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ABSTRACT 

The thermosolutal convection in a couple-stress fluid layer heated and soluted from below in porous medium is 

considered to include the effects of uniform vertical magnetic field and uniform vertical rotation. Following the 

linearized stability theory and normal mode analysis, the dispersion relation is obtained. For the case of stationary 

convection, the stable solute gradient and rotation have stabilizing effects on the system. In the presence of rotation, 

the medium permeability has a destabilizing (or stabilizing) effect whereas magnetic field and couple-stress 

parameter have stabilizing (or destabilizing) effect on the system. On the other hand, in the absence of rotation, 

medium permeability has a destabilizing effect whereas magnetic field and couple-stress parameter have a stabilizing 

effect. The dispersion relation is also analyzed numerically. The stable solute gradient, rotation and magnetic field 

introduce oscillatory modes in the system, which were nonexistent in their absence. A condition for the system to be 

stable is obtained by using Rayleigh-Ritz inequality. 

 

Keywords: Thermosolutal convection, Couple-stress fluid, Porous medium, Uniform vertical rotation, Uniform 

vertical magnetic field 

1. INTRODUCTION  

The theoretical and experimental results on thermal 

convection in a fluid layer, in the absence and presence 

of rotation and magnetic field have been given by 

Chandrasekhar (1961). Thermal convection is the most 

convective instability when crystals are produced from 

single element like silicon. However, gallium arsenide 

and other semi-conductors which require crystals made 

from compounds of elements are beginning to take on a 

prominent position in modern technologies. Hence, at 

present, there is a strong industrial demand for 

understanding the additional effects that can occur in 

the solidification of a mixture, which do not take place 

in one component system. The problem of thermohaline 

convection in a layer of fluid heated from below and 

subjected to a stable salinity gradient has been 

considered by Veronis (1965). The buoyancy force can 

arise not only from density differences due to variations 

in temperature but also from those due to variations in 

solute concentration. Double-diffusive convection 

problems arise in oceanography (salt fingers occur in 

the ocean when hot saline water overlies cooler fresher 

water which believed to play an important role in the 

mixing of properties in several regions of the ocean), 

limnology and engineering. The migration of moisture 

in fibrous insulation, bio/chemical contaminants 

transport in environment, underground disposal of 

nuclear wastes, magmas, groundwater, high quality 

crystal production and production of pure medication 

are some examples where double-diffusive convection 

is involved. Examples of particular interest are provided 

by ponds built to trap solar heat (Tabor et al. 1965) and 

some Antarctic lakes (Shirtcliffe, 1967). The physics is 

quite similar in the stellar case in that helium acts like 

salt in raising the density and in diffusing more slowly 

than heat. The conditions under which convective 

motions are important in stellar atmospheres are usually 

far removed from consideration of a single component 

fluid and rigid boundaries, and therefore it is desirable 

to consider a fluid acted on by a solute gradient and free 

boundaries. 

The flow through porous media is of considerable 

interest for petroleum engineers, for geophysical fluid 

dynamicists and has importance in chemical technology 

and industry. An example in the geophysical context is 

the recovery of crude oil from the pores of reservoir 

rocks. Among the applications in engineering 

disciplines one can find the food processing industry, 

chemical processing industry, solidification and 

centrifugal casting of metals. Such flows has shown 

their great importance in petroleum engineering to 

study the movement of natural gas, oil and water 

through the oil reservoirs; in chemical engineering for 

filtration and purification processes and in the field of 

agriculture engineering to study the underground water 

resources, seepage of water in river beds. The problem 

of thermosolutal convection in fluids in a porous 
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medium is of importance in geophysics, soil sciences, 

ground water hydrology and astrophysics. The study of 

thermosolutal convection in fluid saturated porous 

media, has diverse practical applications, including that 

related to the materials processing technology, in 

particular, the melting and solidification of binary 

alloys. The development of geothermal power resources 

has increased general interest in the properties of 

convection in porous media. The scientific importance 

of the field has also increased because hydrothermal 

circulation is the dominant heat-transfer mechanism in 

young oceanic crust (Lister, 1972). Generally it is 

accepted that comets consists of a dusty ‘snowball’ of a 

mixture of frozen gases which in the process of their 

journey changes from solid to gas and vice - versa. The 

physical properties of comets, meteorites and 

interplanetary dust strongly suggest the importance of 

porosity in the astrophysical context (McDonnel, 1978). 

The effect of a magnetic field on the stability of such a 

flow is of interest in geophysics, particularly in the 

study of Earth’s core where the Earth’s mantle, which 

consists of conducting fluid, behaves like a porous 

medium which can become convectively unstable as a 

result of differential diffusion. The other application of 

the results of flow through a porous medium in the 

presence of a magnetic field is in the study of the 

stability of a convective flow in the geothermal region. 

Also the magnetic field in double-diffusive convection 

has its importance in the fields of engineering, for 

example, MHD generators and astrophysics particularly 

in explaining the properties of large stars with a helium 

rich core. Stommel et al. (1967) and Linden (1974) 

have remarked that the length scales characteristics of 

double-diffusive convective layers in the ocean may be 

sufficiently large that the Earth’s rotation might be 

important in their formation. Moreover, the rotation of 

the Earth distorts the boundaries of a hexagonal 

convection cell in a fluid through a porous medium and 

the distortion plays an important role in the extraction 

of energy in the geothermal regions. Brakke (1955) 

explained a double - diffusive instability that occurs 

when a solution of a slowly diffusing protein is layered 

over a denser solution of more rapidly diffusing 

sucrose. Nason et al. (1969) found that this instability, 

which is deleterious to certain biochemical separations, 

can be suppressed by rotation in the ultracentrifuge.  

The theory of couple-stress fluid has been formulated 

by Stokes (1966). One of the applications of couple-

stress fluid is its use to the study of the mechanisms of 

lubrications of synovial joints, which has become the 

object of scientific research. A human joint is a 

dynamically loaded bearing which has articular 

cartilage as the bearing and synovial fluid as the 

lubricant. When a fluid film is generated, squeeze - film 

action is capable of providing considerable protection to 

the cartilage surface. The shoulder, ankle, knee and hip 

joints are the loaded – bearing synovial joints of the 

human body and these joints have a low friction 

coefficient and negligible wear. Normal synovial fluid 

is a viscous, non-Newtonian fluid and is clear or 

yellowish. According to the theory of Stokes (1966), 

couple-stresses appear in noticeable magnitudes in 

fluids with very large molecules. Since the long chain 

hyaluronic acid molecules are found as additives in 

synovial fluids, Walicki et al. (1999) modeled the 

synovial fluid as a couple-stress fluid. The synovial 

fluid is the natural lubricant of joints of the vertebrates. 

The detailed description of the joint lubrication has very 

important practical implications. Practically all diseases 

of joints are caused by or connected with malfunction 

of the lubrication. The efficiency of the physiological 

joint lubrication is caused by several mechanisms. The 

synovial fluid is due to its content of the hyaluronic 

acid, a fluid of high viscosity, near to gel. Goel et al. 

(1999) have studied the hydromagnetic stability of an 

unbounded couple-stress binary fluid mixture under 

rotation with vertical temperature and concentration 

gradients. Sharma et al. (2002) have considered a 

couple - stress fluid with suspended particles heated 

from below. In another study, Sunil et al. (2002) have 

considered a couple- stress fluid heated from below in a 

porous medium in the presence of a magnetic field and 

rotation. Kumar et al. (2004) have considered the 

thermal instability of a layer of couple-stress fluid acted 

on by a uniform rotation, and have found that for 

stationary convection the rotation has a stabilizing 

effect whereas couple-stress has both stabilizing and 

destabilizing effects. 

Keeping in mind the importance in geophysics, soil 

sciences, ground water hydrology, astrophysics and 

various applications mentioned above, the 

thermosolutal convection in couple-stress fluid in 

porous medium in the presence of uniform rotation and 

uniform magnetic field has been considered in the 

present paper. 

2. FORMULATION OF THE PROBLEM AND 

PERTURBATION EQUATIONS 

Here we consider an infinite, horizontal, incompressible 

couple-stress fluid layer of thickness d, heated and 

soluted from below so that, the temperatures, densities 

and solute concentrations at the bottom surface z = 0 

are T0, 0 and C0 and at the upper surface z = d are Td, 

d and Cd respectively, and that a uniform temperature 

gradient ( | |)
dT

dz
   and a uniform solute gradient 

'( | |)
dC

dz
   are maintained. The gravity field

(0,0, )g g , a uniform vertical magnetic field

(0,0, )H H  and a uniform vertical rotation (0,0, )   

pervade the system. This fluid layer is assumed to be 

flowing through an isotropic and homogeneous porous 

medium of porosity  and medium permeability k1. 

Let p, , T, C, , /, g, , e and ( , , )q u v w denote 

respectively, the fluid pressure, density, temperature, 

solute concentration, thermal coefficient of expansion, 

an analogous solvent coefficient of expansion, 

gravitational  acceleration, resistivity, magnetic 

permeability and fluid velocity. The equations 

expressing the conservation of momentum, mass, 

temperature, solute concentration and equation of state 

of couple-stress fluid are: 
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where the suffix zero refers to values at the reference 

level z = 0 and in writing Eq. (1), use has been made of 

Boussinesq approximation. The magnetic permeability 

e, the kinematic viscosity , couple-stress viscosity /, 

the thermal diffusivity  and the solute diffusivity / are 

all assumed to be constants. The Maxwell’s equations 

yield 

2( . )
d H

H q H
dt

                                       (6) 

and  

. 0H                                                           (7) 

where 1 .
d

q
dt t

 
  


 stands for the convective 

derivative. Here 
0

(1 )( )s s

i

C
E

C


 


    is a constant and 

E/ is a constant analogous to E but corresponding to 

solute rather that heat; s, Cs and o , Ci stand for 

density and heat capacity of solid (porous matrix) 

material and fluid, respectively. The steady state 

solution is  

q


(0,0,0), 0 0, /T T z C C z      

0(1 ' ' )z z                                        (8) 

Here we use linearized stability theory and normal 

mode analysis method. Consider a small perturbation 

on the steady state solution, and let p, , ,  ,  

),,( zyx hhhh


and q


(u, v, w) denote, respectively, the 

perturbations in pressure p, density , temperature T, 

solute concentration C, magnetic field )0,0,0(H


and 

velocity q


 (0, 0, 0). The change in density , caused 

mainly by the perturbations  and  in temperature and 

concentration, is given by 

0( )                                      (9) 

Then the linearized perturbation equations become 
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3. THE DISPERSION RELATION  

Analyzing the disturbances into normal modes, we 

assume that the perturbation quantities are of the form 

[w,hz,,, ,] = [W(z), K(z), (z), (z), 

Z(z), X(z)]exp(ikxx + ikyy + nt)                  (16) 

where kx, ky are the wave numbers along the x- and y- 

directions respectively, k= ( 2 2

x yk k ) is the resultant 

wave number and n is the growth rate which is, in 

general, a complex constant.
u

x y




 
 
 

 and 

y x
h h

x y


 
 

 
 stand for the z-components of vorticity 

and current density, respectively. 

Expressing the coordinates x, y, z in the new unit of 

length d and letting a = kd, 
2nd




 , 1p



  (Prandtl 

number), 2p



  (magnetic Prandtl number), q








(Schmidt number), 1

2l

k
P

d
 dimensionless medium 

permeability) and F=
2

0

'

d



 
 (dimensionless couple-

stress parameter), Eq. (10) to Eq. (15), using Eq. (16), 

yield 
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Consider the case where both boundaries are free as 

well as perfect conductors of both heat and solute 

concentration, while the adjoining medium is perfectly 

conducting. The case of two free boundaries is a little 

artificial but it enables us to find analytical solutions 

and to make some qualitative conclusions. The 

appropriate boundary conditions, with respect to which 

Eqs. (17) - (22) must be solved are  

2 0W D W X DZ    , 0  , 0    at  z = 0  

and z = 1                                  (23) 

DX = 0, K = 0 on a perfectly conducting boundary and 

X = 0 and hx, hy, hz are continuous with an external 

vacuum field on a non-conducting boundary.  

The case of two free boundaries, though little artificial, 

is the most appropriate for stellar atmospheres (Spiegel, 

1965).  Using the above boundary conditions, it can be 

shown that all the even order derivatives of W must 

vanish for z = 0 and z = 1 and hence the proper solution 

of W charactering the lowest mode is  

0 sinW W z                         (24) 

where W0 is a constant.  

Eliminating , , K, Z and X between Eqs. (17) – (22) 

and substituting the proper solution   W = W0 sin z , in 

the resultant equation, we obtain the dispersion relation 
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4. THE STATIONARY CONVECTION  

When the instability sets in as stationary convection, the 

marginal state will be characterized by  = 0. Putting  

 = 0, the dispersion relation (25) reduces to  
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To investigate the effects of stable solute gradient, 

rotation, magnetic field, couple-stress parameter and 

medium permeability, we examine the behaviour 
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Equations (27) and (28) imply that, for stationary 

convection, stable solute gradient and rotation have 

stabilizing effects on the system. Equations (29) - (31) 

shows that in the absence of rotation (T1 = 0), 1

1

dR

dQ
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1
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dR

dF
 is always positive whereas 1

1

dR

dP
 is always 

negative which means that magnetic field and couple-

stress parameter have a stabilizing effect, whereas, 

medium permeability has a destabilizing effect on the 

system in the absence of rotation. For a rotating system, 

the magnetic field and couple-stress parameter have a 

stabilizing ( or destabilizing ) effect and the medium 

permeability has a destabilizing ( or stabilizing) effect 

on instability of couple- stress rotating fluid in porous 

medium in hydromagnetics if  
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The dispersion relation (26) is also analyzed 

numerically for various values of S1, T1, P, F1 and Q1. It 
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is also evident from Figs. 1 - 5 that stable solute 

gradient and rotation have stabilizing effects whereas 

magnetic field, couple-stress parameter and medium 

permeability have both stabilizing and destabilizing 

effects on the system. 

 
Fig.1. The variation of Rayleigh number   with x for 

     ,   =5,   =20, P=5,   =200,400 and 600.  

 

 
Fig.2. The variation of Rayleigh number   with x for, 

  =5,   =20, P=5,    =200,   =10, 15 and 20. 

 

 
Fig.3. The variation of Rayleigh number   with x for 

     ,   =5, P=5,    =200, ,   =20, 40 and 60. 

 

 

 
Fig.4. The variation of Rayleigh number   with x for 

  =10,   =20, P=5,    =200,   =5,10 and 15. 

 

 
Fig.5. The variation of Rayleigh number   with x for 

     ,   =5,   =20,   =200, P=2, 5 and 8.  

5. SOME IMPORTANT THEOREMS 

Theorem 1: The system is stable or unstable. 

Proof: Multiplying Eq. (17) by W*, the complex 

conjugate of W, integrating over the range of z and 

making use of Eqs. (18) – (22) together with the 

boundary conditions (23), we obtain 

2
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    (33)  

 where  
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1
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1
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5

0
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0
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1

2
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0

(| | )I X dz         (34) 

and * is the complex conjugate of . The integrals I1 – 

I12 are all positive definite. Putting     = r + ii   and 

equating the real and imaginary parts of Eq. (33), we 

obtain 
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      (35) 

and  
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         (36)                             

It is evident from Eq. (35) that r is positive or 

negative. The system is, therefore, stable or unstable.  

Theorem 2: The modes may be oscillatory or non-

oscillatory in contrast to case of no magnetic field and 

no rotation, and in the absence of stable solute gradient 

where modes are non-oscillatory. 

 Proof:  Eq. (36) yields that i may be zero or non-zero, 

which means that the modes may be non-oscillatory or 

oscillatory. In the absence of stable solute gradient, 

rotation and magnetic field, Eq. (36) reduces to  
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1 4 0i

I ga
Ep I
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                               (37) 

and the terms in brackets are positive definite. Thus i 

= 0, which means that oscillatory modes are not 

allowed and the principle of exchange of stabilities is 

valid for the couple-stress fluid for a porous medium, in 

the absence of stable solute gradient, rotation and 

magnetic field. The oscillatory modes are introduced 

due to the presence of stable solute gradient, rotation 

and magnetic field, which were non-existent in their 

absence. 

Theorem 3: The system is stable for 
4
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and under the condition
4

1 27

4
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, the system 

becomes unstable. 

Proof:  From Eq. (36), it is clear that i is zero when 

the quantity multiplying it is not zero and arbitrary 

when this quantity is zero. 

If i  0 , then Eq. (36) gives 
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                 (38) 

Substituting in Eq. (35), we have  
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   (39)                            

Equation (39) on using Rayleigh–Ritz inequality gives  
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                                                                    (40) 

Therefore, it follows from Eq. (40) that  
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since minimum value of 
2 2 3

2

( )a

a

 
 with respect to 2a  

is 
427

4


. 

Now, let r  0, we necessary have from (41) that  

4
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4

g P
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                                             (42) 

Hence, if  

4

1 27

4

g P

F

 


                                              

(43) 

then r < 0. Therefore, the system is stable. Therefore, 

under condition (43), the system is stable and under 

condition (42) the system becomes unstable. 

6. CONCLUSIONS 

The effect of a uniform vertical magnetic field and 

uniform rotation on the thermosolutal convection in a 

couple-stress fluid heated and soluted from below in 

porous medium is considered in the present paper. The 

investigation of thermosolutal convection is motivated 

by its interesting complexities as a double diffusion 

phenomena as well as its direct relevance to geophysics 

and astrophysics. The thermosolutal convection 

problems arise in oceanography, limnology and 

engineering. Ponds built to trap solar heat and some 

Antartic lakes provide examples of particular interest. 

The main conclusions from the analysis of this paper 

are as follows: 

a) For the case of stationary convection the 

following observations are made: 

 The stable solute gradient and rotation 

have stabilizing effect on the system. 

 In the presence of rotation, the medium 

permeability has a destabilizing (or 

stabilizing) effect whereas magnetic 

field and couple-stress parameter have 

stabilizing (or destabilizing) effect on the 

system. 

 In the absence of rotation, the medium 

permeability has a destabilizing effect 

whereas magnetic field and couple-stress 

parameter have a stabilizing effect.  

b) It is also observed from Figs. 1-5 that 

stable solute gradient and rotation have 

stabilizing effects whereas magnetic 

field, couple - stress parameter and medium 

permeability have both stabilizing and 

destabilizing effects on the system. 

c) It is observed that stable solute 

gradient, rotation and magnetic field 

introduce oscillatory modes in the system, 

which was non-existent in their absence. 

d) In the absence of stable solute gradient, 

rotation and magnetic field, oscillatory modes 

are not allowed and the principle of exchange 

of stabilities is valid.      

e) It is found that if 
4

1 27

4

g P

F
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
 the system 

is stable and under the condition   
4

1 27

4

g P

F
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
, the system becomes 

unstable. 
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