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ABSTRACT 

The effects of variable viscosity and thermal conductivity on free convective oscillatory flow of a viscous 

incompressible and electrically conducting fluid past a vertical plate in slip flow regime with periodic plate 

temperature when suction velocity oscillates in time about a constant mean is discussed. The fluid viscosity and 

thermal conductivity are assumed to be inverse linear functions of temperature.  The problem is governed by a 

coupled non-linear system of partial differential equations. Explicit finite difference method is employed to solve the 

equations. The effects of viscosity variation parameter, thermal conductivity variation parameter, magnetic parameter 

on the velocity distribution dna temperature distribution for Pr=0.7 fluid and for rarefaction parameter h=0 and 

h=0.4 are discussed and shown graphically. Also the effects of these parameters on the skin friction coefficient and 

on the rate of heat transfer are calculated. 

 

Keywords: MHD, natural convection, variable viscosity, variable thermal conductivity. 

 NOMENCLATURE  

a       constants 

A      suction parameter 

B0     uniform magnetic field strength 

c       constants 

Cf       local skin-friction coefficient 

cp  specific heat at constant pressure 

Ec    Eckert number 

g acceleration due to gravity  [ms-2] 

Gr Grashof number 

h rarefaction parameter 

k thermal conductivity  [Wm-1K] 

M Hartman number 

Nu local Nusselt number 

p fluid pressure  [kPa] 

Pr Prandtl number 

t time  [s] 

T temperature  [K] 

Tk constant 

Tr constant 

u, v   velocity components  in the x- and y- 

directions [ms-1] 
 

u1, u2

 
real and imaginary parts of  u  

v0 steady suction velocity 

x, y   axis in the direction along and normal to the 

surface respectively 

α surface wave amplitude 

β coefficient of thermal expansion  [K-1] 

γ constant 

σ electrical conductivity 

μ coefficient of dynamic viscosity [ Nsm-2] 

ξ constant 

ρ density  [kgm-3] 

ω frequency parameter 

ε amplitude 

υ the kinematic viscosity  [m2s-1] 

θ dimensionless temperature 

θk thermal conductivity variation parameter 

θr viscosity variation parameter 

∞ ambient free-stream values 

w wall surface conditions 

* dimensional quantity 
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1. INTRODUCTION 

Unsteady oscillatory free convective flows play an 

important role in chemical engineering‚ turbo 

machinery and aerospace technology. Such flows arise 

due to either unsteady motion of a boundary or 

boundary temperature. The unsteadiness may also be 

due to oscillatory free stream velocity or temperature. 

One important class of time dependent viscous flow 

problems initiated by Lighthill (1954) deals with the 

effects of unsteady fluctuations of the main stream 

velocity on the flow of an incompressible fluid past two 

dimensional bodies. 

Many researchers have worked on fluctuating flows of 

viscous incompressible fluid past an infinite plate.  In 

all these papers the plate was assumed to be maintained 

at constant temperature. In many practical applications 

the particle adjacent to a solid surface no longer takes 

the velocity of the surface. The particle at the surface 

has a finite temperature of the surrounding stationary 

fluid. But in many applications quite often the plate 

temperature starts oscillating about a non-zero mean 

temperature. The free-convection flow is enhanced by 

superimposing oscillating temperature on the mean 

plate temperature. The transient free convection flow 

past an infinite vertical plate with periodic temperature 

variation was investigated analytically by Das et al. 

(1998) Soundalgekar and Wavre (1977) and (1977) 

studied the unsteady free convection flow past an 

infinite vertical plate and mass transfer with constant / 

variable suction. 

In many practical applications the particle adjacent to a 

solid surface no longer takes the velocity of the surface. 

The particle at the surface has a finite tangential 

velocity. It slips along the surface. The flow regime is 

called the slip flow regime and this effect cannot be 

neglected (Sharma 2003)When the gas is slightly 

rarefied, results arguing with the observed physical 

phenomena can be obtained by solving the usual 

Navier-Stokes equations together with modified 

boundary conditions allowing for a velocity slip and 

temperature jump at the surface. This scheme of 

theoretical investigation of the so called slip-flow 

regime is particularly suitable for studying the effects of 

rarefaction on any classical viscous flow problem. 

Reddy (1964) extended the work of Stuart (1955) for 

the viscous fluctuating flow over an infinite plate with 

suction by introducing the slip flow boundary condition 

in place the of no-slip boundary condition. He observed 

that the slip boundary condition exhibited a subduing 

influence on the response of the skin-friction and heat 

transfer at the wall to the main stream fluctuation. 

Using this assumption Sharma and Chaudhary (2003) 

had discussed the free convection flow past a vertical 

plate in slip-flow regime and also discussed various 

applications for engineering purposes. Ahmed and 

Kalita (2008) investigated the effect of the transverse 

magnetic field and suction parameter on the oscillatory 

free convective flow past a vertical plate in slip flow 

regime with variable suction and periodic plate 

temperature. Very recently Singh and Kumar (2011) 

investigated the effects of radiation and first order 

chemical reaction on an unsteady MHD free convective 

heat and mass transfer flow past a vertical porous flat 

plate in slip-flow regime when suction velocity 

oscillates in time about a non-zero constant mean.  

Fluid viscosity and thermal conductivity (hence thermal 

diffusivity) play an important role in the flow characteristic 

of laminar boundary layer problems. Fluid properties are 

significantly affected by the variation of temperature. The 

increase in temperature leads to a local increase in the 

transport phenomena by reducing the viscosity across the 

momentum boundary layer and so the heat transfer rate at 

the wall is affected. In the cooling of electronic 

equipments, it is relatively frequent to find 

circumstances in which variable property effects are 

significant and cannot be neglected. Eswara and 

Bommaih (2004) established that like other thermo-

physical properties, temperature dependent viscosity 

vital role in surface friction and heat transfer rate near 

the wall. Hazarika and Lahkar (1997) observed that a 

significant variation takes place in velocity and 

temperature distribution with the variation of the viscosity 

and thermal conductivity parameters.  Hossain et al 

(2002) studied natural convection of fluid with variable 

viscosity from a heated vertical wavy surface.  

In all the above works, the Prandtl Number which is a 

function of viscosity and thermal conductivity is 

assumed to be constant across the boundary layer. 

Pantokratoras (2005) and (2007) and Rahman et al. 

(2009) found that this assumption lead to unrealistic 

result in modeling the thermal boundary layer flow with 

a temperature-dependent viscosity. It must be treated as 

a variable rather than a constant within the boundary 

layer. The results obtained by Pantokratoras (2005) are 

different from those existing in the literature, which 

have been obtained with the assumption of constant 

Prandtl number.  

The objective of this paper is to study the effects of 

variable viscosity and thermal conductivity on free 

convective oscillatory flow of a viscous incompressible 

and electrically conducting fluid past a vertical plate in 

slip flow regime with periodic plate temperature when 

suction velocity oscillates in time about a constant 

mean. The fluid viscosity and thermal conductivity are 

assumed to be inverse linear functions of temperature 

and hence considering the variation of Prandtl number 

across the boundary layer. 

2. FORMULATION OF THE PROBLEM 

An unsteady free-convective flow of a viscous 

incompressible fluid past an infinite vertical porous 

plate in slip flow regime with periodic temperature 

when variable suction velocity distribution fluctuating 

with time is of the form 







  tiAevv ω10  (Ahmed and Kalita 2008), is 

considered. The x* - axis is taken along the plate with 

direction opposite to the gravity and y* - axis is taken to 

be normal to the surface. The velocity components of 

the fluid are u* and v* in the x* and y* directions 

respectively, taken parallel and perpendicular to the 

plate. A magnetic field B0(x) of uniform strength is 

imposed transversely to the direction of the flow. The 

magnetic Reynolds Number of the flow is taken to be 

small enough so that the induced magnetic field can be 



M. Choudhury et al. / JAFM, Vol. 6, No. 2, pp. 277-283, 2013.  

 

279 

 

neglected. The fluid property variations with 

temperature are limited to  

i. viscosity, 

ii. thermal conductivity and 

iii. density. 

Following Lai and Kulacki (1990) the fluid viscosity is 

assumed to be inverse linear function of temperature as 

  )()(1
11
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a and  Tr   are constants and their values depend  on the 

reference state and thermal property of the fluid. In 

general a > 0 for liquids and a < 0 for gases.  

γ is a constant based on thermal property of the fluid.  

For γ →0, μ = μ∞ (constant).  

Also the variation of thermal conductivity is considered 

as follows (Hazarika and Lahkar 1997) 
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where c and  Tk  are constants and their values depend 

on the reference state and thermal property of the fluid. 

ξ is a constant based on thermal property of the fluid. 

c>0 for liquids and c<0 for gases. 

The influence of variation of density with temperature 

is restricted to the body force term only, in accordance 

with the Boussinesq approximation. Since the plate is 

considered infinite in the x* -direction, hence all 

physical quantities will be independent of x*. Under 

this assumption, the physical variables are functions of 

y* and t*. Thus the equations which govern the free-

convective unsteady hydromagnetic flow are: 
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The boundary conditions are 
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where g is the acceleration due to gravity, T is the fluid 

temperature, σ is the electrical conductivity, ρ is the 

fluid density, cp is the specific heat of the fluid at 

constant pressure, μ is the fluid viscosity,  k is the 

thermal conductivity of the fluid, β is the thermal 

expansion coefficient, ε ( <<1 ) is the amplitude, v0 is 

the steady suction velocity (normal) at the plate, h* is 

the Rarefaction parameter,  A is the suction parameter, 

ω* is the frequency parameter, the subscripts ∞ denotes 

the free stream condition, and w denotes condition at 

the wall respectively. 
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Using the transformation Eq. (9), Eq. (6) and Eq. (7) 

reduces to the following non-dimensional form, 
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where  is the kinematic viscosity, Gr is the Grashof 

Number, M is the Hartmann Number, h is the 

dimensionless rarefaction parameter, Ec is the Eckert 

number, Pr  is the ambient Prandtl number,  


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TT

TT
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r
r  is the viscosity variation parameter and   










TT

TT
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k
k   is the thermal conductivity variation 

parameter. 

The Prandtl number 
k

c
=Pr

p
 is a function of 

viscosity as well as thermal conductivity and as both 

the viscosity and thermal conductivity varies across the 

boundary layer, the Prandtl number also varies. The 

assumption of constant Prandtl number may produce 

unrealistic results (Rahman et al. 2009) Therefore, the 

variable Prandtl number related to the variable viscosity 

and variable thermal conductivity is defined as  


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
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Using Eq. (12), the non-dimensional temperature Eq. 

(11) can be written as  
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(13) 

which is the corrected non-dimensional form of the 

energy equation for modeling thermal boundary layer 

flows with temperature dependent viscosity and thermal 

conductivity. 

The corresponding boundary conditions in non-

dimensional form 
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3. SOLUTION OF THE PROBLEM 

In order to solve the differential Eq. (10) and Eq. (13) 

we assume that:  
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By substituting Eq. (15) and Eq. (16) into Eq. (10) and 

Eq. (13) and equating real and imaginary parts we get 

the following system of differential equation: 
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The boundary condition Eq. (14) reduces to 

t   t
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(21) 

Equations (17) to (20) are coupled non-linear partial 

differential equations which are to be solved by using 

the boundary conditions (Eq. (21)). However٫ exact or 

approximate solutions are not possible for this set of 

equations and hence we solve these equations by finite 

difference methods. The central difference is used for 

the diffusion terms and the forward difference scheme 

is used for the convection terms. After experimenting 

with a few set of mesh sizes, the mesh sizes were fixed 

at Δy = 0.1 and Δt = 0.01. The procedure is repeated 

until t=1.  This gives sufficient accuracy as the 

boundary conditions are satisfied. 
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The important characteristics of the problem are the 

skin-friction co-efficient and heat transfer rate at the 

plate. 

The coefficient of skin-friction at the surface is given 

by   
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where 
*

*

*

0

τ μ

y

u

y






.

  
The rate of heat transfer in terms of Nusselt Number at 

the surface is  
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where  
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4. RESULTS AND DISCUSSION  

As a result of the numerical calculations the velocity 

and temperature distribution for the flow are obtained 

from Eq. (17) to Eq. (20) which are displayed in figures 

for different values of θr (Viscosity variation 

parameter), θk (Thermal conductivity variation 

parameter), M (Hartmann number) which are chosen 

arbitrarily for fluid with Prandtl number Pr=0.71 

(Pantokratoras 2005) and Eckert number Ec=0.01. In 

the present analysis the values of Grashof number Gr 

are chosen arbitrarily, we take Gr =5>0 correspond to 

the cooling of the plate. Throughout our investigation 

we take h (rarefaction parameter) = 0 and 0.4 (Sharma 

2003), suction parameter A=0.2 (Ahmed and Kalita 

2008), frequency parameter (dimensionless) 

ω=1(Ahmed and Kalita 2008), and amplitude 

oscillation ε=0.1 (Ahmed and Kalita 2008). Also the 

skin-friction coefficient Cf and the Nusselt number Nu 

are calculated from Eq. (22) and Eq. (23) and are 

tabulated in Table 1 to Table 3 for same set of 

parameters. 

From Table 1 it is observed that an increasing value of 

the viscosity parameter (θr=3, 5... 15) leads to decrease 

in the values of skin friction coefficient Cf for 

rarefaction parameter h=0.4 and h=0.0. 
 

Table 2 depicts that the Nusselt number decreases due 

to increase in the thermal conductivity parameter (θk=3, 

5... 15) for h= 0.4. The results are qualitatively similar 

to the related study by Rahman et al. (2008) and show 

that increasing the thermal conductivity of the fluid 

leads to a decrease in the Nusselt number.  This may 

partly be explained by the fact that that increasing 

thermal conductivity has the effect of accelerating and 

increasing the temperature of the fluid.   

Table 3 depicts that skin friction coefficient Cf the 

Hartman number (M=1, 2, 3, 4, 5) for h (=0, 0.4). It is 

observed that Cf increases (Muthucumaraswamy and 

Vadivel 2004) as M increases.  
 
 

From Table 1 and Table 3, it is observed that Cf 

increases as h (=0, 0.4) decreases which agrees with 

Sharma (2003). 

 

Table 1 Effects of viscosity variation parameter θr on 

Skin-friction coefficient Cf  for Pr=0.71٫Gr=5٫M=0.5٫  

Ec=0.01٫  θk=15 

θr h=0.4 h=0.0 

3 1.578875 7.894374 

5 1.282022 6.410112 

7 1.186423 5.932116 

9 1.139228 5.69614 

11 1.111101 5.555506 

13 1.092429 5.462145 

15 1.07913 5.395649 
 

 

Table 2 Effects of thermal conductivity variation 

parameter θk Nusselt number Nu for Pr=0.71, Gr=5, 

M=0.5, Ec=0.01, θr=15 

θk h=0.4 

3 1.580396 

5 1.282624 

7 1.18679 

9 1.139491 

11 1.111306 

13 1.092596 

5 1.079271 
 

 

 

Table 3 Effects of Hartman Number M on Skin-friction 

coefficient Cf for Pr=0.71٫ Gr=5٫  θk=15٫  Ec=0.01٫  

θr=15. 

 

M h=0.4 h=0.0 

1 -2.43321 3.524447 

2 -2.25446 3.932257 

3 -2.0673 4.351734 

4 -1.8716 4.783027 

5 -1.66722 5.226292 

There is no significant variation in Nusselt number Nu 

due to variation of viscosity variation parameter θr and 

Hartman number M. 

The variation of velocity profiles are shown in Fig. 1 

for M=0.5٫ Gr =5 where θr=5, 10, 15and h=0.4. Fig. 2 

depicts the velocity profiles for same set of parameters 

and rarefaction parameter h=0.  
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Figure 3 and Fig. 4 represent temperature profiles for 

thermal conductivity variation parameter θk for h=0.4 

and h=0 respectively. In both cases, temperature field 

increases with increasing θk. The temperature profiles 

are wider for rarefaction parameter h=0.4. 

 

Fig. 1.  Velocity Profiles for  M=0.5٫  Gr =5‚ θk=15‚ 

h=0.4 

 

Fig.2. Velocity Profiles for M=0.5٫ Gr =5‚ θk=15‚ h=0. 

 

Fig.3. Temperature Profiles for  θr=15٫  Gr =5‚ M=0.5‚ 

h=0.4  

 
Fig.4. Temperature Profiles for  θr=15٫  Gr =5‚ M=0.5‚ 

h=0 

Figure 5 and Fig. 6 represent the variation in velocity 

distribution with the variation of Hartman number M 

for rarefaction parameter h=0.4 and h=0 respectively. 

These curves show that velocity decreases in the 

presence of magnetic field which agrees with the 

expectations, since the magnetic field exerts a retarding 

force on the free convective flow (Muthucumaraswamy 

and Vadivel 2004). 

 
Fig. 5.  Velocity Profiles for  θr=15٫  Gr =5‚ θk =15‚ 

h=0.4. 

 
Fig. 6. Velocity Profiles for  θr=15٫  Gr =5‚  θk=15‚ 

h=0.0 
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5. CONCLUSION 

The theoretical solution of free convective oscillatory 

MHD past a vertical plate in slip flow regime with 

variable suction and periodic plate temperature is 

considered. Fluid viscosity and thermal conductivity are 

considered as inverse linear functions of temperature.  

The presented analysis has shown that for modeling 

thermal boundary layers with temperature dependent 

viscosity and thermal conductivity, the Prandtl number 

must be treated as variable inside the boundary layer. 

The flow field is appreciably influenced by the 

viscosity-temperature and thermal conductivity-

temperature variation and also by the magnetic 

parameter.  

ACKNOWLEDGEMENTS 

The authors sincerely thank the referee for very useful 

comments and suggestions in improving the paper  

REFERENCES 

Ahmed, N. and D. Kalita (2008). MHD oscillatory free- 

convective flow past a vertical plate in slip-flow 

regime with variable suction and periodic plate 

temperature. Heat and Technology 26 (2), 85-92. 

Das‚ U. N., R. K. Deka and V. M. Soundalgekar 

(1998). Transient free convection flow past an 

infinite vertical plate with periodic temperature 

variation. Journal of Heat Transfer (ASME) 121, 

1091-1094.  

Eswara, A.T. and B.T. Bommaih (2004). The effect of 

variable viscosity on laminar flow due to a point 

sink. Indian Journal of Pure and Applied 

Mathematics. 35 (6), 811-815. 

Hazarika, G.C. and J. Lahkar (1997). Effects of 

variable viscosity and thermal conductivity on free 

convective mass transfer flow past a vertical 

isothermal cone surface in presence of magnetic 

field. Mathematical Forum xi, 1-15.  

Hossain, M. A., S. Kabir and D.A.S. Rees (2002). 

Natural convection of fluid with variable viscosity 

from a heated vertical wavy surface. Zeitschrift für 

angewandte Mathematik und Physik ZAMP 53(1), 

48-57. 

Lai, F. C. and F. A. Kulacki (1990). The effect of 

variable viscosity on convective heat transfer along 

a vertical surface in a saturated porous medium. 

International Journal of Heat and Mass Transfer 

3(5), 1028 – 1031.  

Lighthill‚ M. J. (1954). The response of laminar skin 

friction and heat transfer to fluctuations in the 

stream velocity. Proceedings the Royal of Society A 

224(1156), 1-23 

Muthucumaraswamy, R. and V. U. S. Vadivel (2004). 

Heat transfer effect on moving vertical surface in 

the presence of magnetic field. Mathematics 

Education XXXVIII (1), 20- 29. 

 

Pantokratoras, A. (2007). Non- Darcian forced 

convection heat transfer over a flat plate in a porous 

medium with variable viscosity and variable Prandtl 

number. Journal of Porous Media 10(22), 201-208.  

Pantokratoras, A. (2005). Forced and mixed convection 

boundary layer flow along a flat plate with variable 

viscosity and variable Prandtl number, new results. 

Heat and Mass Transfer 41(12), 1085-1094.  

Rahman, M. M., M. A. Rahman, M. A. Samad and M. 

S. Alam (2009). Heat Transfer in a Micropolar 

Fluid along a Non-linear Stretching Sheet with a 

Temperature-Dependent Viscosity and Variable 

Surface Temperature. International Journal of 

Thermophysics 30(5), 1649–1670. 

Rahman, M. M., A. A. Mamun, M. A. Azim and M. A. 

Alim (2008). Effects of temperature dependent 

thermal conductivity on MHD free convection flow 

along a vertical flat plate with heat conduction. 

Nonlinear Analysis: Modeling and Control 13 (4), 

513 – 524. 

Reddy, K. C. (1964). Fluctuating flow past a porous 

infinite plate in slip flow regime. Quarterly Journal 

of Mechanics and Applied Mathematics. 17(4), 381-

395. 

Sharma, P. K. (2005). Influence of periodic temperature 

and concentration on unsteady free convective 

viscous incompressible flow and heat transfer past a 

vertical plate in slip-flow regime. Mathematicas: 

Ensenanza Universitaria XIII (1), 51-62. 

Sharma‚ P. K. and R. C. Chaudhary (2003). Effect of 

variable suction on transient free convective viscous 

incompressible flow past a vertical plate with 

periodic plate temperature variable in sleep flow 

regime. EJER 8 (2), 3-38. 

Singh, K.D. and R. Kumar (2011). Fluctuating Heat 

and Mass Transfer on Unsteady MHD Free 

Convection Flow of Radiating and Reacting Fluid 

past a Vertical Porous Plate in Slip- Flow Regime. 

Journal of Applied Fluid Mechanics 4 (4), 101-106. 

Soundalgekar, V. M. and P. D. Wavre (1977). Unsteady 

free convection flow past an infinite vertical plate 

with constant suction and mass transfer. 

International Journal of Heat and Mass Transfer 

20(12), 1363-1373. 

Soundalgekar, V. M. and P. D. Wavre (1977). Unsteady 

free convection flow past an infinite vertical plate 

with variable suction and mass transfer. 

International Journal of Heat and Mass Transfer 

20(12), 1375-1380. 

Stuart‚ J. T. (1955). A solution of the Navier-Stokes 

and energy equations illustrating the response of 

skin friction and temperature of an infinite plate 

thermometer to fluctuation in the stream velocity. 

Proceedings the Royal of Society A 231(1184)‚ 

116-130.  

 

http://link.springer.com/journal/33
http://link.springer.com/journal/33

