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ABSTRACT 

The problem of steady, laminar, mixed convection flow of a non-Newtonian fluid past a preamble vertical flat plate 

embedded in a porous medium saturated with a nanofluid is considered. A mixed convection parameter for the entire 

range of free-forced-mixed convection is employed and a set of non-similar equations are obtained. These equations 

are solved numerically by an efficient implicit, iterative, finite-difference method. The obtained results are checked 

against previously published work for special cases of the problem and are found to be in good agreement. A 

parametric study illustrating the influence of the various physical parameters on the velocity, temperature and nano-

particle volume fraction profiles as well as the local Nusselt and Sherwood numbers is conducted. The obtained 

results are illustrated graphically and the physical aspects of the problem are discussed. 
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NOMENCLATURE 

C nanoparticle volume fraction 

Cw nanoparticle volume fraction at the vertical 

plate 

C∞ ambient nanoparticle volume fraction attained 

as y tends to infinity 

DB Brownian diffusion coefficient 

DT thermophoretic diffusion coefficient 

 dimensionless stream function 

g gravitational acceleration vector 

K permeability of porous 
 edium 

kf thermal conductivity 

Le Lewis number 

Nr buoyancy ratio 

Nb brownian motion parameter 

Nt thermophoresis parameter 

n power-law index 

Nux local Nusselt number 

Pex Peclet number 

Rax local Rayleigh number 

Shx local Sherwood number 

T temperature 
 

TW temperature at vertical plate 

T∞        ambient temperature attained as y tends to 

infinity   

u,v velocity components 

(x,y) Cartesian coordinates 

w conditions at the wall 

α thermal diffusivity of porous medium 

β volumetric expansion coefficient of fluid 

 mixed convection parameter 

μ consistency index 

η, similarity and non-similarity parameters 

θ dimensionless temperature 

 dimensionless nano-particle volume fraction 

ψ          stream function 

ρf fluid density 

ρp         nano-particle mass density 

(ρc)f     heat capacity of the fluid   

(ρc)p   effective heat capacity of nano-particle 

material 

τ    parameter defined by equation (5) 

∞ conditions in the free stream 
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1. INTRODUCTION 

The study of laminar boundary layer flow heat transfer 

in non-Newtonian fluids from surfaces through porous 

media has received considerable attention in recent 

years because it is an important type of scientific and 

engineering applications such as aerodynamic extrusion 

of plastic sheets and fibers, drawing, annealing and 

tinning of copper wire, paper production, crystal 

growing and glass blowing. Such applications involve 

cooling of a molten liquid by drawing it in to a cooling 

system. Chen and Chen (1988) presented similarity 

solutions for free convection of non-Newtonian fluids 

over vertical surfaces in porous media. Nakayama and 

Koyama (1991) studied the natural convection over a 

non-isothermal body of arbitrary shape embedded in a 

porous medium. Gorla et al. (1997) analyzed the mixed 

convection from a vertical plate in non-Newtonian fluid 

saturated porous media. Chiu et al. (1996) analyzed the 

effect of non-Newtonian fluids and porous media 

parameters on two-phase flow in porous media. Effect 

of porosity on the free convection flow of non-

Newtonian fluids along vertical plate embedded in a 

porous media was presented by Beithou et al. (1998). 

Yih (1998) investigated the effect uniform lateral mass 

flux on natural convection of non-Newtonian fluids 

over a cone in porous media. Free convection heat 

transfer of non-Newtonian fluids over axisymmetric 

and two dimensional bodies of arbitrary shape 

embedded in a fluid-saturated porous media studied by 

Yang and Wang (1996). Pascal and Pascal (1997) 

studied the free convection in a non-Newtonian fluid 

saturated porous media with lateral mass flux. Gorla 

and Kumari (2000) obtained the non-similar solution 

for mixed convection in non-Newtonian fluids along a 

wedge with variable surface heat flux. The problem of 

coupled heat and mass transfer by mixed convective 

flow of a non- Newtonian power-law fluid over a 

permeable wedge embedded in a porous medium is 

considered by Chamkha (2010). EL-Kabeir et al. (2010) 

considered the coupled heat and mass transfer by mixed 

convection stagnation-point flow of a power-law non-

Newtonian fluid towards a stretching surface in the 

presence of thermal-diffusion and diffusion-thermo 

effects. 

On other hand, Nanotechnology has been widely used 

in industry since materials with sizes of nanometers 

possess unique physical and chemical properties. Nano-

scale particle added fluids are called as nanofluid which 

is firstly utilized by Choi (1995). These fluids represent 

an innovative way to increase thermal conductivity and, 

therefore, heat transfer. Unlike heat transfer in 

conventional fluids, the exceptionally high thermal 

conductivity of nanofluids provides for exceptional heat 

transfer, a unique feature of nanofluids. Advances in 

device miniaturization have necessitated heat transfer 

systems that are small in size, light mass, and high-

performance. The utility of a particular nanofluid for a 

heat transfer application can be established by suitably 

modeling the convective transport in the nanofluid, see 

(Kumar et al. 2009). Because the prospect of nanofluids 

is very promising, several studies of convective heat 

transfer in nanofluids have been reported in recent 

years. Xuan and Roetzel (2000) proposed homogeneous 

flow model where the convective transport equations of 

pure fluids are directly extended to nanofluids. This 

means that all traditional heat transfer correlations (e.g. 

Dittus–Boelter) could be used for nanofluids provided 

the properties of pure fluids are replaced by those of 

nanofluids involving the volume fraction of the 

nanoparticles. The homogeneous flow models are 

however in conflict with the experimental observations 

of Maliga et al. (2005), as they under predict the heat 

transfer coefficient of nanofluids. Kang et al. (2006) 

studied estimation of thermal conductivity of nanofluid 

using experimental effective particle volume. 

Application of nanofluids for heat transfer enhancement 

of separated flows encountered in a backward facing 

step presented by Abu-Nada (2008). Maiga et al. (2005) 

analyzed the heat transfer enhancement by using 

nanofluids in forced convection flows. Numerical 

research of nature convective heat transfer enhancement 

filled with nanofluids in rectangular enclosures 

proposed by Jou and Tzeng (2006). Hwang et al. (2007) 

reported a buoyancy-driven heat transfer of water-based 

on nanofluids in a rectangular cavity. Numerical study 

of natural convection in partially heated rectangular 

enclosures filled with nanofluids conducted by Tiwari 

and Das (2007). Oztop and Abu-Nada (2008) 

investigated a numerical study of natural convection in 

partially heated rectangular enclosures filled with 

nanofluids. Effects of inclination angle on natural 

convection in enclosures filled with Cu-water nanofluid 

studied by Abu-Nada and Oztop (2009). 

Duangthongsuk and Wongwises (2008) analyzed the 

effect of thermophysical properties models on the 

predicting of the convective heat transfer coefficient for 

low concentration nanofluid. Chamkha et al. (2010, a) 

studied the mixed convection MHD flow of a nanofluid 

past a stretching permeable surface in the presence of 

magnetic field, heat generation or absorption, 

thermopherosis, Brownian motion and suction or 

injection effects. Chamkha et al. (2010 b) has also 

analyzed the natural convection past a sphere embedded 

in a porous medium saturated by a nanofluid.  

The objective of the present study is to analyze the 

development of mixed convection flow of non-

Newtonian nanofluid from vertical surface saturated in 

a porous medium. The effects of Brownian motion and 

thermophoresis are included for the nanofluid. 

Numerical solutions of the boundary layer equations are 

obtained and discussion is provided for several values 

of the nanofluid parameters governing the problem. The 

dependency of velocity, temperature and nano-particle 

volume fraction profiles as well as the surface heat 

transfer rate (local Nusselt number) and mass transfer 

rate (local Sherwood number) on these parameters has 

been discussed. 

2. ANALYSIS  

Consider steady, laminar, mixed convection, boundary 

layer flow of a non-Newtonian power-law fluid from a 

permeable vertical plate embedded in a nano-fluid 

saturated porous medium in the presence of Brownian 

motion, thermophoresis and injection effects. The plate 

surface is maintained at a constant temperature wT  and 

a constant nano-particle volume fraction wC , and the 
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ambient temperature and nano-particle volume fraction 

far away from the surface T and C are assumed to be 

uniform. The fluid properties are considered to be 

constant. By invoking all of the boundary layer, 

Oberbeck-Boussineq approximations, the governing 

equations for this investigation can be written as: 
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The associated boundary conditions are as follows: 

0 , , ,    0W Wv v T T C C at y     (6a) 

, , ,    u u T T C C as y       (6b) 

It is convenient to transform Eq. (1) to Eq. (4) by using 

the following non-similarity transformations reported 

earlier by Gorla et al. (1997, 2000): 
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where Pex and Rax are the local Peclet and modified 

Rayleigh numbers, respectively, and  is the stream 

function defined as /u y   and /v x   , 

therefore the continuity equation is identically satisfied. 

Substituting Eq. (7) into Eq. (1)- (4) yield the following 

non-similar equations and boundary conditions: 
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are the mixed convection parameter, Lewis number, 

buoyancy ratio, Brownian motion parameter and 

thermophoresis parameter. It can be noted that = 0 

corresponds to pure natural convection whereas = 1 

corresponds to pure forced convection.is positive for 

injection and negative for suction. The local Nusselt 

number Nux and the local Sherwood number Shx are 

important physical properties. These can be defined in 

dimensionless form below as: 
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3. NUMERICAL METHOD 

The problem represented by Eq. (8) through Eq. (10) is 

nonlinear and has no closed-form solution. Therefore, it 

must be solved numerically. The implicit, tri-diagonal, 

finite-difference method discussed by Blottner (1970) 

has proven to be adequate for the solution of boundary-

layer equations accurately. For this reason, it is adopted 

in this work. All first-order derivatives with respect to ξ 

are replaced by two-point backward difference 

quotients while the derivatives with respect to η are 

discretized using three-point central-difference 

quotients and, as a consequence, a set of algebraic 

equations results at each line of constant ξ.  These 

algebraic equations are then solved by the well-known 

Thomas algorithm (see Blottner 1970) with iteration to 

deal with the non- linearities of the problem.  When the 

solution at a specific line of constant ξ is obtained, the 

same solution procedure is used for the next line of 

constant ξ. This marching process continues until the 

desired value of ξ is reached.  At each line of constant 

ξ, when f' is known, the trapezoidal rule is used to solve 

for f.  The convergence criterion employed was based 

on the relative difference between the current and the 

previous iterations.  When this difference reached 10-5, 

the solution was assumed converged and the iteration 

procedure was terminated. Constant step sizes in the ξ 

direction were used whereas variable step sizes in the η 

direction were utilized in order to accommodate the 

sharp changes in the dependent variables especially in 

the immediate vicinity of the truncated cone surface. 

The (ξ, η) computational domain consisted of 101 and 

196 points, respectively.  The initial step sizes in Δξ1 

and Δη1 were taken to be equal to 10-2 and 10-3, 

respectively and the growth factor for the η direction 

was taken to be 1.0375. This gave ξ= 1 and η = 25.  

These values were found to give accurate grid-

independent results as verified by the comparisons 

mentioned below. 

In order to access the accuracy of the numerical results, 

we have compared the results obtained by this 

numerical method with the previously published work 

of Gorla et al. (1997) for the pure natural convection = 

0 to the pure forced convection= 1 with various 

values of n and ξ. This comparison is presented in 

Tables 1. It is obvious from these tables that excellent 

agreement between the results exist. These favourable 

comparisons lend confidence in the graphical results to 

be reported in the next section. 

4. DESCRIPTION OF REFERENCES 

In this section, a representative set of numerical results 

for the velocity, temperature, and nano-particle volume 

fraction profiles as well as the local Nusselt number and 

the local Sherwood number is presented graphically in 

Fig. 1 through Fig. 15. These results illustrate the 

effects of the power-law index parameter n, Lewis 

number, buoyancy ratio, Brownian motion parameter 

and thermophoresis parameter on the solutions. 

Throughout the calculations, these conditions are 

intended for pure natural convection = 0 pure forced 

convection= 1 with positive values of  (injection 

case).  

Table 1  Comparison of the surface heat transfer rate 

( ,0)   in the entire range of mixed convection for 

various values of  and n in the absence of mass 

transfer 

Present results 

 0.0 0.5 1.0 

n=0.5    

=0.0 0.50937 0.18075 0.03122 

=0.5 0.53464 0.149696 0.03556 

=1.0 0.564129 0.198932 0.047507 

n=1.5    

=0.5 0.3607312 0.07037 0.00665 

n=2.0    

=0.5 0.3177039 0.04429 0.00235 

Gorla et al. (1997) 

 0.0 0.5 1.0 

n=0.5    

=0.0 0.50935 0.18076 0.03121 

=0.5 0.5348 0.149699 0.03383 

=1.0 0.5642 0.19894 0.04753 

n=1.5    

=0.5 0.3603 0.0704 0.0069 

n=2.0    

=0.5 0.3184 0.04419 0.0023 
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Fig. 1. Effects of n on the (a) velocity, (b) temperature, 

(c) volume fraction profiles 

Figures 1(a)- 1(c) present the typical velocity f  , 

temperature   and volume fraction   profiles for 

various values of the non-Newtonian fluid (viscosity 

index) n. for power-law fluid viscosity indices n=0.75 

(shear-thinning or pseudo-plastic fluid), n=1.0 

(Newtonian fluid) and n=1.5, 2.0 (shear-thickening or 

dilatant fluid), respectively. It is observed that as the 

power-law index n increases, both the volume fraction 

and temperature increase, while the slip velocity at the 
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preamble wall decreases. In addition, the non-

Newtonian fluid with a higher power-law index has a 

greater thermal boundary layer thickness and a greater 

volume fraction boundary-layer thickness. Moreover, 

increasing the power-law index tends to retard the flow 

and increase the thermal boundary-layer and the volume 

fraction boundary layer thicknesses. 
 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

 

 







-
' 






 n=.75

 n=1.0

 n=1.5

 n=2.0



N
r
=0.7, N

b
=0.4,N

t
=0.1,Le=5.0

 
Fig. 2. Effects of n and  on the local Nusselt number 
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Fig. 3. Effects of n and  on the local Sherwood number 

Figure 2 and Fig. 3 show the variations of on the local 

Nusselt number Nux, and the local Sherwood number 

Shx, for different values of the power-law index n and 

the injection parameter   in the entire 

range 0 1  , respectively. As seen from the 

definitions of Nux, and Shx, they are directly 

proportional to -'(, 0) and -'(, 0), respectively. For 

different values of the power-law index n and the 

injection parameter   in the entire range 0 1  , 

respectively. It is found that increasing the power-law 

index n leads to increase in both the local Nusselt or 

Sherwood numbers for smaller values of mixed 

convection parameter  which indicate almost pure free 

convection regime and decreases the local Nusselt and 

Sherwood numbers for between 0 and 1 which 

correspond to the mixed convection regime whereas the 

local Nusselt and Sherwood numbers remain almost 

unchanged as the values of close to unity which 

indicate almost pure forced convection. On other hand 

as the values of the injection parameter  increase both 

of heat transfer rate (local Nusselt number) and mass 

transfer rate (local Sherwood number) decrease in the 

entire range 0 1  . 
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Fig. 4. Effects of Nr on the (a) velocity,  

(b) temperature, (c) volume fraction profiles 

Figure 4(a) - 4(c) depict the effects of the buoyancy 

ratio Nr on the dimensionless velocity, temperature and 

volume fraction profiles. In general, increases in the 

value of Nr have the tendency to cause more induced 

flow along the plate surface. This behavior in the flow 

velocity is accompanied by decreases in the fluid 

temperature and volume fraction species as well as 

decreases in the thermal and volume fraction boundary 

layers as N increases from 0.1to 0.7. 
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Fig. 5. Effects of Nr on the local Nusselt number 
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Fig. 6. Effects of Nr on the local Sherwood number 

On other hand  Fig. 5 and Fig. 6 illustrate the influence 

of the buoyancy ratio Nr on the local Nusselt number 

Nux, and the local Sherwood -'(,0), in the entire range 

0 1  ,  The decreases in the fluid temperature and 

volume fraction as Nr increases mentioned above 

causes the negative values of the wall temperature and 

volume fraction slopes to increase yielding increases in 

both the local Nusselt and Sherwood numbers in the 

entire range of mixed convection parameter 0 1  . 

However, for =1 (forced convection limit), the flow is 

uncoupled from the thermal and solutal buoyancy 

effects and therefore, the local Nusselt and Sherwood 

numbers are constant for all values of Nr. The influence 

of the buoyancy force is significant for large values of  
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but there is an apparent decrease in the maximum 

velocity inside the boundary layer. The reason for this 

trend is that for a vertical plate the buoyancy force acts 

normal to the forced flow. Also, from the definition of 

, it is seen that increases in the value of the parameter 

Rax/Pex causes the mixed convection parameter to 

decrease. Thus, small values of Rax/Pex correspond to 

values of close to unity which indicate almost pure 

forced convection regime On the other hand, high 

values of Rax/Pex correspond to values of close to 

zero which indicate almost pure free convection regime. 

Furthermore, moderate values of Rax/Pex represent 

values of  between 0 and 1 which correspond to the 

mixed convection regime. For the forced convection 

limit (=1) it is clear from Eq. (8) that the velocity in 

the boundary layer f' is uniform irregardless of the 

value of n. However, for smaller values of  (higher 

values of Rax/Pex) at a fixed value of Nr, the buoyancy 

effect increases. As this occurs, the fluid velocity close 

to the wall increases for values of < 0.5 due to the 

buoyancy effect which becomes maximum for = 0 

(free convection limit) because the buoyancy force 

normal to the plate increases and acts to retard the flow 

in the streamwise direction within the boundary layer 

under a strong buoyant flow (small values of ). This 

decrease and increase in the fluid velocity f' as is 

decreased from unity to zero is accompanied by a 

respective increase and a decrease in the fluid 

temperature and volume fraction. As a result, the local 

Nusselt and Sherwood numbers tend to decrease and 

then increase as is increased from 0 to unity forming 

slight dips. 
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Fig. 7. Effects of Le on the (a) velocity,  

(b) temperature, (c) volume fraction profiles 

The velocity, temperature and volume fraction profiles 

for various values of Lewis number Le are shown in 

Figs. 7(a)-(c). It is observed that as Le increases the 

velocity continuously decreases with η while the 

volume fraction increases but the opposite behavior far 

away from the plate. As expected, the velocity effects 

are more dominant near the wall. Also, the velocity 

decreases as Le increases in the vicinity of the plate but 

the reverse happens as one moves away from it. It is 

evident from Fig. 7(a) and Fig. 7(c) that both the 

velocity and volume fraction profiles satisfy the 

boundary conditions Eq. (11) a and Eq. (11) b. Thus, 

these figures support the validity of the present results. 

In addition, it is observed from Fig. (7) b that the 

temperature slight increases with an increase in Le and 

tends to zero at the edge of the boundary layer. 

Figure 8 and Fig. 9 illustrate the effect of increasing the 

Lewis number Le on both of the local Nusselt number 

Nux and the local Sherwood number Shx in the entire 

range 0 1  ,, respectively. It can be seen that as the 

Lewis number Le increases, the resistance to flow and 

the wall slopes of the temperature and volume fraction 

profiles increase as shown earlier in Figs. 7(b)-7(c), this 

produces reductions in all the Nusselt and Sherwood 

numbers. 
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Fig. 8. Effects of Le on the local Nusselt number. 
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Fig. 9. Effects of Le on the local Sherwood number 
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Fig. 10. Effects of Nt on the (a) velocity,  

(b) temperature, (c) volume fraction profiles 
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Fig. 11. Effects of Nt on the local Nusselt number 
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Fig. 12. Effects of Nt on the local Sherwood  number 

The effects of the thermophoresis parameter Nt on the 

velocity and temperature and volume fraction profiles 

are presented in Figs. 10(a)-10(c), respectively. It is 

observed that increasing the thermophoresis parameter 

Nt has a tendency to accelerate the flow and slight 

increases in the temperature profiles. This, in turn, 

produces increases in the maximum velocity and the 

fluid temperature and decreases in the volume fraction 

profiles. In addition, as seen from Fig. 11 and Fig. 12, 

increases in the value of the thermophoresis parameter 

Nt cause reductions in all of the local Nusselt and 

Sherwood numbers. 
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Fig. 13. Effects of Nb on the (a) velocity,  

(b) temperature, (c) volume fraction profiles 

Figures 13(a)-13(c) present the changes in the velocity, 

temperature and volume fraction profiles for various 

values of the Brownian motion parameter Nb, 

respectively. The effect of increasing the Brownian 

motion parameter Nb is limited to decreasing slightly 

the wall slope of the velocity with η while the volume 

fraction increases but the opposite behavior far away 

from the plate. This decreasing the flow velocity at the 

wall is achieved at the expense of  slight enhancement 

in  the fluid temperature and volume fraction whereas  a 

significant reduction in the concentration boundary 

layers as seen from Figs. 13(b)-13(c). 
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Fig. 14. Effects of Nb on the local Nusselt number 
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Fig. 15. Effects of Nb on the local Sherwood number 

Figure 14 and Fig. 15 illustrate the effects of the 

Brownian motion parameter Nb on the local Nusselt 

number Nux and the local Sherwood number Shx in the 

range 0 1  , respectively. Obviously, increasing 

the Brownian motion parameter Nb decreases the flow 

along the plate surface while its temperature and 

volume fraction increase causing the negative wall 

slope of the temperature and volume fraction profiles to 

decrease. This yields reductions in all of the local 

Nusselt and Sherwood numbers. 

5. CONCLUSION 

The effects of Brownian motion and thermophoresis on 

the mixed convection boundary layer flow of non-

Newtonian nanofluids past a preamble vertical flat plate 

embedded in a porous medium are considered. A mixed 

convection parameter for the entire range of free-

forced-mixed convection is employed and a set of non-

similar equations are obtained. These equations are 

solved numerically by an efficient implicit, iterative, 

finite-difference method. Comparisons with previously 

published work were performed and the results are 

found to be in excellent agreement. Numerical results 

for the velocity, temperature, and volume fraction 

profiles as well as the local Nusselt number and the 

local Sherwood number were reported graphically. It 

was found that both the local Nusselt and Sherwood 

numbers decreased due to increase in either of the 

power-law fluid index in the pure free convection 

regime and decreases the local Nusselt and Sherwood 

numbers in the mixed convection regime whereas the 

local Nusselt and Sherwood numbers remain almost 

unchanged as the values in the pure forced convection. 

However, they both decreased due to increases in either 

of the injection parameter. Also, It was found that as the 

buoyancy ratio increased, both the local Nusselt and 

Sherwood numbers increased in the entire range of free 

and mixed convection regime while they remained 

constant for the forced-convection regime. Finally, both 

the local Nusselt and Sherwood numbers decreased as 

either of Lewis number, Brownian motion parameter or 

thermophoresis effects increased. Moreover, it is shown 

that the effects of Lewis number, Brownian motion or 

thermophoresis parameters are more pronounced on the 

local Sherwood number than on the local Nusselt 

number. 
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