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ABSTRACT 

The paper presents an analytical solution for the dispersion of a solute of two immiscible viscous fluids in the 

presence of an irreversible first-order chemical reaction. The effects of both homogeneous and heterogeneous 

reactions on the dispersion are studied. The results are presented graphically and in tabular form for various values of 

viscosity ratio and pressure gradients on the volumetric flow rate and effective Taylor dispersion coefficient. It is 

found that for homogeneous chemical reaction, the effective Taylor dispersion coefficient decreases as reaction rate 

parameter increases. The validity of the results obtained from an analytical method for two fluid models is verified by 

comparison with the available one fluid model results, and good agreement is found. 
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NOMENCLATURE 

iC  concentration of the solute  3Kgm
 

iD       molecular diffusion co-efficient  2 1m s  

iK  first-order reaction rate constant  -1K  

L  typical length  m  

iQ  volumetric flow rate  3 -1m s  

iU  velocity  -1ms  

 iu       dimensionless velocity 

 iu       average velocity  -1ms  

i

i

dP

dX
 pressure gradient  -2Nm  

 

ip  dimensionless pressure gradients 

iY  space co-ordinates,  m   

iy  dimensionless space co-ordinates  

Greek symbols  

,i i   dimensionless reaction rate parameters 

  dimensionless length 

i  dynamic viscosity  -1 -1Kg m s  

i  density of the fluid  -3Kg m  

Subscripts 

1,2i   Where 1, 2 – quantities for region-1 and 

region-2, respectively. 

 

 

1. INTRODUCTION 

A wide application of the dispersion model began forty 

years ago when numerous authors noticed that 

longitudinal mixing can be treated the same as diffusion 

(see Levenspiel et al. 1957). The most notable is the 

work of Danckwerts (1953) and Taylor (1953, 1954a, 

1954b) who in pioneering papers introduced the 

concept of longitudinal dispersion superimposed on 

plug flow to describe the fact that not all fluid elements 

travel at equal speed through a system.  

Taylor (1953, 1954a) investigated the way in which a 

liquid spreads out longitudinally as it moves down a 

straight tube and demonstrated by a few careful 

experiments and a novel mathematical analysis of a 

rather heuristic kind, that far downstream of the source 

the longitudinal spread is equivalent to a diffusion 

process; he also provided estimates for the longitudinal 

dispersion coefficient. Since then the notion of a 

longitudinal dispersion has been recognized as being 

relevant in a wide variety of contexts, like in flows in 

rivers and estuaries, in oil pipelines, in water mains, in 

pneumatic and hydraulic industrial devices, in blood 

vessels, in tubules in plants. An enormous variety of 

extensions and generalizations of Taylor’s simple result 

for steady flow in a straight circular tube has been 

developed (Batchelor, (1981)). The most notable 

developments of the classical asymptotic theory of 

Taylor, while still preserving the basic ideas of his 

original work were produced by Aris (1956), Horn 

(1971), and Brenner (1980, 1982). Considerable 
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attention has also been paid to the one-dimensional 

dispersion of solute during relatively short times, too 

short for the macrotransport process to be fully 

established (Philip 1963; Gill et al. 1972; Hatton and 

Lightfoot 1982; Yamanaka 1983; Yamanaka et al. 

1994). The importance for practice of the diffusion 

analysis of Taylor and the subsequent investigations 

lies in the ability of the one-dimensional transport 

equation to take into account complicated velocity and 

concentration profiles in a simpler manner, as well as 

providing a theoretical framework for the dispersion 

coefficient. 

Taylor (1953) assumed that the solute does not 

chemically react with the fluid. However, in a variety of 

problems in chemical engineering, diffusion of solute 

takes place in the presence of irreversible first order 

chemical reaction. Therefore, many investigators 

analyzed the dispersion problem by considering first 

order homogeneous reaction, under laminar flow 

conditions. Further, the wall of the channel may be 

catalytic, which in turn gives rise to heterogeneous 

chemical reaction at the surface. Katz (1959) discussed 

the influence of the heterogeneous chemical reaction 

catalyzed on the wall of the tube. The combined effects 

of homogeneous and heterogeneous chemical reaction 

for a solute dispersing in Newtonian fluid flow have 

been discussed by Walker (1961), Solomon et al.  

(1967), Gupta et al. (1972) and others. Dutta et al. 

(1974) also discussed the non-Newtonian fluid with 

simultaneous chemical reaction. The influence of an 

applied magnetic field on the dispersion has been 

discussed recently by Narasimha Murthy et al.  (1974). 

They found that the solute in an electrically conducting 

solvent can regulate rate of diffusion. 

Problems involving multi-phase flow and heat transfer 

arise in a number of scientific and engineering 

disciplines. Important applications include petroleum 

industry, geophysics and plasma physics, in modeling 

such problems, the presence of second immiscible fluid 

phase adds a number of complexities as to the nature of 

interacting transport phenomena and interface 

conditions between the phases. In general multi-fluid 

flows are driven by gravitational and viscous flows. 

There has been some theoretical and experimental work 

on laminar flow of two immiscible fluids in a horizontal 

pipe (Aliareza et al. 1970). Umavathi et al. (2007, 

2010), Malashetty et al. (2005, 2006) and Prathap et al. 

(2009, 2010) worked on two or three immiscible fluids. 

Hence keeping in view the practical applications of 

immiscible fluids, it is the objective of this paper to 

analyze the dispersion of solute with simultaneous 

chemical reaction for two immiscible viscous fluids 

flowing in a channel using the approach due to Taylor 

(1953). 

2. MATHEMATICAL FORMULATION 

The physical configuration considered in this study is 

shown in Fig. 1. Consider the laminar flow of two 

immiscible fluids between two parallel plates distant 

2h  apart, taking X -axis along the mid-section of the 

channel and Y -axis perpendicular to the walls. Region-

1  0h Y    is filled with fluid saturated porous 

medium of density 1 , viscosity 1 , under a uniform 

pressure gradient 1dP

dX
 whereas region-2  0 Y h   is 

filled with another viscous fluid of density 2 , viscosity 

2  under a uniform pressure gradient 2dP

dX
. The fluids 

in both the regions are Newtonian fluids.  

 
Fig. 1. Physical configuration. 

 

 It is assumed that the flow is steady, laminar, fully 

developed, and that fluid properties are constant. The 

flow in both regions is assumed to be driven by a 

common constant pressure gradient. Under these 

assumptions, the governing equations of motion for 

incompressible fluids are  

  

Region-1 

2

1 1

2

1

1d U dP

dY dX
               (1)  

Region-2 

2

2 2

2

2

1d U dP

dY dX
          (2) 

where iU  is the X -component of fluid velocity and 

iP  is the pressure. The subscripts 1 and 2 denote the 

values for region-1 and region-2 respectively. 

The boundary conditions on velocity are no-slip 

conditions requiring that the velocity must vanish at the 

walls. In addition, continuity of velocity and shear 

stress at the interface is assumed. With these 

assumptions, the boundary and interface conditions on 

velocity become 

1

2

1 2

1 2
1 2

0 at

0 at

at 0

at 0

U Y h

U Y h

U U Y

dU dU
Y

dY dY
 

  

 

 

 

                       (3) 

Using the non-dimensional parameters  

Y

h
  , 1

1 1

1

h
u U




 , 2

2 2

2

h
u U




 , 

X
x

h
 , 

* 1
1 2

1 1( / )

P
p

h 
 ,

* 2
2 2

2 2( / )

P
p

h 
        (4) 

The Eqs. (1) to (3) become 

Region-1 

h  

h  

Region-2 

0 
X  

Y  
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2

1
12

d u
p

dy
          (5) 

2

2
22

d u
p

dy
                         (6) 

1 0 at 1u     

2 0 at 1u    

1 2 at 0u mnu           (7) 

21 2 at 0
du du

m n
d d


 
                        

where 
*

1
1

dp
p

dx
 , 

*

2
2

dp
p

dx
 , 2 1m    and 1 2n    

Solutions of Eqs. (5) and (6) are 

2

1
1 1 2

2

p
u a a


                          (8) 

2

2
2 3 4

2

p
u a a


            (9) 

where 1a , 2a , 3a  and 4a  are integrating constants that 

are evaluated using boundary and interface conditions 

as given in (7). 

From Eqs. (8) and (9) the average velocities become 

0

1 1
1 1 2

1

1 1

2 2 6 2

p a
u u d a



 
    

 
      (10) 

1

2 3
2 2 4

0

1 1

2 2 6 2

p a
u u d a

 
    

 
      (11) 

Case-1a: Diffusion with a homogeneous chemical 

reaction 

We assume that a solute diffuses and simultaneously 

undergoes a first-order irreversible chemical reaction in 

the liquid under isothermal conditions. The equation for 

the concentration 1C  of the solute for the region-1 

satisfies 

2 2

1 1 1 1
1 1 1 12 2

C C C C
u D K C

t X X Y

    
    

    
                  (12)     

Similarly, the equation for the concentration 2C  of the 

solute for the region-2 satisfies 

2 2

2 2 2 2
2 2 2 22 2

C C C C
u D K C

t X X Y

    
    

    
               (13) 

in which 1D  and 2D  are the molecular diffusion 

coefficients (assumed constant) for the region-1 and 

region-2 respectively and 1K  and 2K  are the first-order 

reaction rate constants. In deriving the Eqs. (12) and 

(13), it is assumed that the solute is present in a small 

concentration, the last term 
-3 -1

1 1 / molm sK C  and 

-3 -1

2 2 / mol m sK C  represents the volume rate of 

disappearance of the solute due to chemical reaction. 

We now assume that  

2 2

1 1

2 2

C C

X Y

 


 
 and 

2 2

2 2

2 2

C C

X Y

 


 
. 

If we now consider convection across a plane moving 

with the mean speed of the flow, then relative to this 

plane the fluid velocities are given by 

Region-1 
2

1
1 1 1 1

2
x

p
u u u a lc


                                        (14) 

Region-2  
2

2

2 2 3 2
2

x

p
u u u a lc


                                 (15) 

where u  is the sum of average velocities of region-1 

and region-2. 

Introducing the dimensionless quantities            

1 2
1 1 2 2

1 1 2 2

1 1 2 2
1 2

1

, , , ,

, ,

t L t L
t t

t u t u

x u t x u t Y

L L h

 

  

   

 
  

                          (16) 

and using  Eq (16), Eqs. (12) and (13) becomes 

Region-1 

2

1 1 1 1 1
1 12 2

1

1 xC u C D C
K C

t L h  

  
  

  
                             (17) 

Region-2 

2

2 2 2 2 2
2 22 2

2

1 xC u C D C
K C

t L h  

  
  

  
                          (18) 

where L  is the typical length along the flow direction. 

Following Taylor (1953), we now assume that partial 

equilibrium is established in any cross-section of the 

channel so that the variations of 1C  and 2C with   are 

calculated from Eqs. (17) and (18) as 

Region-1 

2 2
21 1
1 1 12

1 1

x

C h C
C u

D L


 

 
 

 
                      (19) 

Region-2 

2 2
22 2
2 2 22

2 2

x

C h C
C u

D L


 

 
 

 
                     (20) 

where 1 1 1h K D   and 2 2 2h K D   

To solve Eqs. (19) and (20) we use wall boundary 

conditions, namely 

1 0
C







 at 1    and 2 0

C







 at 1      (21) 

To find the solutions of Eqs. (19) and (20), we require 

two more interface conditions along with boundary 

condition (21) which are given by 

1 2C C  and 1 2
1 2 at 0

C C
D D 

 

 
 

 
    (22)  

Equations (19) and (20) are solved for 1C  and 2C  

which are given by  

Region-1 
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   

 

1 1 1 2 1

2
21

1 2 3

1 1

cosh sinhC b b

h C
l l l

D L

 

 


 


  



                    (23) 

Region-2 

   

 

2 3 2 4 2

2
22

4 5 6

2 2

cosh sinhC b b

h C
l l l

D L

   

 


 


  



                     (24) 

where 1 2 3, ,b b b  and 4b  are the integrating constants 

which are evaluated using boundary and interface 

conditions as defined in Eqs. (21) and (22). The 

expressions for 1C  and 2C  can also written as 

2 2

1 2
1 11 12

1 1 2 2

h C h C
C C C

D L D L 

 
 

 
 

2 2

1 2
2 21 22

1 1 2 2

h C h C
C C C

D L D L 

 
 

 
 

where 

    2

11 11 1 21 1 1 2 3cosh sinhC b b l l l         

   12 12 1 22 1cosh sinhC b b    

   21 31 2 41 2cosh sinhC b b      

    2

22 32 2 42 2 4 5 6cosh sinhC b b l l l           

The volumetric flow rates at which the solute is 

transported across a section of the channel of unit 

breadth 1Q  (region-1) and 2Q  (region-2) using Eqs. 

(14), (15) and (23), (24) are 

Region-1 

 
0

1 1 1 11 12

1

xQ h C u d Q Q


         (25) 

where 

03

1
11 11 1

1 1 1

x

h C
Q C u d

D L






 

      

03

2
12 12 1

2 2 1

and x

h C
Q C u d

D L






 

   

Region-2 

 
1

2 2 2 21 22

0

xQ h C u d Q Q         (26) 

where 

13

1
21 21 2

1 1 0

x

h C
Q C u d

D L





 

   

13

2
22 22 2

2 2 0

and x

h C
Q C u d

D L





 

    

Following Taylor (1953), we assume that the variations 

of 1C  and 2C  with   are small compared with those in 

the longitudinal direction, and if 1mC  and 2mC  are the 

mean concentration over a section, 1 1C    and 

2 2C    are indistinguishable from 1 1mC    and 

2 2mC    respectively so that Eqs. (26) and (27) may 

be written as  

Region-1 

* 1
11 11

1

mC
Q D




 


, 

* 2
12 12

2

mC
Q D




 


 

Region-2 

* *1 2
21 21 22 22

1 2

andm mC C
Q D Q D

 

 
   

 
 

The fact that no material is lost in the process is 

expressed by the continuity equation for 1mC  and 2mC , 

namely  

Region-1 

11 1

1

2 mQ C

t

 
 

 
, 12 2

2

2 mQ C

t

 
 

 
                    (27) 

Region-2 

21 1

1

2 mQ C

t

 
 

 
, 22 2

2

2 mQ C

t

 
 

 
     (28) 

Equations (27) and (28) using Eqs. (25) and (26) 

become 

Region-1 

* 2

1 11 1

2

14

m mC D C

t 

 


 
, 

* 2

2 12 2

2

24

m mC D C

t 

 


 
                    (29) 

Region-2 

* 2

1 21 1

2

14

m mC D C

t 

 


 
, 

* 2

2 22 2

2

24

m mC D C

t 

 


 
                    (30) 

which are the equations governing the longitudinal 

dispersion, where  

 
02 2

*

11 11 1 11 1 2 1 2

1 11

, , , , ,
2 2

x

h h
D C u d F p p m n

D D
  



 

 
02 2

*

12 12 1 12 1 2 1 2

2 21

, , , , ,
2 2

x

h h
D C u d F p p m n

D D
  



 

 
12 2

*

21 21 2 21 1 2 1 2

1 10

, , , , ,
2 2

x

h h
D C u d F p p m n

D D
   

 
12 2

*

22 22 2 22 1 2 1 2

2 20

, , , , ,
2 2

x

h h
D C u d F p p m n

D D
     

Values of iiF  are computed for different values of 

dimensionless parameters such as viscosity ratio m  

and pressure gradients 1 2,p p  for variations of 

1 2and   and are shown in Table 1. Volumetric flow 

rate is also computed for variations of viscosity ratio 

and pressure gradients are displayed in Fig. 2.
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Table 1 Values of effective dispersion coefficient for variations of viscosity ratio and pressure gradients for 

homogeneous chemical reaction. 

 0.1m   1m   

   1 1 2,F     2 1 2,F     1 2,F     1 1 2,F     2 1 2,F     1 2,F    

0.4 0.1351300 0.1191240 0.2542540 0.0010415 0.0010415 0.0020831 

0.8 0.1153070 0.1091580 0.2244650 9.94588E-4 9.94588E-4 0.0019892 

1.2 0.0929812 0.0969963 0.1899775 9.25165E-4 9.25165E-4 0.0018503 

1.6 0.0735110 0.0851309 0.1586419 8.42935E-4 8.42935E-4 0.0016859 

2 0.0582265 0.0745092 0.1327357 7.56654E-4 7.56654E-4 0.0015133 

 2m   1 2 5p p    

   1 1 2,F     2 1 2,F     1 2,F     1 1 2,F     2 1 2,F     1 2,F    

0.4 0.0024974 0.0027925 0.0052899 0.0260385 0.0260385 0.0520770 

0.8 0.0024023 0.0024623 0.0048647 0.0248647 0.0248647 0.0497294 

1.2 0.0022571 0.0020761 0.0043332 0.0231291 0.0231291 0.0462582 

1.6 0.0020799 0.0017207 0.0038005 0.0210734 0.0210734 0.0421467 

2 0.0018891 0.0014234 0.0033125 0.0189163 0.0189163 0.0378327 

 1 2 0.1p p   1 2 5p p   

   1 1 2,F     2 1 2,F     1 2,F     1 1 2,F     2 1 2,F     1 2,F    

0.4 1.04154E-5 1.04154E-5 2.08308E-5 0.0260385 0.0260385 0.0520770 

0.8 9.94587E-6 9.94587E-6 1.98918E-5 0.0248647 0.0248647 0.0497294 

1.2 9.25164E-6 9.25164E-6 1.85033E-5 0.0231291 0.0231291 0.0462582 

1.6 8.42934E-6 8.42934E-6 1.68587E-5 0.0210734 0.0210734 0.0421467 

2 7.56653E-6 7.56653E-6 1.51331E-5 0.0189163 0.0189163 0.0378327 

0.0 0.5 1.0 1.5 2.0
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Fig. 2. Volumetric flow rate Q  profiles for homogeneous impermeable wall conditions 

 

Case 1b: Diffusion with combined homogeneous and 

heterogeneous chemical reaction 

We now discuss the problem of diffusion in a channel 

with a first-order irreversible chemical reaction taking 

place both in the bulk of the fluid as well as at the walls 

which are assumed to be catalytic.  In this case the 

diffusion equations remain the same as defined in Eqs. 

(19) and (20) subject to the dimensionless boundary and 

interface conditions as 

1
1 1

2
2 2

1 2

1 2
1 2

0 at 1

0 at 1

at 0

at 0

C
C

C
C

C C

C C
D D

 


 





 


   




  



 

 
 

 

                     (31) 

Where 1 1f h   and 2 2f h   are the heterogeneous 

reaction rate parameters corresponding to catalytic 

reaction at the walls. 
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The solutions of Eqs. (19) and (20) are  

Region-1 

   

 

1 1 1 2 1

2
21

1 2 3

1 1

cosh sinhC b b

h C
l l l

D L

 

 


 


  



                    (32) 

Region-2 

   

 

2 3 2 4 2

2
22

4 5 6

2 2

cosh sinhC b b

h C
l l l

D L

   

 


 


  



       (33) 

Where 1 2 3, ,b b b  and 4b  are the integrating constants 

obtained using boundary and interface conditions as 

defined in Eq. (31). 

The volumetric rates at which the solute is transported 

across a section of the channel of unit breadth 1Q  

(region-1) and 2Q  (region-2) and the evaluation of 

effective dispersion coefficients iiF  are evaluated as 

explained in the case 1a and tabulated in Table 2. 

Table 2 Values of effective dispersion coefficient for variations of viscosity ratio and pressure gradients for 

combined homogeneous and heterogeneous chemical reaction 

 0.1m   1m   

   1 ,i iF     2 ,i iF     ,i iF     1 ,i iF     2 ,i iF     ,i iF    

2 0.0393615 0.1189920 0.1583535 8.48463E-4 8.48463E-4 0.0016969 

4 0.0258395 0.1209060 0.1467455 8.30289E-4 8.30289E-4 0.0016606 

6 0.0199143 0.1216090 0.1415233 8.22866E-4 8.22866E-4 0.0016457 

8 0.0165837 0.1219700 0.1385537 8.18832E-4 8.18832E-4 0.0016377 

10 0.0144489 0.1221880 0.1366369 8.16298E-4 8.16298E-4 0.0016326 

 2m   1 2 5p p    

   1 ,i iF     2 ,i iF     ,i iF     1 ,i iF     2 ,i iF     ,i iF    

2 0.0029753 8.39576E-4 0.0038149 0.0212116 0.0212116 0.0424231 

4 0.0030907 5.59314E-4 0.0036500 0.0207572 0.0207572 0.0415144 

6 0.0031394 4.38321E-4 0.0035778 0.0205717 0.0205717 0.0411433 

8 0.0031664 3.70775E-4 0.0035372 0.0204708 0.0204708 0.0409416 

10 0.0031835 3.27649E-4 0.0035111 0.0204074 0.0204074 0.0408149 

 1 2 0.1p p   1 2 5p p   

   1 ,i iF     2 ,i iF     ,i iF     1 ,i iF     2 ,i iF     ,i iF    

2 8.48463E-6 8.48463E-6 1.69693E-5 0.0212116 0.0212116 0.0424231 

4 8.30289E-6 8.30289E-6 1.66058E-5 0.0207572 0.0207572 0.0415144 

6 8.22866E-6 8.22866E-6 1.64573E-5 0.0205717 0.0205717 0.0411433 

8 8.18832E-6 8.18832E-6 1.63766E-5 0.0204708 0.0204708 0.0409416 

10 8.16298E-6 8.16298E-6 1.6326E-5 0.0204074 0.0204074 0.0408149 

Case 2:  Diffusion with combined homogeneous and 

heterogeneous chemical reaction (one fluid model) 

The following are the solutions of one fluid model 

obtained by Gupta and Gupta (1972). 

  

The non-dimensional equation of motion is 

2

2

d u dp

d dx
                       (34) 

along with boundary conditions  

0 at 1u               (35) 

The solution of Eq. (34) is  

2(1 ) 2u p     

The average velocity is given by 

3u p   

The concentration equation for one fluid model using 

Taylor (1953) become 

2 2
2

2 x

C h C
C u

DL


 

 
 

 
                     (36) 

Where 
2

2 6
x

p p
u


   

The solution of Eq. (36) using boundary conditions  

0
C







  at  1  is  

 
2

2

2 2
cosh

2 6

h C p p p
C A

DL
 

  

  
    

  
        (37) 

The volumetric flow rate in which the solute is 

transported across a section of the channel of unit 

breadth is  

 

1

1

2 2

2 4 2

coth1 1 1

3 45

xQ h C u d

h p C

D





    





 
    

  


              (38) 
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Comparing Eq. (38) with Fick’s law of diffusion, we 

find that the solute is dispersed relative to a plane 

moving with the mean speed of the flow with an 

effective dispersion coefficient *D  given by  

2 2
* ( )

h p
D F

D
  

Where: 

 
2 4 2

coth1 1 1 1
( )

3 45
F




   

 
    

 
        (39) 

Values of  F   are computed for different values of 

the dimensionless reaction rate parameter   and are 

shown in Table 3. When 0  , Eq. (39) gives 

 
0

2
lim

945
F





  

So that the value for *D  can be written as 
2 2 2

945

h p

D
 

which agrees with the results of Wooding (1960) where 

p  is non-dimensional pressure gradient. The solution 

for heterogeneous chemical reaction is also found for 

one fluid model and the results are shown in Table 4. 

Table 3 Values of volumetric flow rate  Q  and effective dispersion coefficient for homogeneous chemical reaction. 

 Two fluid model One fluid model 

 
1Q  2Q  Q  Q  

 -9.62087E-4 -9.62087E-4 -0.0019242 -0.0019242 

   1 1 2,F     2 1 2,F     1 2,F     F   

0.4 0.00104154 0.00104154 0.00208308 0.00208308 

0.8 9.94588E-4 9.94588E-4 0.00198918 0.00198918 

1.2 9.25165E-4 9.25165E-4 0.00185033 0.00185033 

1.6 8.42935E-4 8.42935E-4 0.00168587 0.00168587 

2 7.56654E-4 7.56654E-4 0.00151331 0.00151331 

 
Table 4 Values of volumetric flow rate  Q  and effective dispersion coefficient for combined homogeneous and 

heterogeneous chemical reaction. 

 Two fluid model One fluid model 

 
1Q  2Q  Q  Q  

 -8.73024E-4 -8.73024E-4 -0.0017461 -0.0017461 

   1 ,i iF     2 ,i iF     ,i iF     ,F    

2 8.48463E-4 8.48463E-4 0.0016969 0.0016969 

4 8.30289E-4 8.30289E-4 0.0016606 0.0016606 

6 8.22866E-4 8.22866E-4 0.0016457 0.0016457 

8 8.18832E-4 8.18832E-4 0.0016377 0.0016377 

10 8.16298E-4 8.16298E-4 0.0016326 0.0016326 

 

All the constants appeared above are defined in the 

appendix. 

3. RESULTS AND DISCUSSION 

The problem concerned is with the longitudinal 

dispersion of a solute subject to molecular diffusion 

when it is introduced into a channel for viscous medium 

following Taylor’s dispersion model with a 

homogeneous and heterogeneous first-order chemical 

reaction.  

In order to find out average velocity in both the regions, 

no-slip conditions at the boundaries and continuity of 

velocity and shear stress is assumed at the interface. 

The volumetric flow rates in both the regions of the 

channel are also found. The effective dispersion 

coefficient in the each region is also evaluated and the 

values are tabulated for variations of governing 

parameters for homogeneous first-order chemical 

reaction. The effective dispersion coefficient is also 

found with a heterogeneous first-order chemical 

reaction. The physical parameters such as viscosity 

ratio and pressure gradients are fixed as one except the 

varying parameters in all the tabulated values. 

Case-1a: Diffusion with a homogeneous chemical 

reaction 

The effects of viscosity ratio and pressure gradients on 

volumetric flow rate are shown in Fig. 2. It is seen that 

as the viscosity ratio increases volumetric flow rate 

increases for small values of m  and remains almost 

constant for values of viscosity ratio m  greater than 

0.75. Volumetric flow rate is symmetric for negative 

and positive values of pressure gradient  1 2p p p   

and the optimum flow rate is attained in the absence of 

pressure gradients. 

The effective dispersion coefficients  1 1 2,F    

(region-1) and  2 1 2,F    (region-2) for variations of 

viscosity ratio m  and pressure gradient p  is shown in 

Table 1. As the reaction rate parameter  1 2     

increases,  1 1 2,F    and  2 1 2,F    decreases in both 

the regions for any value of viscosity ratio m  and 

pressure gradient p . The decrease in  1 2F F F   
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with an increase in   is natural on physical grounds 

since an increase in   leads to an increase in the 

number of molecules of solute undergoing chemical 

reaction, resulting in a decrease in Taylor’s dispersion 

coefficient.  As m  increases, the total effective 

dispersion coefficient decreases for 1m   and increases 

for 1m  . The total effective dispersion coefficient 

 1 2F F F   decreases as p  increases for values of 

0p   and increases as p  increases for values of 0p 

. In the absence of pressure gradient p  the values of F  

are very small and is of order 510 .  

Case 1b: Diffusion with combined homogeneous and 

heterogeneous chemical reaction 

The effect of viscosity ratio and pressure gradients on 

volumetric flow rate is similar to the effect of 

homogeneous chemical reaction and hence not 

displayed graphically. 

The effects of heterogeneous reaction rate parameter   

for a fixed value of homogeneous reaction rate 

parameter   are tabulated in Table 2. From this it is 

clear that as in the case of homogeneous reaction, the 

increase in the wall catalytic parameter causes decrease 

in the effective dispersion coefficient for all values of 

viscosity ratio m  and pressure gradient p . Further as 

the viscosity ratio increases the total effective 

dispersion coefficient F  decreases, whereas as the 

pressure gradients p  increases F  decreases for 0p   

and increases for 0p  . 

Case 2: Diffusion with combined homogeneous and 

heterogeneous chemical reaction (one fluid model) 

The problem of Gupta et al. (1972) is solved and 

compared the results. It is seen from Tables 3 and 4 that 

the values of volumetric flow rate and effective 

dispersion coefficient agree very well (two fluid model) 

with the results of Gupta et al. (1972) for one fluid 

model which justify the two fluid model for both 

homogeneous and heterogeneous chemical reactions. 

The volumetric flow rate and effective dispersion 

coefficient are evaluated for variations homogeneous 

and heterogeneous reaction rate parameters for two and 

one fluid model and shown in Tables 3 and 4.  The 

values of volumetric flow rate and effective dispersion 

coefficient tally with the results of Gupta et al. (1972). 

4. CONCLUSION 

The problem of solute dispersion of a solute in a 

viscous fluid between two parallel plates was studied 

using Taylor’s dispersion model in the presence of first 

order homogeneous and heterogeneous chemical 

reaction for two fluid models. 

The results obtained for homogeneous first-order 

chemical reactions were:  

As the homogeneous reaction rate parameter increases, 

the effective dispersion coefficient decreases. The 

effective dispersion coefficient decreases for values of 

viscosity ratio and pressure gradients less than one and 

increases for values of viscosity ratio and pressure 

gradients greater than one.  

The results obtained for heterogeneous first-order 

chemical reactions were:  

As the wall catalytic parameter increases, the effective 

dispersion coefficient decreases. The effect of viscosity 

ratio was to reduce the effective dispersion coefficient. 

The effect of pressure gradient on the effective 

dispersion coefficient was similar to the results 

observed for homogeneous chemical reactions. 

The volumetric flow rate increases in magnitude as the 

viscosity ratio increases for small values and then 

remained invariant for large values for both 

homogeneous and heterogeneous wall boundary 

conditions whereas it is symmetric on pressure 

gradients. 
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APPENDIX 

Case-1a: Diffusion with a Homogeneous Chemical 

Reaction 
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Case-1b: Diffusion with Combined Homogeneous 
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Case 2: Diffusion with Combined Homogeneous and 
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