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ABSTRACT 

Unsteady Reynolds-averaged Navier-Stokes (RANS) computations are presented for subsonic and transonic flow past 

a plunging NACA 64A010 aerofoil. The Implicit RANS solver used for obtaining the time-accurate solution is based 

on finite volume nodal point spatial discretization scheme with dual time stepping. Results for the subsonic and 

transonic cases compare well with the experimental data, thus demonstrating the capability of the solver to provide 

useful unsteady pressure data for aeroelastic analysis. 
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NOMENCLATURE 

A, B, R, S         Jacobian matrices                                    

Cd                    drag coefficient                                                                                    

Cp                    surface pressure coefficient                       

Cl                     lift coefficient                                          

Cm                    moment coefficient                                                 

F, G                 inviscid flux vectors                                                                   

M∞                   free stream Mach number                        

Pr                    Prandtl number                                       

Prt                    turbulent Prandtl number                                       

Re∞                           free stream Reynolds number                   

U                           Vector of conserved variables                  

U∞                   free stream velocity 

Un                   solution vector at time level n 

V, W                viscous flux vectors 

c                      aerofoil chord       

e                      energy   

ha                     non-dimensional amplitude in   

                         plunge (y0  / c ) 

hij                     area of quadrilateral 

k                       non-dimensional reduced     

                         frequency  (c / 2U∞ ) 

n                       time level 

p                       pressure                                                          

t                        physical time  

t*                     non-dimensional time ( U∞ t / c ) 

u, v                  velocity components                                      

x, y                  Cartesian coordinates 

y0                     amplitude of plunge or heave  

y(t)                  instant plunge distance of the    

                       aerofoil  

y (t*)                non-dimensional instant plunge         

                       distance of the aerofoil  

Γ                     boundary curve 

Ωij                            control volume surrounding the nodal point (i, j) of 

the curvilinear grid 

∆t                    real or physical time step 

 αo                            amplitude of pitching         

                       oscillation                

αm                   mean angle of attack                                  

γ                  ratio of specific heats                                

λ,µ                  viscosity coefficients  

µ∞                   free stream viscosity coefficient 

   µt                     turbulent viscosity coefficient 

ρ                     density 

ρ∞                   free stream density     

                    non-dimensional angular frequency 

 

 

1. INTRODUCTION 

The Navier-Stokes equations constitute the basic 

mathematical model for numerical simulation of 

compressible flows. They permit the analysis of 

complex flow phenomena such as shock/boundary layer 

interaction, flow separation, wake flow, hysteresis, 

periodic vortex shedding and so on. Since the 

mathematical nature of the governing equations 

changes from elliptic in subsonic region to hyperbolic 

in supersonic region, compressible flow computations 

require sophisticated numerical techniques and 

enormous computational effort. Due to rapid advances 

achieved in numerical methods as well as computer 

technology, there has been considerable progress in the 

development of efficient Navier-Stokes solvers in the 
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last two decades. Several finite difference and finite 

volume time stepping schemes have been applied 

successfully to a variety of two and three-dimensional 

fluid flow problems. Even though steady flow 

computations have attracted much attention, the focus 

has slowly shifted to unsteady flow computations in 

recent years [1]. 

Unsteady flows are encountered in many aerospace 

applications and prediction of unsteady air loads plays a 

vital role in aircraft and helicopter design (Mabey, 

1999; McCroskey 1982; McCroskey, W. J. 1988). 

Since wind tunnel testing of unsteady flow situations is 

difficult and expensive, computational studies of wing 

stall and flutter, buffeting, gust response, dynamic stall, 

blade-vortex interaction of helicopter rotors etc. can 

provide important design data. Understanding these 

interesting unsteady flow phenomena through Navier-

Stokes computations therefore presents a significant 

challenge for computational fluid dynamics. 

The Implicit Reynolds-averaged Navier-Stokes Solver 

(IMPRANS) for simulating unsteady compressible 

flows over aerofoils and wings has been employed for 

solving the unsteady RANS equations on a moving 

mesh in an inertial frame of reference Vimala Dutta et 

al. (2003) The solver is based on an implicit finite 

volume nodal point scheme wherein a control volume is 

formed by joining the centroids of the neighbouring 

cells around a nodal point in the computational domain. 

The efficiency of the solver for making time-accurate 

computations is enhanced by implementing an implicit 

dual time stepping procedure.  

In this approach, an equivalent pseudo steady state 

problem is solved at each real time step using local time 

stepping. The algebraic eddy viscosity model due to 

Baldwin and Lomax is used for turbulence closure 

Baldwin et al. (1978). 

This solver has been extensively validated for 

computing unsteady flow past pitching aerofoils and 

wings Sharanappa et al. (2008) helicopter rotor blades 

Vimala Dutta et al. 2005; Sharanappa et al. 2006) and 

wind turbines Dutta et al. (2007). Plunging or heaving 

is a vertical displacement of the aerofoil perpendicular 

to the free stream direction. Most of the previous 

computational studies that have been published in 

literature are on plunging aerofoils for low speed flows, 

of interest to MAVs (Sarkar et al. 2006; Viieru et al. 

2007; Andro et al. 2009; Ashraf et al. 2007). The 

present work is one of only a few to consider for 

unsteady flow past plunging aerofoil at subsonic and 

transonic Mach numbers.  

2. IMPRANS SOLVER 

The solver is based on an implicit finite volume nodal 

point spatial discretization scheme with dual time 

stepping. Inviscid flux vectors are calculated by using 

the flow variables at the six neighbouring points of 

hexahedral volume. Turbulence closure is achieved 

through the algebraic eddy viscosity model of Baldwin 

and Lomax.  

2.1 Governing Equations 

The two-dimensional Reynolds averaged Navier-Stokes 

equations for a moving domain can be written in non-

dimensional conservative form as 
U F G V W

t x y x y

    
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  (4) 

Here x and y are the Cartesian coordinates and t is the 

time variable; xt and yt are the Cartesian velocity 

components of the moving domain. For a fixed domain, 

the grid speeds xt   and yt are zero. U is the vector of 

conserved variables; F and G are inviscid flux vectors 

and V and W are viscous flux vectors. The primitive 

variables are density ρ, velocity components u, v in the 

x and y directions, pressure p, temperature T and total 

energy e per unit volume. The non-dimensional 

variables used in the above equations have been 

obtained by using the following free stream values as 

reference quantities: ρ∞ (density), U∞ (velocity), µ∞ 

(viscosity), ρ∞U2∞ (pressure), T∞ (temperature), and so 

on. Some characteristic length such as chord c of an 

aerofoil is chosen as the length scale. 

M∞ and Re∞ are the free stream Mach number and 

Reynolds number respectively; γ is the ratio of specific 

heats and Pr is the prandtl number. In addition, the 

viscosity coefficients λ and µ are related by the Stokes 

relation  

3 2 0λ μ                                                                (5) 

and the Sutherland’s law of viscosity is given by 

3 / 2

1

2

T
C

T C


 
  

 
                                                         

(6) 

For turbulent flows, the laminar viscosity coefficient µ 

is replaced by, µ+µt and µ / Pr is replaced by (µ / Pr) + 

(µt / Prt); the turbulent viscosity coefficient  µt and the 

turbulent Prandtl number Prt are provided by a 
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turbulence model. Finally the system is closed using the 

perfect gas equation of state in non-dimensional form as 

2

T
P

M



 



                                                                   

(7) 

The Euler equations for inviscid flow are obtained from 

the Navier-Stokes equations by setting  

1/ 0Re   

2.2 Computational Method 

There are essentially two types of algorithms to solve 

unsteady compressible Reynolds-averaged Navier-

Stokes equations, namely, explicit and implicit. In 

explicit schemes, the dependent variables at any new 

time-level are expressed in terms of variables at 

previous time steps and no matrix inversion is involved. 

Explicit determination of the dependent variables is not 

possible in implicit schemes and the difference 

equations at all grid points have to be solved 

simultaneously. In explicit methods, the time step 

imposed by numeric is much smaller than the time step 

that is required to resolve the physical unsteadiness of 

the flow problem. Even though explicit schemes are 

easy to implement, they need a very large number of 

time steps. Since convergence acceleration techniques 

like local time stepping used for steady flows destroy 

time accuracy and unsteady flow computations often 

need to be continued for a long time, the total CPU time 

requirement becomes very large. Implicit time 

discretization, on the other hand, allows much larger 

time steps and hence can be employed for time-accurate 

computations of flows of practical interest within 

reasonable CPU time. The computational work per time 

step to construct and solve the resulting matrix 

equations is, of course, larger than in an explicit 

scheme.  

The use of integral forms of Euler/Navier-Stokes 

equations leads to the finite volume approach whereas 

the divergence form yields the finite difference 

approach. The main advantage of the finite volume 

method is the capability to handle arbitrary geometry 

through direct discretization in the physical space.  In 

cell-centered finite volume schemes, the dependent 

variables are associated with the centre of the cell in the 

computational mesh. In cell-vertex or nodal point 

schemes, the flow quantities are specified at cell 

vertices rather than at cell centre’s. With a view to 

implement the cell-vertex finite volume approach to 

implicit schemes, an implicit finite volume nodal point 

schemes has been developed at National Aerospace 

Laboratories (NAL). The numerical scheme for solving 

the two-dimensional Navier-Stokes equations 

governing the viscous compressible flow over aerofoils 

has been derived by using Euler’s time differencing 

formula with nodal point discretization. Certain basic 

ideas from implicit finite difference scheme of Beam et 

al. (1978) and Steger (1978),the nodal point schemes of 

Ni (1982) and Hall (1985), the Runge kutta time-

stepping scheme of Jameson et al. (1981) and cell-

centered schemes due to Hollanders et al. (1980) 

Hollanders et al. (1985) have been combined efficiently 

in the present method. 

Applying Euler’s implicit time differencing formula 
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to the governing Eq. (1), we obtain 
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Here Un = U (t) = U (n ∆t) is the solution vector at time 

level n and ∆Un  = (U n+1 - Un) is the change in Un over 

time step ∆t. In order to facilitate the finite volume 

formulation, the above equations are written in the 

integral form as 

   1 1
- - - 0

n nnU dxdy t F V dy G W dx
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(10) 

where Ω is any two-dimensional flow domain and Γ  is 

the boundary curve. 

In the nodal point finite volume approach (Ni 1982 and 

Hall 1985), the flow variables are associated with each 

mesh point of the grid and the integral conservative 

equations are applied to each control volume obtained 

by joining the centroids of the four neighbouring cells 

of a nodal point. Fig. 1(a) shows a typical control 

volume Ωij formed by joining the centres a, b, c, d of 

the four cells surrounding a nodal point (i, j) of a body 

fitted curvilinear grid, i, j being the spatial indices along 

curvilinear coordinate directions ξ, η. Application of 

nodal point spatial discretization to Eq. (10) leads to the 

following equations for the computational cell Ωij 

   1 1
0

n nnU h t F V dy G W dx
ij ij ij

           
     

(11) 

where hij is the area of quadrilateral abcd and the 

integral  refers to a contour integration around the 

boundary Γij of the cell Ωij in anticlockwise direction. 

The fluxes are calculated across the four sides of the 

control volume abcd. 

Linearising the changes in flux vectors using Taylor’s 

series expansions in time and assuming locally constant 

transport properties, Eq. (11), can be simplified to  
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(12) 

Here A, B, R and S are the Jacobian matrices given by 

1 2, , and 
x y

V WF G
A B R S

U U U U
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   
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                         (13) 

2.3 Moving Aerofoil’s 

For simulating unsteady flow over moving aerofoils, 

the governing equations are solved in an inertial frame 

of reference. The flow field is discretized by employing 

a C-grid which is fixed to the aerofoil so that the 

computational grid translates and rotates rigidly with 

the aerofoil. For any grid point z = x + iy in the moving 

domain fixed to the aerofoil which is shown in Fig. 

1(b). 
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The nodal points (x, y) and the grid speeds (xt, yt ) at 

any particular instant are computed from the prescribed 

aerofoil motion, thus eliminating the need for multiple 

grid generation. Along the moving body surface, 

conditions for zero relative velocity and adiabatic wall 

are imposed. The steady solution at initial incidence is 

used as the starting solution. 

 
Fig. 1(a). A typical control volume 

 

 
Fig. 1(b). Moving aerofoil configuration 

 

3. GRID GENERATION 
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Fig. 2(a).C- Grid around the aerofoil 

The structured C-grid with a grid size of 247 x 65 

(streamwise x normal) is generated around the NACA 

64A010 aerofoil, as shown in Fig. 2(a). Here, 167 

points are distributed on the aerofoil surface and 41 

points in the wake region. The outer boundary is 

located 30 chords away from the aerofoil surface. The 

first grid spacing on the aerofoil surface is 0.00001c in 

the direction normal to the aerofoil surface. The grid 

points are properly clustered near the leading and 

trailing edges and the wall. The close-up view of the 

grid is shown in Fig. 2(b). 
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Fig. 2(b). Close-up view of the grid 

4. RESULTS 

The computation is carried out for two-dimensional 

unsteady compressible viscous flow over a plunging 

aerofoil at subsonic and transonic Mach numbers, 

where sinusoidal plunging or heaving motion of the 

aerofoil is given by  

y (t) = y0 cos (t). 

Here y0 is the amplitude in plunge,   is the frequency 

of oscillation, c is the aerofoil chord length and U∞ is 

the free stream velocity. When all the parameters are 

non-dimensionalized with respect to c and U∞, the 

time, amplitude in plunge and reduced frequency can be 

defined as t* = U∞ t / c, ha = y0 / c and k = c / 2U∞. 

The non-dimensional displacement of the input motion 

is given by the expression, 

y (t*) = ha cos (2k t*). 

The time-accurate results are presented for flow around 

the aerofoil undergoing small amplitude heave motion 

corresponding to the experiments of Davis et al. (1980) 

The input parameters used for the present computations 

are listed in Table 1 for the NACA 64A010 aerofoil. 

The unsteady variation of non-dimensional plunge 

displacement of the aerofoil, with non-dimensional time 

(t*) for five cycles of heaving oscillation is shown in 

Fig. 3.  

The first harmonic components of unsteady surface 

pressure data have been evaluated through a Fourier-

series representation of the surface pressure coefficient 

Cp. The mean values and the Fourier coefficients 

corresponding to real and imaginary parts of the first 

harmonics are plotted in Fig. 4. The mean and 

fundamental frequency pressure data show good 

agreement between computations and the experiments 

of Davis and Malcolm Davis et al. (1980).The presence 

of shocks on both the surfaces of the aerofoil and their 

strength and location are well predicted in the transonic 

flow regime. 
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Fig. 3. Unsteady variation of heave amplitude with time 

on plunging NACA 64A010 aerofoil for subsonic and 

transonic cases. 

 

 
Fig. 4. Unsteady surface pressure distribution for 

subsonic (left) and transonic (right) cases. (Experiment 

Davis et al.(1980):         Upper;  Δ   Lower 

Computation:     Upper;  —  Lower) 

The time histories of Cl, Cd and Cm for five cycles of 

heaving motion are plotted in Fig. 5, for both the cases. 

The aerodynamic loads attain a periodic behavior after 

four cycles of oscillations. The unsteady variation of lift 

and moment coefficients with heave distance is shown 

in Fig. 6, for both subsonic and transonic cases. The 

computed loops of the aerodynamic coefficients clearly 

demonstrate the hysteretic property existing between 

the up-stroke and down-stroke motion of the aerofoil. 

The unsteady surface pressure coefficient distribution 

on plunging aerofoil for subsonic and transonic cases 

for one complete cycle at approximately equal time 

intervals are shown in Fig. 7 and Fig. 8 respectively. 

The Mach number contours are plotted in Fig. 9 and 

Fig.10 for both the cases respectively. The Mach 

number contour plots and the surface pressure 

distribution plots show that in transonic case, there is a 

strong shock on the upper surface that weakens when it 

reaches the upstream position during upward stroke of 

the aerofoil similarly there is a strong shock on the 

lower surface that becomes weak when it reaches 

upstream position during downward stroke of the 

aerofoil. In both cases, plunging motion of the aerofoil 

creates asymmetry in the flow field even for symmetric 

aerofoils.  This leads to different pressure fields on the 

upper and lower surfaces and increases the lift 

compared to the static aerofoils. 

 
Fig. 5. Time histories of Cl, Cd and Cm for subsonic 

(left) and transonic (right) cases. 

 

 
Fig. 6.Unsteady variations of lift and moment 

coefficients with heave distance for subsonic (left) and 

transonic (right) cases 
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Fig. 7. Unsteady surface pressure distribution during 

one complete cycle for subsonic case.    

(---  Upper surface, —  Lower surface) 

 

 
Fig. 8. Unsteady surface pressure distribution during 

one complete cycle for transonic case.     

(---  Upper surface, —  Lower surface) 

 
Fig. 9. Mach number contours during one complete 

cycle for subsonic case. 

 

 
Fig. 10. Mach number contours during one complete 

cycle for transonic case. 

 

Table 1 Unsteady aerodynamic input flow conditions 

used for plunging NACA 64A010 aerofoil 

Input 

parameter 

Subsonic case Transonic case 

M∞ 0.499 0.797 

Re∞ 9.89×106 12.40×106 

m -0.130 -0.080 

k=c/2U∞ 0.20 0.201 

ha 0.0202 0.0202 
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5. CONCLUSION 

The applicability of the Implicit Reynolds-averaged 

Navier-Stokes Solver (IMPRANS) for aeroelastic 

studies is illustrated through time accurate 

computations for two-dimensional subsonic and 

transonic flow past a plunging aerofoil. The unsteady 

aerodynamic data obtained for NACA 64A010 aerofoil 

is validated with the available experimental results. The 

plunging motion of the aerofoil creates asymmetry in 

the flow field even for symmetric aerofoil's.  

This leads to different pressure fields on the upper and 

lower surfaces and increases the lift compared to the 

static aerofoils. In transonic case, there is a strong shock 

on the upper surface that weakens when it reaches the 

upstream position during upward stroke of the aerofoil 

similarly there is a strong shock on the lower surface 

that becomes weak when it reaches upstream position 

during downward stroke of the aerofoil. 
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