shown in Fig. 7 for the 
velocity distribution ( )f  of final steady flow  1
with 1K   and 0n  . The velocity distribution of 
final steady state flow )1(  for various M values with 

1K  ,  0n   is shown in Fig. 7. It is obvious that 
existence of Magnetic field M decelerates the velocity 
profiles. Figures 8-13 represents microrotation 
distribution for various values of K , n  for steady state 
and unsteady state flow. The microrotation distribution 
of final steady state flow  1  is increases with the 
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increase of the material parameter K  is observed from 
Fig. 8 when 0n . 

 

Fig. 7.Velocity distribution of final steady-state flow      
( 1  ) for various M with 0n  and K=1 

 

Fig. 8. Micro rotation distribution of final steady – state 
flow ( )1 for various K when 0n   

 

Fig. 9. Micro rotation distribution of final steady- state 
flow ( )1  for various K when 1 / 2n   

 

Fig. 10.Micro rotation distribution of fully developed 
unsteady flow for 0n  and K=1 

 

Fig. 11. Micro rotation distribution of early unsteady 
flow ( )10   for various K with 2/1n  

The microrotation distribution of final steady state flow 
 1  with 2/1n  is shown in Fig.9, from which the 

microrotation decreases as K  increases in the vicinity 
of the plate where as it increases as one moves away 
from it. Fig. 10 represents the microrotation distribution 
of fully developed unsteady flow for 0n  and 1K  
for 10   . It is noticed that the microrotation 
distribution as parabolic distribution and increases with 
the increase of .  
 
Figure 11 shows that microrotation distribution of early 
unsteady flow ሺ0 ൏ ߦ ൏ 1ሻfor various K  values with

2/1n . The microrotation distribution decreases as 
K  increases near the plate but reverse phenomena is 
observed as one moves away from the plate. The 
microrotation distribution of fully developed unsteady 
flow when 1K and 2/1n  and final steady state 
flow  1 is shown in Fig.12. The microrotation 
distribution increases near the plate while, the reverse 
happens far away the plate with the increase of  is 
observed.  
 
The magnetic field effect on the microrotation 
distribution is plotted in Fig. 13. It can be seen from the 
figure that the magnetic field effect occelerates the 
microrotation distribution near the plate, where as it 
decelerates the microrotation distribution far away from 
the plate.The magnetic field effect is more on 
microrotation distribution when far away from the 
plate.  

 

Fig. 12. Microrotation distribution of fully developed 
unsteady flow for 2/1n  and 1K  

 

Fig. 13. Micro rotation distribution of final steady-state 
flow ( 1 ) for various M when K=1, 0n . 

 

The Skin friction coefficient 2/1Re xfC with  for 

various values of K  is drawn when 0n  in Fig. 14 
and 2/1n  in Fig.15. It can be seen that the values of 

xfC 2/1Re decreases as K  increases. 
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Fig. 14. Variation with   of the skin friction 

coefficient for various K with 0n  

 

Fig. 15. Variation with  of the skin friction coefficient 

for various K with 2/1n  

5. CONCLUSION 

It is clear from the figures that the microrotation effects 
are more pronounced for 2/1n when compared to 
those of 0n . The microrotation profile for 0n is 
different as compared to 2/1n it has a parabolic 
distribution when 0n , where as it has continuously 
decreasing when 2/1n  . The values of the Skin 
friction coefficients for the final steady flow are shown 
in Table 1. It is noticed that due to impulsive motion, 
the skin friction coefficients as large magnitude 

(absolute value) for small time ( 0 or )0 after 

the start of the motion, and decreases monotonically 
and reaches the steady state value at 1    . 
The magnetic field effect is to decelerate the velocity 
distribution ( )f  . The microrotation distribution of 

final steady flow  1  is to increase near the plate, 
where as it decreases far away from the plate with the 
effect of magnetic field are observed. 
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