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ABSTRACT 

The thermosolutal convection in Walters’ (Model B') elastico-viscous rotating fluid permeated with suspended 

particles (fine dust) and variable gravity field in porous medium in hydromagnetics is considered. By applying 

normal mode analysis method, the dispersion relation has been derived and solved numerically.  It is observed that 

the rotation, magnetic field, gravity field, suspended particles and viscoelasticity introduce oscillatory modes. For 

stationary convection, Walters’ (Model B')  elastico-viscous fluid behave like an ordinary Newtonian fluid and it is 

observed that rotation and stable solute gradient has stabilizing effects and suspended particles are found to have 

destabilizing effect on the system, whereas the medium permeability has stabilizing or destabilizing effect on the 

system under certain conditions. The magnetic field has destabilizing effect in the absence of rotation, whereas in the 

presence of rotation, magnetic field has stabilizing or destabilizing effect under certain conditions. The effect of 

rotation, suspended particles, magnetic field, stable solute gradient and medium permeability has also been shown 

graphically. 

AMS subject classifications are 76A10, 76E07, 76E25 and 76S05. 

Keywords: Walters’ (Model   ) elastico-viscous fluid, Thermosolutal convection, Suspended particles, Magnetic 

field, Variable gravity field, Porous medium. 

NOMENCLATURE

 

 p       pressure     

 g       acceleration due to gravity  

        medium porosity   

        fluid density 

 p     perturbation in pressure   

       perturbation in density 

μ       fluid viscosity   

        fluid viscoelasticity 

        kinematic viscosity   

        kinematic viscoelasticity 

k       medium permeability  

N      suspended particles number density 

ε       particle radius  

t        time coordinate 

       thermal diffusitivity                           

         solute diffusivity 

         dimensionless medium permeability   

 
 
      magnetic permeability 

K       Stokes’ drag coefficient                    

T        temperature 

α        thermal coefficient of expansion     

        solvent coefficient of expansion 

β        temperature gradient                         

        solute gradient 

Θ       perturbation in temperature           

ξ       z-component of current density 

δ       z-component of vorticity                

γ       perturbation in solute concentration 

1. INTRODUCTION 

A detailed account of the thermal instability of a 

Newtonian fluid, under varying assumptions of 

hydrodynamics and hydromagnetics. has been given 

by Chandrasekhar (1981). Bhatia and Steiner (1973) 

have studied the thermal instability of a Maxwellian 

visco-elastic fluid in the presence of magnetic field 

while the thermal convection in Oldroydian visco-

elastic fluid has been considered by Sharma (1975). 

Veronis (1965) has investigated the problem of 

thermohaline convection in a layer of fluid heated 

from below and subjected to a stable salinity gradient. 

The buoyancy forces can arise not only from density 

differences due to variations in solute concentration, 
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Thermosolutal convection problems arise in 

oceanography, limnology and engineering. 

The medium has been considered to be non-porous in 

all the above studies. Lapwood (1948) has studied the 

convective flow in a porous medium using linearized 

stability theory. The Rayleigh instability of a thermal 

boundary layer in flow through a porous medium has 

been considered by Wooding (1960) whereas Scanlon 

and Segel (1973) have considered the effect of 

suspended particles on the onset of Be’nard 

convection and found that the critical Rayleigh 

number was reduced solely because the heat capacity 

of the pure gas was supplemented by the particles. The 

suspended particles were thus found to destabilize the 

layer.  

Sharma and Sunil (1994) have studied the thermal 

instability of an Oldroydian viscoelastic fluid with 

suspended particles in hydromagnetics  in a porous 

medium. There are many elastico-viscous fluids that 

cannot be characterized by Maxwell’s constitutive 

relations or Oldroyd’s constitutive relations. One such 

class of fluids is Walters’ (Model   ) elastico-viscous 

fluid. Walters’ (1962) reported that the mixture of 

polymethyl methacrylate and pyridine at      

containg 30.5g of polymer per litre with density 0.98g 

per litre behaves very nearly as the Walters (Model    

) elastico-viscous fluid.  Such and other polymers are 

used in the manufacture of space crafts, aero planes, 

tyres, ropes, cushions, seats, foam, plastics, 

engineering equipments, adhesives, contact lenses etc. 

Recently, polymers are used in agriculture, 

communications appliances and in bio medical 

applications. Examples of these applications are 

filtration processes, packed bed reactors, insulation 

system, ceramic processing, enhanced oil recovery, 

chromatography etc. 

Brakke (1955) explained a double-diffusive instability 

that occurs when a solution of a slowly diffusing 

protein is layered over a denser solution of more 

rapidly diffusing sucrose.The problem of 

thermosolutal convection in fluids in a porous medium 

is of importance in geophysics, soil sciences, ground 

water hydrology and astrophysics. The scientific 

importance of the field has also increased because 

hydrothermal circulation is the dominant heat transfer 

mechanism in the development of young oceanic crust 

(Lister, 1972). Generally, it is accepted that comets 

consist of a dusty ‘snowball’ of a mixture of frozen 

gases which in the process of their journey changes 

from solid to gas and vice-versa. The physical 

properties of comets, meteorites and inter-planetary 

dust strongly suggest the importance of porosity in the 

astrophysical context (McDonnel , 1978). 

Thermal instability of a fluid layer under variable 

gravitational field heated from below or above is 

investigated analytically by Pradhan and Samal 

(1987). Although the gravity field of the Earth is 

varying with height from its surface, we usually 

neglect this variation for laboratory purposes and treat 

the field as constant. However, this may not the case 

for large scale flows in the ocean, the atmosphere or 

the mantle. It can become imperative to consider 

gravity as a quantity varying with distance from the 

centre.    

A porous medium is a solid with holes in it, and is 

characterized by the manner in which the holes are 

imbedded, how they are interconnected and the 

description of their location, shape and 

interconnection. However, the flow of a fluid through 

a homogeneous and isotropic porous medium is 

governed by Darcy’s law which states that the usual 

viscous term in the equations of motion of Walters’ 

(Model   )  fluid is replaced by the resistance term  

  
 

  
     

 

  
   , where   and    are the viscosity 

and viscoelasticity of the incompressible Walters’ 

(Model   ) fluid,    is the medium permeability and q 

is the Darcian (filter) velocity of the fluid. 

Sharma and Rana (2001) have studied Thermal 

instability of a Walters’ (Model   ) elastico-viscous in 

the presence of variable gravity field and rotation in 

porous medium. Sharma and Rana (2003) have also 

studied the thermosolutal instability of Rivlin-Ericksen 

rotating fluid in the presence of magnetic field and 

variable gravity field in porous medium. Recently, 

Sharma and Gupta (2010) have studied the stability of 

elastico-viscous Walters’ (Model   )  fluid in the 

presence of horizontal magnetic field and rotation, 

whereas thermal instability of Rivlin-Ericksen 

elastico-viscous rotating fluid permeated with 

suspended particles under varaiable gravity field in 

porous medium has been studied by Rana and Kumar 

(2010). 

Keeping in mind the importance in various 

applications mentioned above, our interest, in the 

present paper is to study the thermosolutal convection 

in Walters’ (Model   ) elastico-viscous rotating fluid 

permeated with suspended particles and variable field 

in porous medium in hydromagnetics. 

2.   FORMULATION OF THE PROBLEM  

Consider an infinite horizontal layer of an electrically 

conducting Walters’ (Model   ) elastico-viscous fluid 

of depth d in a porous medium bounded by the planes 

z = 0 and z = d in an isotropic and homogeneous 

medium of porosity   and permeability k1, which is 

acted upon by a uniform rotation Ω(0, 0, Ω),  uniform 

vertical magnetic field H(0,0,H) and variable gravity 

g(0, 0, -g), g = λg0, g0(  ) is the value of g at z = 0 

and λ can positive or negative as gravity increases or 

decreases upward from its value g0. This layer is 

heated and soluted from below such that a uniform 

temperature gradient     
  

  
   and a uniform solute 

gradient      
  

  
    are maintained. The character of 

equilibrium of this initial static state is determined by 

supposing that the system is slightly disturbed and 

then following its further evolution. 

The equations expressing the conservation of 

momentum, mass, temperature, solute mass 

concentration and Maxwell’s equations of Walters’ 

(Model   ) elastico-viscous fluid in porous medium 

are (Chandrasekhar, 1981; Walters, 1962; Sharma and 

Rana, 2003):  
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              ,       (6) 

where                   
    

    
 ,       ;           

denote the density and heat capacity of solid (porous) 

matrix and fluid respectively and    is a constant 

analogous to E but corresponding to solute rather than 

heat;     are the thermal diffusivity and solute 

diffusivity respectively. 

The equation of state is (Chandrasekhar, 1981) 

                        ,                    (7) 

where the suffix zero refers to values at the reference 

level z = 0. Here             , T, C,  
 

, α,   ,  q (0, 0, 

0) and  H(0,0,H) stand for  density,  kinematic 

viscosity, kinematic viscoelasticity, pressure, medium 

porosity, temperature, solute concentration, magnetic 

permeability, thermal coefficient of expansion, an 

analogous solvent coefficient of expansion,  velocity 

of the fluid and magnetic field. Here          and 

        denote the velocity and number density of the 

particles respectively,       , where ε is particle 

radius, is the Stokes drag coefficient,            

and           . 

If mN is the mass of particles per unit volume, then 

the equations of motion and continuity for the particles 

are 

   
   

  
 

 

 
                   ,         (8) 

 
  

  
                                                   (9) 

The presence of particles adds an extra force term 

proportional to the velocity difference between 

particles and fluid and appears in the equation of 

motion (1). Since the force exerted by the fluid on the 

particles is equal and opposite to that exerted by the 

particles on the fluid, there must be an extra force 

term, equal in magnitude but opposite in sign, in the 

equations of motion for the particles (8). The 

buoyancy force on the particles is neglected. 

Interparticles reactions are not considered either since 

we assume that the distance between the particles are 

quite large compared with their diameters. These 

assumptions have been used in writing the equations 

of motion (8) for the particles. 

The initial state of the system is taken to be quiescent 

layer (no settling) with a uniform particle distribution 

number. The initial state is  

         ,               ,      

        ,          , 

                  , N0=constant        (10) 

is an exact solution to the governing equations. 

3. THE PERTURBATION EQUATIONS 

 Let q(u,v,w), qd(l,r,s), ζ, γ,    and    denote, 

respectively, the perturbations in fluid velocity 

q(0,0,0), the perturbation in particle velocity qd(0,0,0), 

temperature T, solute concentration C, pressure p and 

density  . 

The change in density    caused by perturbation ζ and 

γ in temperature and solute concentration is given by 

        ζ    γ                                (11) 

The linearized perturbation equations governing the 

motion of fluids are  
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                                                   (18) 

where    
     

    
 ,    

      

     
 and w, s are the 

vertical fluid and particles velocity. 

In the Cartesian form, equations (12)-(18) can be 

expressed as  
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Operating equations (19) and (20) by 
 

  
 and 

 

  
 

respectively, adding and using equation (25)-(28), we 

get 
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where    
  

  
 

  

  
   is  the z-component of vorticity.  

Operating equations (21) and (29) by      
  

      and  

 

  
  respectively and adding to eliminate      between 

equations (21) and (29), we get 
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where     
  

    
  

    
  

    . 

Operating equations (19) and (20) by  
 

  
  and  

 

  
  

respectively and adding, we get 
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where   
   

  
 

   

  
  is the z-component of current 

density. 

Operating equations (25) and (26) by  
 

  
  and  

 

  
 

respectively and adding, we get 

 

 

  

  
  

  

  
      .                                              (32) 

4. DISPERSION RELATION AND 

DISCUSSION 

Analyzing the disturbances into normal modes, we 

assume that the perturbation quantities have x, y and t 

dependence of the form  

                 
                                             

        ,                                                             (33) 

where    and    are the wave numbers in the x and y-

directions,      
    

  
 

   is the resultant wave 

number and n is the frequency of the harmonic 

disturbance, which is, in general, a complex constant. 

Using expression (33) in (30)-(32), (27), (23) and(24) 

become 
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Equations (34) – (39) in non dimensional form, 

become 
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where we have put 

        
   

 
,    

 

   ,     
  

   ,    
  

  
 , 

       , B = b+1,  
  

   ,      
  

   , is the 

dimensionless medium permeability,     
 

 
 , is the 

thermal Prandtl number,    
 

   , is the Schmidt 

number,     
 

 
 , is the magnetic Prandtl number and 

    
 

   
  and the superscript * is suppressed. 
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Applying the operator              to the 

equation (41) to eliminate X between equations (41) 

and (42), we get 

  
 

 
   

 

     
  

    

  
             

 

 
     

    

 
             .                  (46) 

Eliminating K, Θ and Z between equations (40) – (46), 

we obtain 

 
 

 
   

 

     
  

    

  
               

                                  

     
     

     
                       

           
      

     
                  

         
 

 
                              

        

  
  
                                          

 
 

 
   

 

     
  

    

  
             

 

 
  

     

 ,                                                                            (47) 

where     
      

  
 , is the thermal Rayleigh number, 

  
        

   
, is the analogous solute Rayleigh 

number, 

  
 

 
    

      
 , is the Chandrasekhar number 

and      
    

 
 

 

 , is the Taylor number. 

Here we assume that the temperature at the boundaries 

is kept fixed, the fluid layer is confined between two 

boundaries and adjoining medium is electrically non 

conducting. The boundary conditions appropriate to 

the problem are (Chandrasekhar, 1981; Veronis, 1965) 

W = D2W = DZ = Γ =       at z = 0 and 1        (48)  

and the components of h are continuous. Since the 

components of the magnetic field are continuous and 

the tangential components are zero outside the fluid, 

we have 

DK = 0,                                                         (49) 

on the boundaries. Using the boundary conditions (48) 

and (49), we can show that all the even order 

derivatives of W must vanish for z = 0 and z = 1 and 

hence, the proper solution of equation (47) 

characterizing the lowest mode is  

          ; W0   is a constant.                        (50) 

Substituting equation (50) in (47), we obtain the 

dispersion relation 
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where     
 

   ,    
 

   ,     
 

  

   ,    
  

   ,  

    
 

  
 ,        ,    

 

  
  . 

Equation (51) is required dispersion relation 

accounting for the effect of suspended particles, stable 

solute gradient, magnetic field, medium permeability, 

variable gravity field, rotation on thermosolutal 

convection in Walters’ (Model   )  elastico-viscous 

fluid in porous medium. 

5. STABILITY OF THE SYSTEM AND 

OSCILLATORY MODES: 

Here we examine the possibility of oscillatory modes, 

if any, in Walters’ (Model   )  elastico-viscous fluid 

due to the presence of suspended particles, stable 

solute gradient, rotation, magnetic field, viscoelasticity 

and variable gravity field. Multiply equation (40) by 

W* the complex conjugate of W, integrating over the 

range of z and making use of equations (41)-(44) with 

the help of boundary conditions (48) and (49), we 

obtain 
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where                   
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. 

The integral part I1-I10 are all positive definite. Putting 

      in equation (52), where     is real and 

equating the imaginary parts, we obtain 
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Equation (53) implies that       or      which 

mean that modes may be non oscillatory or oscillatory. 

The oscillatory modes introduced due to presence of 

rotation, stable solute gradient, magnetic field, 

suspended particles, viscoelasticity and variable 

gravity field. 

6. THE STATIONARY CONVECTION: 

For stationary convection putting      in equation 

(51) reduces it to 

   
   

   
 
   

 
 

  

 
 

   
      

             
  

    

 
,           (54) 

which expresses the modified Rayleigh number R1 as 

a function of the dimensionless wave number x and 

the parameters    
, B , P,     and Walters’ (Model   )  

elastico-viscous fluid behave like an ordinary 

Newtonian fluid since elastico-viscous parameter F 

vanishes with     

To study the effects of suspended particles, rotation 

and medium permeability, we examine the behavior of   
   

  
,  

   

    

,  
   

   
,  

   

   
  and  

   

  
  analytically. 

Equation (54) yields 

   

  
  

   

     
   

 
 

  

 
 

   
      

             
  

    

   ,    (55) 

which is negative implying thereby that the effect of 

suspended  particles is to destabilize the system when 

the gravity increases upward from its value g0  

(i.e.,     ). 

From equation (54), we get 

   

    

  
   

   
 

      

             
 ,                                   (56) 

which shows that rotation has stabilizing effect on the 

system when gravity increases upwards from its value 

g0 (i.e.,     ). This stabilizing effect is an agreement 

of the earlier work of Sharma and Rana (2010). 

From equation (54), we get 

   

   
 

   

   
 
 

 
 

   
       

              
 ,                               (57) 

which implies that magnetic field stabilizes the 

system, if 

                 
       , 

and destabilizes the system, if 

                 
       , 

when gravity increases upwards from its value g0 

(i.e.,     ). 

In the absence of rotation, magnetic field has 

destabilizing effect on the system, when gravity 

increases upwards from its value g0 (i.e.     ). 

From equation (54), we get  

   

   
 

  

 
 ,                                                                 (58) 

which is positive implying thereby that the stable 

solute gradient has a stabilizing effect. 

It is evident from equation (54) that 

   

  
  

      

   
 

 

  
 

   
     

             
  ,                       (59) 

From equation (58), we observe that medium 

permeability has destabilizing effect when  

                 
         and medium 

permeability has a stabilizing effect when    
               

       , when gravity 

increases upwards from its value g0 (i.e.,     ). 

In the absence of rotation and for constant gravity field 
   

  
 is always negative implying thereby the 

destabilizing effect of medium permeability. This 

stabilizing effect is an agreement of the earlier work of 

Sharma and Rana (2010). 

The dispersion relation (54) is analyzed numerically. 

Graphs have been plotted by giving some numerical 

values to the parameters, to depict the stability 

characteristics. 

 

Fig. 1. Variation of Rayleigh number    with 

suspended particles B for     ,    
   , Q1 = 10, 

      , P = 0.2, S1 = 10,        for fixed non-

dimensional wave numbers x = 0.2, x = 0.5 and x = 

0.8. 

 

Fig. 2. Variation of Rayleigh number    with rotation  

   
  for B = 3,      ,      , Q1 = 10,  P = 0.2, S1 = 

10,        for fixed non-dimensional wave numbers 

x = 0.2, x = 0.5 and x = 0.8. 
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Fig. 3. Variation of Rayleigh number    with 

magnetic field Q1  for  B = 3,     ,      , P = 0.2,  

   
  , S1 = 10,        for fixed non-dimensional 

wave numbers x = 0.2,  x = 0.5 and x = 0.8. 

 

Fig. 4. Variation of Rayleigh number    with 

magnetic field S1  for  B = 3,     ,      , P = 0.2,  

   
  , Q1 = 10  for fixed non-dimensional wave 

numbers x = 0.2,  x = 0.5 and x = 0.8. 

 

Fig. 5. Variation of Rayleigh number    with medium 

permeability P for B = 3,    , Q1 = 2,      ,  

   
  , S1 = 10,        for fixed non-dimensional 

wave numbers x = 0.2,  x = 0.5 and x = 0.8. 

In fig.1, Rayleigh number    is plotted against 

suspended particles B for      ,    
   ,      , P 

= 0.2, Q1 = 10, S1 = 10,        for fixed non-

dimensional wave numbers x = 0.2,  x = 0.5 and x = 

0.8. For the non-dimensional wave numbers x = 0.2, x 

= 0.5 and x = 0.8, suspended particles have a 

destabilizing effect. In fig.2, Rayleigh number     is 

plotted against rotation     
  for B = 3,      , 

        P = 0.2, Q1 = 10, S1 = 10,        for fixed 

non-dimensional wave numbers x = 0.2, x = 0.5 and x 

= 0.8. This shows that rotation has a stabilizing effect 

for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8. 

In fig.3, Rayleigh number    is plotted magnetic field 

Q1 for B = 3,    ,      ,    
  , P = 0.2, S1 = 

10,        for fixed non-dimensional wave numbers 

x = 0.2,  x = 0.5 and x = 0.8. This shows that magnetic 

field has a destabilizing effect for Q1 = 0.1 to 1.5 and 

has a stabilizing effect for Q1 = 1.5 to 10. In fig.4, 

Rayleigh number     is plotted against stable solute 

gradient     for B = 3,     ,         P = 0.2, Q1 = 

10, S1 = 10, for fixed wave numbers x = 0.2, x = 0.5 

and x = 0.8. This shows that the stable solute gradient 

has a stabilizing effect for fixed non-dimensional wave 

numbers x = 0.2, x = 0.5 and x = 0.8. 

In fig.5, Rayleigh number    is plotted against 

medium permeability P for B = 3,    ,      , 

   
  , Q1 = 2, S1 = 10,      for fixed non-

dimensional wave numbers x = 0.2,  x = 0.5 and x = 

0.8. This shows that medium permeability has a 

destabilizing effect for P = 0.1 to 0.8 and has a 

stabilizing effect for P = 0.8 to 2.0. 

7. CONCLUSION 

The thermosolutal convection in Walters’ (Model   )  
elastico-viscous rotating fluid permeated with 

suspended particles and variable gravity field in 

porous medium in hydromagnetics has been 

investigated. For the stationary convection, Walters’ 

(Model   )  elastico-viscous fluid behave like an 

ordinary Newtonian fluid and it has been found that 

the rotation  has stabilizing effect on the system as 

gravity increases upward from its value g0 (i.e. for  

   ). The stable solute gradient has stabilizing 

effect on the system and is independent of gravity 

field. The suspended particles are found to have 

destabilizing effect on the system as gravity increases 

upward from its value g0 (i.e. for     ) whereas the 

medium permeability has a stabilizing / destabilizing 

effect on the system for               
   

       /                  
       ,  

as gravity increases upward from its value g0 (i.e. for  

   ).  The magnetic field has stabilizing / 

destabilizing effect on the system for 

                  
       /        

         
       , as gravity increases upward 

from its value g0 (i.e. for     ). The presence of 

rotation, gravity field, suspended particles and 

viscoelasticity introduces oscillatory modes. The 

effects of rotation, suspended particles and medium 

permeability on thermal instability have also been 

shown graphically. 
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