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ABSTRACT 

An incompressible unsteady viscous two-dimensional Navier-Stokes solver is developed by using “Consistent Flux 
Reconstruction” method. In this solver, the full Navier-Stokes equations have been solved numerically using a 
collocated finite volume scheme. In the present investigation, numerical simulations have been carried out for 
unconfined flow past a single circular cylinder with both structured and unstructured grids. In structured grid, 
quadrilateral cells are used whereas triangular elements are used in unstructured grid. Simulations are performed at 
Reynolds number (Re) = 100 and 200. Flow simulation over a NACA0002 airfoil at Re = 1000 using unstructured 
grid based solver is also reported. The vortex shedding phenomena is mainly investigated in the flow. It is observed 
that the nature of flow depends strongly on the value of the Reynolds number. The present results are found to be in 
satisfactory agreement with several numerical results and a few experimental results available from literature.  
 
Keywords: Finite volume Navier Stokes solver, Incompressible flow, Circular cylinder, Vortex shedding, 
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1. INTRODUCTION 

Finite-volume methods ensure conservativeness of 
mass and momentum equations and are more accurate 
than finite-difference methods in which coordinate 
transformation of the governing equations from the 
physical domain to the computational domain is 
required. In finite-volume methods, no coordinate 
transformation is necessary.  Hence most of the fluid 
problems involving complex boundaries are solved 
using finite volume discretization schemes. In 
incompressible flow calculations satisfaction of the 
mass and momentum conservation laws is important in 
obtaining the velocity and pressure fields.  Pressure 
field required for momentum equation is calculated 
such that velocities calculated from momentum 
equations should satisfy the continuity equation. This 
step is called ‘Flux Reconstruction step’ and it should 
have at least second order accuracy while avoiding 
spurious pressure modes. As there is no equation 
readily available for the calculation of pressure, it must 
be derived from the continuity equation by using the 
divergence-free constraint. For this, ‘pressure-Poisson’ 
equation obtained by combining the discretized 
momentum equations with the discretized continuity 
equation is solved either by ‘pressure correction 
method’ or ‘pressure-Poisson method’.  
 
Over the decades, many researchers have developed 
different schemes for computing incompressible 
viscous flows. Rhie and Chow (1983) brought forth the 

pioneering work in the context of using staggered grid 
by retaining the velocity components and solving the 
problems in the physical plane. In this approach, 
designated as ‘Physical Interpolation Approach’ (PIA), 
the cell face velocities are obtained by solving the 
momentum equations at each of the cell faces. This 
ensures the pressure-velocity coupling between the 
adjoining cells and prevents the odd-even pressure 
oscillations. However, this way of calculating the cell 
face velocities needs matrix inversion because of 
implicit scheme and hence requires long computing 
time. Choi et al. (1993) refined the momentum 
interpolation scheme of Rhie and Chow (1983) to 
employ curvilinear co-variant velocity components as 
cell face velocities.  Relative performance of the two 
schemes was examined through applications to several 
test problems and it was observed that the solver with 
co-variant velocity components provides good 
convergence and stable behavior even on strongly non 
orthogonal grids. Choi et al. (1993) compared two finite 
volume calculation methods for incompressible flows 
on non orthogonal grids with different grid 
arrangements, one with conventional staggered 
arrangement and another with non staggered 
arrangement of Rhie & Chow (1983).  Around the same 
time, Deng et al. (1994) developed an explicit scheme 
called ‘Consistent Physical Interpolation’ (CPI) for the 
calculation of cell face velocities and used these values 
with an implicit scheme for the solution of momentum 
equations at the cell centers. This method does not 
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require any matrix inversion for calculating the cell face 
velocities and is therefore relatively less expensive than 
Rhie and Chow (1983) method. Later Roy and 
Bandyopadhyay (2006) developed a technique which 
uses explicit calculation for both cell face centre flux 
reconstruction and cell centre momentum equation 
updating, which has eliminated the tedious matrix 
inversion procedures. Chakrabarty (1990) developed a 
vertex-based finite-volume solution of the two-
dimensional Navier-Stokes equations. The method was 
applied to solve flow past NACA 0012 airfoil and the 
obtained results have been compared with the existing 
numerical and experimental results. In vertex-based 
solution, the nodal point discretization, where the flow 
quantities are ascribed to the corners of the cell, gave 
better accuracy for the highly stretched and skewed 
grids. Unlike cell-centered schemes, the surface 
boundary conditions are satisfied exactly at the vertices 
along the body surface and the pressure on the wall are 
computed directly by this scheme. McBride et al. 
(2007) developed a finite volume method for the 
solution of flow on distorted meshes. The method 
investigates a range of cell-centered, vertex based and 
hybrid approaches to finite volume discretization of the 
Navier-Stokes equations. Recently, Ding et al. (2007) 
applied ‘mesh-free least square-based finite difference 
(MLSFD) method’ to numerically simulate the flow 
field around two circular cylinders arranged in side-by-
side and tandem configurations. For each configuration, 
with various geometrical arrangements, simulations 
have been performed in the low Reynolds number 
range, at Re = 100 and Re = 200. Nishikawa (2007) 
developed a multigrid algorithm for the third-order 
accurate solution of Cauchy-Riemann equations 
discretized in the cell-vertex finite-volume fashion. The 
solution values are stored at vertices and the residuals 
defined on triangular elements. The resulting method 
gave sufficiently accurate solutions on relatively coarse 
grids. Combined with a multigrid technique, the method 
gave rise to a highly accurate and efficient solver. The 
method demonstrates its accuracy and efficiency on 
both structured and unstructured triangular grids. Sang 
and Li (2007) constructed a multi-layer hybrid grid 
method to simulate complex flow field around two 
dimensional (2-D) and three dimensional (3-D) 
configurations. The method combines Cartesian grids 
with structured grids and triangular meshes. A cell-
centered finite volume flow solver was developed for 
computing both inviscid and viscous flows by solving 
Euler and Navier-Stokes equations. 
 
Recently, there has been significant progress in the area 
of incompressible flow calculations with unstructured 
finite volume method. Mathur and Murthy (1997) 
presented a finite volume pressure-based method on 
unstructured mesh for multidimensional incompressible 
flows. A multigrid scheme was used to solve the 
discretised equations. The scheme was shown to 
perform satisfactorily with a variety of 
quadrilateral/hexahedral, triangular/tetrahedral, and 
hybrid meshes. Mathur and Murthy (1997) also 
presented a methodology for incorporating pressure 
boundary conditions in the context of a collocated 
numerical scheme for incompressible flows. Raithby 
(1999) described the use of finite volume method on 
unstructured meshes which can be used for heat transfer 

applications in addition to fluid flow solution. Kang and 
Kim (2002) developed a pressure-based, unstructured, 
finite-volume method to resolve complex reacting flows 
accurately. Woodfield and Suzuki (2003) presented a 
vertex-centered, three-dimensional, unstructured finite 
volume method on Cartesian coordinates and applied to 
number of test cases involving incompressible flow at 
low Reynolds numbers. Perron et al. (2004) proposed a 
new method to solve the Navier-Stokes equations for 
incompressible viscous flow using a finite volume 
method on unstructured meshes. The governing 
equations were discretized using a collocated, cell-
centered arrangement of velocity and pressure with the 
solution variables being stored at the cell circumcentres. 
Dalal et al. (2008) proposed a new cell-centered finite 
volume method for unsteady solutions on complex 
geometries. Both two-dimensional and three-
dimensional Navier-Stokes equations were solved for 
incompressible laminar flow on unstructured meshes. 
The above discussed calculation techniques are 
extremely useful in solving incompressible flow past 
various complex geometries.  
 
Several researchers have conducted extensive 
experiments on flow past bluff body geometries. One of 
the important experimental works was performed by 
Perry et al. (1982). They studied the flow using variety 
of flow visualization techniques.  A sequence of 
instantaneous stream line patterns have been obtained 
using photography of the motion of aluminum particles 
suspended in the flow. Nakamura et al. (1996) made 
experimental measurements and numerical simulations 
on elongated rectangular cylinder at Re = 200-103.  It 
was observed that there exist two types of vortex 
shedding processes: one is the Von-Karman alternate 
shedding and the other is the impinging shear layer 
instability type where one separated shear layer can be 
unstable in the presence of sharp trailing edges at high 
Reynolds number. Cheng and Liu et al. (2000) made 
experimental studies on square cylinder at Reynolds 
numbers ranging from 2000 to 21000 at varying 
incidences. Measurement of vortex shedding 
frequencies and surface pressures has been reported.  It 
was observed that there exists rapid increase in Strouhal 
number at an incidence of 13o for Reynolds number 
greater than 5300. Reason for that is described as the 
strong pressure recovery on lower side face of the 
cylinder which is associated with flow reattachment. 
 
In the present scheme, the authors have adopted the 
numerical procedure proposed by Roy and 
Bandyopadhyay (2006) for solving flow past two 
dimensional arbitrary body geometries. In this scheme, 
the cell face center velocities are reconstructed 
explicitly by solving the momentum equations on flux 
reconstruction control volumes defined judiciously 
around the respective cell face centers. This is followed 
by solution of the cell centre pressure field using a 
discrete Poisson equation developed from the 
reconstructed velocities and updating the cell centre 
velocities by using an explicit scheme. In the present 
paper, an incompressible 2-D finite volume laminar 
Navier-Stokes solver based on structured (O-grid) and 
unstructured (triangular elements) grid is reported. The 
solver is based on body-fitted curvilinear collocated 
grid. It has been applied to solve unconfined flow past a 
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circular cylinder. The simulations are carried out at Re 
= 100 and 200. The grid independence of the results is 
studied in detail for structured grid. Also, numerical 
simulation of flow past a NACA0002 airfoil at Re = 
1000 using unstructured grid based solver is performed.  
The numerical results have been validated with results 
available from literature. The comparison is 
satisfactory.  

2. GOVERNING EQUATIONS 

The equations governing incompressible viscous fluid 
flow in two-dimensions are the continuity equation and 
the two components of momentum equation. In absence 
of body forces and heat transfer, these equations can be 
expressed in the conservative non-dimensional 
primitive variable form as follows:  
Continuity equation: 

u v
0

x y
  
 

  
(1) 

Momentum equations: 
x-momentum: 

2
u (u ) (uv)

t x y

2 2
p 1 u u

2 2
x Re x y

  
 

  

  
    

  

 
 
 

 

 
 
 
 

(2a) 

 y-momentum: 
2

v (uv) (v )

t x y
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p 1 v v

2 2
y Re x y

  
 

  

  
    

  

 
 
 

 
 
 
 
(2b) 
 

where the velocity components u and v are in the x and 
y-directions respectively, p is ratio of pressure and 
density, Re is the Reynolds number and t is the non 
dimensional time. 

3. FINITE VOLUME DISCRETIZATION OF 

GOVERNING EQUATIONS 

To obtain a numerical solution, the governing flow 
equations are discretized by a finite volume technique 
based on the integral form of the equations to be solved. 
The discretization of the governing equations for 
structured grid is done in the same manner as was 
proposed by Roy and Bandyopadhyay (2006). 
Therefore, the discritization procedure for unstructured 
grid is described here. The physical region, in which the 
equations are solved, is divided into elementary 
triangular cells within which the integration is 
performed. Only the coordinates of the corners of the 
cells are necessary. In the present investigation 
unstructured triangular grid has been generated using 
GAMBIT 6.2.1® software and used as input to the 
solver. For any arbitrary triangular cell as shown in  
Fig. 1, Eqs. (1), (2a) and (2b) can be integrated over the 
control volume and hence discretized. The explicit 

forward Euler method has been used for the discretizing 
the time derivative which is first order accurate in time. 

 

Fig. 1. Grid arrangement showing the collocated 
triangular main control volume. 

 
Since very small time steps have been used for all 
calculations, this does not compromise the time 
accuracy to a significant extent. 

4. APPLICATION OF CFR SCHEME ON 

UNSTRUCTURED GRID 

Based on the above finite volume discretization of the 
governing equations, an explicit two-dimensional solver 
has been developed. The solver makes use of collocated 
grid arrangement, where the flow variables u, v and p 
share the same location at the centre of the cells. For the 
calculation of the convective and pressure fluxes 
through the cell faces, the unknown values (i.e. u1, u2, 
u3, v1, v2, v3, p1, p2 and p3) at the centre of the cell faces 
need to be evaluated. 
 
The cell face-centre velocities are obtained by using a 
CFR scheme based on triangular cells. The present 
approach involves the solution of the x and y-
components of momentum equations at the centre of the 
faces of the each cell. This provides the solution for the 
required cell face-centre velocities u1, v1, u2, v2, u3 and 
v3 for flux calculation. These values are then substituted 
into the discrete continuity equation to obtain the 
discrete Poisson equation for pressure. In order to 
maintain the accuracy of the finite volume 
discretization, the cell face velocities are approximated 
by a second-order accurate closure method.  The cell 
face-centre pressures are obtained by linearly 
interpolating the cell centre pressure values calculated 
by solving the pressure-Poisson equation. 
 
When the cell face velocities are obtained by linear 
interpolation, the cell face velocity e.g. u1, on the face 
‘1’, comes as a function of the cell centre values of the 
u-velocity component of the concerned cell and its 
neighbours, but is independent of the corresponding v-
velocity component and pressure. Although upwind 
interpolation schemes can be used to circumvent the 
numerical instability problems, spurious pressure 
modes exist when such linear interpolation formulae are 
implemented on collocated grids. One of the most 
effective means to overcome this difficulty is to use a 
physically consistent flux reconstruction approach by 
which the cell face velocities are expressed not only in  
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Fig. 2. Grid arrangement showing the control volumes for calculation of cell face velocities at 1, 2 and 3 faces for 

triangular grid arrangement. 
 
terms of the dependent variable u, in this case, but also 
other physical quantities v and p. In the present solver, 
a fully explicit scheme is adopted for the reconstruction 
of cell face velocities as well as for updating the flow 
variables at the cell centers. A 10-point stencil is used 
for both pressure and velocity calculations. For 
calculating the viscous fluxes on the face ‘1’ (flux 
reconstruction cell centered about ‘1’, comprising of 
cells P and C Fig. 2), the values of velocities at points 
‘a’, ‘g’, ‘b’ and ‘c’ are necessary. For updating the flow 
variables at the cell centers, the momentum equations 
are solved in an explicit manner. The layout of the flux 
reconstruction cells used in the present solver is 
different from that of Roy and Bandyopadhyay (2006). 
The present flux reconstruction cells are chosen in such 
a manner that the integration points for the main control 
volume and the reconstruction control volume coincide; 
therefore it reduces the computational effort. 
 
The closures of the cell face velocities u1, v1, u2, v2, u3 
and v3 and are obtained from the discretized u and v-
components of the momentum equations at the points 
‘1’, ‘2’ and ‘3’ respectively (Fig. 2). The finite volume 
schemes used at these points are similar to that used at 
point ‘P’. The discretizations of the various terms in the 
x-component of momentum equation are given as 
follows: 
 
Unsteady term: 

 

u u
d a

1 1t t1 1
1

n 1 nu u
1 1 a a

P Ct

    
          

      
 

 

 
 
 
(3a) 

Convective term: 
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Pressure term: 
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Diffusive term: 
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(3d) 

In Eq. (3a), the ‘lumped mass’ approach has been 
applied to the flux reconstruction cell on the face ‘1’ of 
the cell ‘P’. The area of the reconstruction cell is the 
sum of the areas of cells ‘P’ and ‘C’. The value of the 
variable at the reconstruction cell centre, namely u1, is 
used as the representative value for the entire 
reconstruction cell for evaluating the transient term. 

1  

is the domain of the ‘1’ cell (with ‘1’ as centre and a-g-
b-c as the four nodes of the reconstruction cell as shown 
in Fig. 2) and 

1C  is the contour enclosing it. The values 

of the properties at various nodal points like a, b, c, etc. 
are obtained by linear interpolation of neighbouring cell 
centre property values. In Eqs. (3b), (3c) and (3d); the 
surface integral of the terms has been changed to line 
integral by using Green’s theorem which is calculated 
over the reconstructed cell with centre as ‘1’ and a-g-b-
c as the four nodes of the contour C1 enclosing it. 
 
The first order velocity derivatives  x   and 

 y   at points 2, 3, 11 and 12 are obtained using 

Taylor series expansion. The velocity derivatives at the 
other integration points and on other faces (2 and 3) are 
calculated using similar formulae. The resulting 
expression for u1 at the (n+1)th time level is:   
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 
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u u
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

   

  
(4) 

The cell face velocity at nth time level i.e. n
1u  is taken 

as the linear interpolation of the adjoining nodal values 
at that time level. In a similar manner the flux closure 
relationships for v1, u2, v2, u3 and v3 respectively are 
also obtained at the  n 1 th time level. 

5. THE PRESSURE POISSON EQUATION 

The equation for pressure is obtained by substituting the 
expressions for n 1

1u  , n 1
1v  , n 1

2u  , n 1
2v  , n 1

3u   and n 1
3v   

into the discrete continuity equation. The following 
pressure-Poisson equation is obtained with pressure as 
unknown: 
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(5) 

where the coefficients 
PC , 

AC , 
BC , 

CC , 
DC , 

FC , 
GC

, 
IC , 

JC  and 
LC  are the geometrical parameters of the 

cell and SOURCE is the total source term comprising 
of the cell divergence at the nth time level, n

iD , and the 

convective and diffusive fluxes at the cell faces. The 
term SOURCE is an explicit function of the nodal 

variables iu and iv which include the concerned cell 

and its nine neighbours as follows:   
 
Equation (5) is used directly as the pressure equation to 
determine the pressure field. For the cells near the body 
boundary, the expression for the pressure equation is 
obtained by applying the zero velocity boundary 
condition in the discretized continuity equation. Zero 
normal pressure gradient across the body boundary is 
applied in Eq. (5). Pressure on the body boundary is 
obtained by using the Neumann boundary condition and 
special care is taken to satisfy the compatibility 
condition (Abdallah 1987) in the discretized pressure-
Poisson equation for such cells. Satisfaction of the 
compatibility condition ensures that there is zero net 
source term when the discretized equations over the 
entire computational domain are considered. Dirichlet 
boundary condition of free-stream values has been 
applied in the outer boundary of the flow domain. 
Gauss-Siedel method has been used for the iterative 
solution of the pressure-Poisson equation. Once the 
pressure-Poisson equation is solved, the cell centre 
pressure values are available. The cell face-centre 
pressures are obtained by linear interpolation of 
adjacent cell centre values. The reconstructed cell 
centre momentum equations are obtained by 
substituting the values of velocity derivatives at cell 
face-centers, interpolated cell centre pressures, and the 
values of the cell face-centre velocities obtained by the 
CFR approach as formulated in the present 
investigation into the discretized momentum equations. 
From these equations, the velocities at the cell centers 
are calculated and updated in time explicitly. 

6. INITIAL CONDITION AND BOUNDARY 

CONDITION 

The governing equations for the viscous incompressible 
flow are mixed parabolic-elliptic in nature. The 
equations are parabolic with respect to time and elliptic 
with respect to space. This means that the solution 
marches forward in time due to the parabolic behaviour 
and disturbances may travel along any direction, 
upstream or downstream due to the elliptic bahaviour. 
Therefore initial conditions need to be set at the 
beginning of the solution and boundary conditions 
surrounding the domain should be specified. 
 
In the beginning of the solution process, uniform free-
stream velocity and pressure field are prescribed in each 
cell of the flow domain as given below: 

 
 
 

u i u

v i v

p i p










 
 

  for all triangular cells  

 
(6) 

This physically means that the body is suddenly 
introduced into a uniform free-stream flow. Free-stream 
parameters are indicated by suffix . In the present 
calculations unconfined flow past a single circular 
cylinder has been considered. For the rectangular 
domain, the inlet, outlet, top boundary and bottom 
boundary are kept far away from the body surface. At 
all the outer boundaries, Dirichlet boundary condition is 
applied with respect to the free-stream values. On the 
body surface, no-slip condition is used. 

7. RESULTS AND DISCUSSION 

Flow past an isolated circular cylinder has the attractive 
features like vortex shedding behind the cylinder and 
the periodic variation of the flow field at moderate 
Reynolds number. These vortices get convected and 
diffused into the cylinder wake forming the well known 
Karman vortex street. As the geometry of the flow as 
well as the initial and boundary conditions are 
symmetric, the Navier-Stokes equations should produce 
symmetric solution even at moderate Reynolds numbers 
(Re > 40). However, the truncation and round-off errors 
as well as errors produced due to the numerical 
approximation scheme act as perturbing factors and 
eventually trigger the vortex shedding phenomenon.  
 
In this study, the CFR method is applied to simulate 
flows around a single circular cylinder within the low 
Reynolds number range, i.e. Re = 100 and 200. In this 
numerical simulation, streamlines and vorticity 
contours are plotted as the flow visualization aids. 
Some flow parameters characterizing the flow aspects 
such as lift and drag coefficients and Strouhal number 
are also computed and quantitatively compared with the 
results of other researchers.  
 
The present results are compared with some of the 
numerical and experimental results available from 
literature for validating the CFR scheme. Figure 3 
shows the close-up view of the structured O-grid and 
unstructured triangular grid generated around a circular 
cylinder.  
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Fig. 3. Close-up view of the grid generated around a circular cylinder. 
 

 
 

Fig. 4. Vorticity contours and streamlines of flow past a circular cylinder. 
 

7.1 Numerical Simulation of Flow Past A 
Circular Cylinder Using Structured Grid 
Based Solver 

In the present investigation, flow past a circular 
cylinder has been computed at Re = 100 and 200. The 
overall characteristics like the lift and drag coefficients 
and Strouhal number are used for the validation of the 
scheme. The overall lift and drag coefficients are 
obtained from the contributions of body surface 
pressure and shear stress. The present computation has 
been carried out using a 160×120 O-grid generated 
around a circular cylinder using Laplace equation. The 
outer boundary is kept at 30D (D is the diameter of the 
cylinder) from the centre of the cylinder. This grid is 
used as input to the structured grid based Navier-Stokes 
solver which uses the body-fitted curvilinear grid. The 
size of the grid was decided based on a grid 
independence study carried out on four different grids 
at Re = 200. Table 1 gives the details of the grid 
independence test.Based on the variation of the values 
of lift coefficients, drag coefficients and Strouhal 

number, Grid 3 has been chosen for the flow 
calculations.   
 

 Table 1 Grid independence test carried out at             
Re = 200. 

Grid size CL CD 
Strouhal 
number 

60×40 (Grid 1) ±0.21 0.80±0.048 0.190 
100×80 (Grid 2) ±0.35 0.845±0.05 0.192 
160×120 (Grid 3) ±0.487 1.484±0.05 0.198 
200×160 (Grid 4) ±0.51 1.508±0.05 0.198 

 
Instantaneous vorticity contours and streamlines of flow 
past the circular cylinder are shown in Fig. 4 at t = 200. 
The temporal variation of lift and drag coefficients are 
shown in Fig. 5. The non-dimensional time ‘t’ is 
obtained by dividing the dimensional time by a factor. 
Variations of time averaged pressure distribution over 
the body surface are shown in Fig. 6. The initial 
convergence pattern of the scheme is shown in Fig. 7.  
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Fig. 5. Lift and drag co-efficient for flow past a circular cylinder. 
 

Table 2 Flow parameters around a circular cylinder at Re = 100 and 200. 

Parameters Drag Coefficient (CD) Lift Coefficient (CL) Strouhal number 

Reynolds number Re = 100 Re = 200 Re = 100 Re = 200 Re = 100 Re = 200 

Belov et al. (1995) ______ 1.19±0.042 _____ ±0.64 _____ 0.193 
Braza et al. (1986) 1.364±0.015 1.40±0.05 ±0.25 ±0.75 0.160 0.200 
Liu et al. (1998) 1.350±0.012 1.31±0.049 ±0.339 ±0.69 0.164 0.192 
Ding et al.(2007) 1.356±0.010 1.348±0.05 ±0.287 ±0.659 0.166 0.196 

Present results 1.141±0.094 1.484±0.05 ±0.201 ±0.487 0.168 0.198 
 

 
 

Fig. 6. Variation of time averaged pressure distribution 
over a circular cylinder. 

 
Fig. 7. Initial convergence pattern of the CFR scheme. 

 
Lift and drag coefficients as well as Strouhal number 
values of the present scheme are compared 

quantitatively with the results of other researchers. This 
quantitative comparison is reported in Table 2. It has 
been observed that our results match well with the 
results of other researchers found in literature.  

7.2 Numerical Simulation of Flow Past A 
Circular Cylinder Using Unstructured 
Grid Based Solver 

In the present study, the unsteady flow at Re = 100 and 
200 are simulated on a triangular mesh with 29,464 
cells and 14,878 nodes. The unstructured triangular grid 
has been generated using GAMBIT 6.2.1® software and 
used as input to the unstructured grid based solver. 
There are 160 nodes on the body as chosen suitably 
from the grid independence test. The cylinder is placed 
in a rectangular domain in which the upper and lower 
boundaries, inlet boundary and outlet boundary are kept 
at distances of 15D, 10D and 30D respectively from the 
centre of the cylinder. The distribution of the cells in 
the domain is shown in Fig. 3. The non-dimensional 
time step is set to 0.001. At every time level, the 
convergence criteria for pressure-Poisson equation is 
set in a manner that the residual is less than 10-6. To 
obtain the characteristics of lift and drag coefficients, 
simulation is done upto 400 non-dimensional time.  

Figure 8 shows the vorticity contours and streamlines 
for Re = 100 and 200 at instantaneous time t = 400. 
Figure 9 shows the time dependent behaviour of the lift 
and drag coefficients on the surface of the cylinder at 
Re = 100 and 200.  
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Fig. 8. Vorticity contours and streamlines for flow past a circular cylinder. 

 

Fig. 9. Lift and drag coefficients for flow past a circular cylinder. 

Table 3 Flow parameters around one circular cylinder at Re = 100 and 200. 

Parameters Drag coefficient (CD) Lift coefficient (CL) Strouhal number (St) 
Reynolds number Re = 100 Re = 200 Re = 100 Re = 200 Re = 100 Re = 200 

Meneghini et al. (2001) 1.370 0.010 1.30 0.05 -- -- 0.165 0.196 
Ding et al. (2007) 1.356 0.010 1.348 0.05  0.287  0.659 0.166 0.196 
Braza et al. (1986) 1.364 0.015 1.40 0.05  0.25  0.75 0.160 0.200 
Tritton (1959) 1.320 0.010 -- -- -- 0.160 -- 
Wiesenberger (1921) 1.326 0.010 -- -- -- 0.1608 -- 
Gresho et al. (1980) 1.816 0.010 -- -- -- 0.18 -- 
Present result 1.352 0.010 1.32 0.05  0.278  0.602 0.161 0.192 
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Fig. 10. Frequency spectrum of the lift coefficient at Re = 100 and 200. 

 
Fig. 11. Variation of force coefficients with Reynolds number: (a) rms value of fluctuating lift coefficient (b) mean 

value of fluctuating drag coefficient. 
 

 
Fig. 12. Definition of stagnation point and separation 

points. 
 

The clear periodicity illustrated in lift and drag 
coefficients implies the periodic vortex shedding from 
the rear surface of the cylinder. 
 
The frequency spectrum of the lift coefficient at Re = 
100 and 200 are shown in Fig. 10. The distinct 
dominating frequency in the frequency spectrum 

represents the vortex shedding frequency. The rms 
value of lift coefficient and the mean value of the drag 
coefficient at different Reynolds number are shown in 
Fig. 11.      
 
Table 3 lists the Strouhal number, mean value and 
amplitude of lift and drag coefficients of present results 
as well as other published results from numerical 
investigations. It is observed that our results agree very 
well with those achieved by other researchers. The good 
agreement of the flow parameters indicates that the 
CFR method can be employed for further study of flow 
around multiple circular cylinders and flow past other 
complex configurations. 
 
It is also observed that unsteady separation of shear 
layers and their complex interaction in the wake region 
have profound impact on the time history of stagnation 
point location and (to a greater extent on) lower and 
upper separation point locations on the cylinder surface. 
The stagnation point angle is identified on the basis of 
highest value of pressure coefficient on the cylinder 
surface. The location of the pair of separation points is 
identified on the basis of vanishing wall shear stress. 
Locations of these points were also obtained based on 
zero wall vorticity criterion and were found to be very 
close to those obtained using zero wall shear stress 
criterion.  
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Fig. 13. Time history of stagnation point and separation point angles in degrees. 

 
Fig. 14. Temporal distribution of drag coefficient with structured and unstructured grid 

 at Re = 100 and 200. 
 
The time history of stagnation point angle and upper-
lower separation point angles for single cylinder is 
presented in Fig. 13. The angles ‘θ1’ and ‘θ2’ are the 
angular position of upper and lower separation point 
measured clockwise from the front stagnation point 
along the cylinder surface in degrees as shown in      
Fig. 12. The angles oscillate periodically and the 
frequency of oscillation is found to be identical to that 
of the Strouhal frequency which is obtained from FFT 
of the time history of the lift coefficient for a given 
configuration.    

 
Figure 14 presents the comparison of temporal behavior 
of drag coefficients with structured and unstructured 
grid at Re = 100 and 200. It is clear that flow transients 
disappear after a certain number of non-dimensional 
time steps which is same for both structured and 
unstructured grid cases. However at Re = 200, 

statistically steady flow occurs early as compared to 
that of flow at Re = 100. 

7.3  Comparison of the Present Results With 
Some Experimental Results  

The present numerical results are compared with some 
of the experimental results from the literature.        
Figure 15a shows the comparison of the drag 
coefficients with available experimental and numerical 
results. It has been observed that our numerical values 
are generally higher than the experimental values of 
Tritton (1959) and Weisenberger (1921). Figure 15b 
shows the comparison of the Strouhal number, which is 
the dimensionless frequency of vortex shedding, with 
some of the experimental results of Friehe (1980) and 
Roshko (1954). 
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Fig. 15. Comparison of the present results with other experimental and numerical results. 

 

 
Fig. 16. Triangular mesh around NACA 0002 airfoil at various AOA. 

 
The agreement is seen to be satisfactory. It has been 
observed that our numerical values are generally higher 
than the experimental ones. This variation in numerical 
values for drag coefficients and the Strouhal number 
from the experimental values is probably due to the 
relatively coarser grid used downstream of the cylinder. 

7.4 Numerical Simulation of Flow past A 
NACA0002 Airfoil Using Unstructured  

In the present investigation, an unconfined flow past an 
NACA 0002 airfoil at various angles of attack (AOA) is 
calculated at very low Reynolds number on the order of 
1000 using CFR solver with unstructured triangular 
grid. The analysis makes use of two assumptions about 
the flow field: The flow is incompressible and fully 

laminar. Incompressibility is well justified for this 
application as the Mach number will be considerably 
below 0.3 for a broad range of applications at such 
ultra-low Reynolds number ranges. The fully laminar 
flow assumption is more uncertain. In the absence of 
separation, the flow at these Reynolds numbers will be 
certainly laminar. Even slight to moderate separation 
will result in laminar reattachment for chord Reynolds 
numbers below 10,000 on a smooth airfoil. The degree 
of separation that might result in transition and the 
transition length are the unclear issues, but the 
alternatives are less satisfactory. 
 
The flow field could be assumed fully turbulent, which 
is surely not the case, or transition could be artificially 
and rigidly imposed at a specified location.  
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Fig. 17. Vorticity contours and streamlines of flow past NACA 0002 airfoil 

at various AOA. 

 
Fig. 18. (a) Lift curve and (b) Drag polar for the NACA 0002 at Re = 1000. 

 
Of these three, the fully laminar assumption is less 
restrictive and most physically accurate (Kunz and 
Kroo 2001).  

In the present study, the triangular meshes generated 
around NACA 0002 airfoil at various AOA are shown 
in Fig. 16. The non-dimensional time step used in the 
calculation is 0.0005. At every time level, the 
convergence criteria for pressure-Poisson equation is 
set in a manner that the residual is less than 10-6.  
 
Figure 17 shows the vorticity contours and streamlines 
past a NACA 0002 airfoil at various AOA for Re = 
1000 at instantaneous time t = 30. Figure 18a and 18b 
shows the lift curve and the drag polar curve 
respectively. The results are reasonably in good 

agreement with the results reported by Kunz and Kroo 
(2001). The present result for time averaged surface 
pressure distribution at α = 00 is well compared with the 
results of Kunz and Kroo (2001) and is shown in      
Fig. 19. Compared to performance at higher Reynolds 
numbers, airfoils exhibit an order of magnitude increase 
in the drag and a similar sized reduction in lift-to-drag 
ratios. Although the drag rapidly increases as the 
Reynolds number is reduced, significant lift coefficients 
are still attainable. Below approximately Re = 1000, 
reducing the Reynolds number results in an increase in 
the maximum steady-state lift. As the Reynolds number 
is lowered, there is an alleviation of the leading edge 
suction peak, which results in less adverse gradients 
along the suction side of the airfoil.  
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Fig. 19. Time averaged surface pressure distribution on 

NACA 0002 airfoil at Re = 1000 and α = 00. 
 
This delays separation and allows operation at higher 
angle of attack. 

8. CONCLUSION 

The complex problem of unsteady viscous flow is 
studied at Re = 100 and 200 around a circular cylinder 
and at Re = 1000 around NACA 0002 airfoil over a 
considerably long non-dimensional time interval. A 
cell-centered finite-volume scheme has been proposed 
to solve 2-D Navier-Stokes equations for 
incompressible viscous flows. Two independent solvers 
are developed based on a structured O-grid with 
quadrilateral cells and an unstructured grid with 
triangular cells. The scheme has been used to study the 
effect of vortices in laminar flow past a single circular 
cylinder at two different Reynolds numbers, namely 
100 and 200. The two solvers generated results which 
are comparable to each other. The results show good 
agreement with computational and experimental results 
of other researchers. The present scheme demonstrates 
good convergence characteristics and reasonably good 
accuracy. The numerical simulations have re-
established the fact that flow past a circular cylinder at 
moderate Reynolds numbers like 100 and 200 shows 
interesting features like Karman vortex street formation, 
time variation of lift and drag forces on the body etc. 

For flow past NACA 0002 airfoil at Re = 1000, flow 
separation occurs at very small angles of attack (40 - 
60). At smaller angles of attack (α ≤ 40), attached flow 
is experienced. Since the boundary layer is laminar at 
Re = 1000, it is susceptible to separation under mild 
adverse pressure gradient. At moderate and large angles 
of attack, large scale separation occurs over a 
significant portion of the suction side of the airfoil 
which grossly reduces the effective camber of the 
airfoil. This reduces the slope of lift curve. No sign of 
stall is observed within the range of AOA that is used in 
the present flow case. The drag increases significantly 
with onset of flow separation. This leads to shallowing 
of the drag polar curve and consequent reduction of the 
value of L/D ratio and its maximum value. These 
aerodynamic features need to be studied and accounted 
well before designing MAVs, UAVs and other ultra 
low Reynolds number devices. 

The results reported in the paper show that both the 
structured and unstructured versions of the CFR solver 
are able to satisfactorily capture the features of the flow 
field past bluff bodies like cylinders and streamlined 
bodies like airfoils. 
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