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ABSTRACT

An overview is presented of recent advances in the filtered density function (FDF) modeling and simulation of turbulent
combustion. The review is focused on the developments that have facilitated the FDF to be broadly applied in large
eddy simulation (LES) of practical flows. These are primarily the development of a new Lagrangian Monte Carlo
solver for the FDF, and the implementation of this solver on Eulerian domains portrayed by unstructured grids. With
these developments, it is now much easier to apply FDF for predictions of reacting flows in complex geometrical
configurations.
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1. INTRODUCTION

The filtered density function (FDF); including its mass
weighted form, the filtered mass density function
(FMDF), is now considered as one of the most effec-
tive means of conducting large eddy simulation (LES)
in turbulent combustion Givi (2006). The FDF is es-
sentially the counterpart of the probability density func-
tion (PDF) methods in Reynolds-averaged Navier-Stokes
(RANS) simulations Pope (2013). In its stand-alone
form, the FDF must account for the joint statistics of all
of the relevant physical variables. The most sophisticated
FDF closure available to-date is the frequency-velocity-
scalar FMDF (FVS-FMDF) Sheikhi et al. (2009). A
simpler version (VS-FMDF) that does not include the
subgrid-scale (SGS) frequency also exists (Sheikhi et al.
2003, 2007). Hydrodynamic closure in incompressible,
non-reacting flows has been successfully achieved via
the velocity-FDF (V-FDF) Gicquel et al. (2002). The
scalar FDF (S-FDF and S-FMDF) is the most widely
used form and considers only the scalar field. This is the
most elementary form of the FDF that we first introduced
(Colucci et al. 1998; Garrick et al. 1999; Jaberi et al.
1999). The first LES of a hydrocarbon flame, namely
the Sandia-Darmstadt piloted diffusion flame (Barlow
and Frank 1998; Sandia National Laboratories 2013), has
been conducted via both S-FMDF (Sheikhi et al. 2005)
and VS-FMDF (Nik, Yilmaz, Givi et al. 2010; Nik, Yil-
maz, Sheikhi et al. 2010). The FDF has also been suc-
cessful in predicting the more complex field of the bluff-

body Sandia-Sydney flame Dally et al. (1998, 2003) and
a premixed Bunsen burner Chen et al. (1996) as reported
in Drozda et al. (2007) and Yilmaz et al. (2010), respec-
tively.

The original work of Colucci et al. (1998) provides the
first demonstration of a transported FDF. Since then, this
methodology has experienced widespread usage, and is
now regarded as one of the most effective and popular
means of LES worldwide. Some of the most important
contributions to the FDF by others are in its basic im-
plementation (Afshari et al. 2008; Carrara and DesJardin
2006; Chen 2007; Drozda et al. 2008; Heinz 2003b;
James et al. 2007; Jones and Navarro-Martinez 2007;
Jones et al. 2007; McDermott and Pope 2007; Mustata
et al. 2006; Raman and Pitsch 2005, 2007; Raman et al.
2005; van Vliet et al. 2005; Zhou and Pereira 2000),
fine-tuning of its sub-closures (Cha and Trouillet 2003;
Heinz 2007; Réveillon and Vervisch 1998) and its vali-
dation via laboratory experiments (Rajagopalan and Tong
2003; Tong 2001; van Vliet et al. 2005; Wang and Tong
2002, 2005; Wang et al. 2004). For a review of the state
of progress in FDF modeling we refer to Ansari et al.
(2011). For a comprehensive understanding of the FDF,
we refer serious readers to several dissertations (Ansari
2012; Colucci 1998; Drozda 2005; Gicquel 2001; Nik
2012; Pisciuneri 2008; Sheikhi 2005; Yilmaz 2008).

In this article, we provide a review of recent develop-
ments which facilitate FDF to be applied to LES of com-
plex turbulent reacting flows. The phrase “complex”
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refers to both the chemical kinetics and the geometrical
flow configuration. These developments are: (1) con-
struction of an “irregularly portioned” Lagrangian Monte
Carlo FDF simulator, and (2) implementation of the
Monte Carlo simulator on Eulerian domains portrayed by
unstructured grids. The former allows efficient FDF sim-
ulations on massively parallel platforms, and the latter
facilitates simulation of flows in complex configurations.
With these developments, it is now much easier to con-
duct LES of complex turbulent reacting flows.

2. FDF FORMULATION AND MODEL-
ING

The primary transport variables in reactive flows are the
fluid density ρ(x, t), the velocity vector ui(x, t), i = 1,2,3
along the xi direction, the specific enthalpy h(x, t), the
pressure p(x, t), and the mass fractions of Ns species,
Yα(x, t) (α = 1,2, . . . ,Ns), where x ≡ xi(i = 1,2,3) and
t denote space and time, respectively. Implementation
of LES involves the use of the spatial filtering operation
(Geurts 2004; Sagaut 2010)

〈Q(x, t)〉=
∫ +∞

−∞

Q(x′, t)H (x′,x)dx′, (1)

where H denotes the filter function of width ∆H , and
〈Q(x, t)〉 represents the filtered value of the transport
variable Q(x, t). In reacting flows, it is convenient to con-
sider the Favre filtered quantity, 〈Q(x, t)〉L = 〈ρQ〉/〈ρ〉.
We consider spatially invariant and localized filter func-
tions, H (x′,x) ≡ H (x′− x) with the properties (Ghosal
and Moin 1995) H (x) = H (−x), and

∫
∞

−∞
H (x)dx = 1.

We consider positive filter functions Vreman et al. (1994)
for which all the moments

∫
∞

−∞
xmH (x)dx exist for m≥ 0.

The transport variables satisfy the conservation equations
of mass, momentum, energy and species mass fractions
Williams (1985). The filtered form of these equations
are:

∂〈ρ〉
∂t

+
∂〈ρ〉〈ui〉L

∂xi
= 0, (2)

∂〈ρ〉
〈
u j
〉

L
∂t

+
∂〈ρ〉〈ui〉L

〈
u j
〉

L
∂xi

=

− ∂〈p〉
∂x j

+
∂
〈
τi j
〉

∂xi
−

∂Ti j

∂xi
, (3)

∂〈ρ〉〈φα〉L
∂t

+
∂〈ρ〉〈ui〉L〈φα〉L

∂xi
=

−
∂
〈
Jα

i
〉

∂xi
−

∂Mα
i

∂xi
+ 〈ρSα〉 , (4)

where τi j and Jα
i denote the viscous stress tensor and

the scalar fluxes, respectively. In Eq. (4), Sα denotes
the source term, and this equation represents trans-
port of the species mass fractions and enthalpy in a
common form with φα ≡ Yα, α = 1,2, . . . ,Ns, φσ ≡
h, σ = Ns + 1. The SGS closure problem is as-
sociated with Ti j = 〈ρ〉

(〈
uiu j

〉
L−〈ui〉L

〈
u j
〉

L

)
, Mα

i =
〈ρ〉(〈uiφα〉L−〈ui〉L〈φα〉L), and 〈ρSα〉. The FDF pro-
vides an effective means for this closure. For the scalars’

array φ(x, t) and the velocity field, u(x, t), the SGS statis-
tical information is included in the joint velocity-scalar
filtered mass density function (VS-FMDF), denoted by
F (v,ψ,x, t), where (v,ψ) denote the probability-space
for the (u,φ) fields. The exact transport equation for this
FDF is (Sheikhi et al. 2007):

∂F
∂t

+
∂(vkF )

∂xk
=

∂

∂vk

[〈
1
ρ

∂p
∂xk

v,ψ
〉

F
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1
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∂x j
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〉
F

]

− ∂
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ρ

∂τk j

∂x j
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〉

F
]

− ∂

∂ψα

[Sα(ψ)F ] , (5)

where 〈 | 〉 denotes the conditional filtered values. As Eq.
(5) shows, the effects of SGS convection and combustion
are in closed forms. However, all of the terms involving
conditional filtered values require closure. The marginal
FMDF of the scalar (S-FMDF) field, Fφ(ψ,x, t), is ob-
tained by integration of the VS-FMDF over the velocity
domain:

∂Fφ

∂t
+

∂

[
〈ui(x, t)|ψ〉Fφ

]
∂xi

=
∂

∂ψα

[〈
1
ρ

∂Jα
j

∂x j

∣∣∣∣∣ψ
〉

Fφ

]

− ∂

∂ψα

[
Sα(ψ)Fφ

]
. (6)

Again, the effects of chemical reaction appear in a closed
form. However, in this case, the SGS convection (sec-
ond term on the left-hand side) requires closure. This
approach has been the most popular among other investi-
gators using FDF (Afshari et al. 2008; Carrara and Des-
Jardin 2006; Cha and Trouillet 2003; Chen 2007; Drozda
et al. 2008; Heinz 2003b; James et al. 2007; Jones and
Navarro-Martinez 2007; Jones et al. 2007; McDermott
and Pope 2007; Mustata et al. 2006; Raman and Pitsch
2005, 2007; Raman et al. 2005; Réveillon and Vervisch
1998; van Vliet et al. 2005; Zhou and Pereira 2000).

The SGS closures have been primarily based on mod-
eled stochastic differential equations (SDEs) for each of
the transport variables. These SDEs must account for all
of the physics of turbulent combustion; including scalar
mixing, chemistry, exothermicity, dilatation, and dissi-
pation. It is straightforward to realize the capability of
the FDF in that it accounts for all of the processes in-
volving direct correlations of the transported variables.
For example, there is no need for additional closures for
turbulent-chemistry interactions and/or velocity-scalar
correlations. A system of modeled SDEs (Gikhman
and Skorokhod 1972; Karlin and Taylor 1981) based on
the stochastic diffusion process (Stratonovich 1963) has
proven effective for the FDF closure. The coefficients in
the modeled Langevin equation will be set in such a way
that the resulting Fokker-Planck equation Risken (1989)
defines the modeled FDF transport equation, and thus the
SGS closures. In particular, the generalized Langevin
model (GLM) (Dreeben and Pope 1997; Haworth and
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Pope 1986; Pope 1994a,b) combined with the linear mean
square estimation (LMSE) (Borghi 1988; Dopazo 1994)
has proven to be effective. This is described by Sheikhi
et al. (2007):

dxi
+ = u+i dt +

√
2µ
〈ρ〉

dWi, (7a)
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〈ρ〉

∂〈p〉
∂xi

dt

+
2
〈ρ〉

∂

∂x j

(
µ

∂〈ui〉L
∂x j

)
dt

+
1
〈ρ〉

∂

∂x j

(
µ

∂
〈
u j
〉

L
∂xi

)
dt

− 2
3

1
〈ρ〉

∂

∂xi

(
µ

∂
〈
u j
〉

L
∂x j

)
dt

+Gi j

(
u+j −

〈
u j
〉

L

)
dt

+
√

C0k ω dW ′i

+

√
2µ
〈ρ〉

∂〈ui〉L
∂x j

dW j, (7b)

dφ
+
α =−Cφ ω

(
φ
+
α −〈φα〉L

)
dt

+Sα(φ
+)dt, (7c)

where x+i ,u
+
i ,ψ

+
α are probabilistic representations of po-

sition, velocity vector and scalar variables, respectively.
µ denotes the fluid dynamic viscosity. The W terms de-
note the Wiener-Lévy processes in the physical (without
the prime) and the velocity (with prime) spaces Gardiner
(1990). The terms Gi j and k = Tii/2〈ρ〉 denote the kernel
of GLM and the SGS kinetic energy, respectively. The
mixing frequency ω is defined as: ω =C f k1/2/∆H . The
constants: C0, Cφ and C f are model parameters and are
chosen as suggested in the literature Pope (1994a). The
corresponding Fokker-Planck equation, or effectively the
modeled VS-FMDF transport equation becomes:
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. (8)

3. LAGRANGIAN FDF SIMULATOR

For the FDF to be practical, it must be implemented in a
computationally efficient manner, especially if it is to be
employed for the prediction of complex flows. For ex-
ample, some of the current LES methods require up to
several months of computing time for a moderately sized
domain! In many cases, this is simply due to inefficient
usage of a computer’s resources. With petascale comput-
ing becoming a reality, one must take advantage of the
enormous opportunities it provides for FDF simulations.

An effective way to solve the FDF numerically is via
Lagrangian Monte Carlo (MC) methods (Grigoriu 1995;
Kloeden et al. 1997). These methods have been the
primary means of solving the PDF in RANS and, thus
far, the most effective choice for solving the FDF in
LES (including all of the previous works cited in §1).
There have been some efforts to resurrect Eulerian PDF
solvers (Chen 2007; Sabel’nikov and Soulard 2005), but
they have not shown any particular advantages over La-
grangian methods. See Madnia et al. (2006) for a com-
plete discussion. In the Lagrangian setting, the physi-
cal domain is discretized in standard formats (via finite
difference, finite volume, spectral, or other methods),
and the FDF is represented by an ensemble of particles.
Each of these particles carry information pertaining to the
physical field (i.e. each of the EPFVS variables) and also
the position vector. This is shown in Fig. 1 in which the
MC particles are overlaid on grid points, and the trans-
port properties are identified by the colors of the particles.
These properties are updated via temporal integration of
the modeled SDEs.

Fig. 1. Lagrangian Monte Carlo particles over structured
Eulerian grids. The colors of the particles denote their
transport properties. Displayed are particles on the cen-
ter plane, and within a mixture fraction isosurface.

MC simulations typically require on the order of millions
to billions of particles. The computational requirements
can become “monstrous” for LES of practical flows, es-
pecially those involving complex kinetics. Therefore,
scalable parallelization at the MC particle level is re-
quired. The major challenge in scalability is the extreme
load imbalance associated with stiff chemistry. At any
time during the simulation, different regions of the flow
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Fig. 2. Domain topology with (a) the uniform decomposition, and (b) adaptive irregular decomposition. Non-idle CPU
times per time step for each rank for subsequent time steps with (c) uniform decomposition, and (d) adaptive irregular
decomposition.

experience different stages of chemical reactions. Even
though the particle number density is statistically uni-
form spatially, the computational load per particle varies
significantly.

A popular parallelization strategy in modern CFD is
via temporally invariant block decomposition, where the
mesh is partitioned into equally sized boxes, and each
box is assigned to a processor (Fig. 2a). This unifor-
mity is relatively easy to implement and yields a minimal
communication overhead, but for unsteady and inhomo-
geneous flows, it usually leads to a poor load distribution.
Processors with lighter loads must wait (and remain idle)
until the synchronization at the end of each time step.
The local computation time of each processor for this
is shown in Fig. 2(c). In this example, the idle time is
about half of the total time! The load imbalance problem
is resolved by development of an irregularly portioned
Lagrangian Monte Carlo solver (IPLMC) Yilmaz et al.
(2011). In this method, the Eulerian mesh is represented
as an undirected graph where particle cells are the ver-
tices of the graph and are weighted by the computational
load. Each vertex is assigned a computational weight, i.e.
a computation-load metric, which is a function of het-
erogeneous and homogeneous computational loads. This

weighted graph is then fed into a graph partitioning al-
gorithm (Karypis and Kumar 1999) which subdivides the
domain into clusters of particle cells on which the com-
putational load is evenly distributed. Figure 2(d) shows
the load distribution corresponding to the balanced irreg-
ular decomposition. Here, the idle time is insignificant.
The transient load redistribution problem is resolved by
recomputing the load metric, repartitioning the domain,
and intercommunicating the local data of the partitions
as the simulation proceeds. The frequency of redistribu-
tion is adjusted based on the communication cost and the
extent of load imbalance.

In its current implementation, LES/FDF employs MPI for
inter-domain communication, and can scale up to 1000s
of segments via the adaptive partitioning as described.
Further local refinement can be made at each individ-
ual domain, where ensembles of MC particles can be
assigned to accelerator units for simultaneous computa-
tions. Sample results to demonstrate scalability are pre-
sented in Fig. 3. Shown on the left is the ratio of sequen-
tial wall time (t1) to wall-time with p CPU cores (tp), i.e.
the speed-up (or strong scaling). On the right is the scala-
bility (or weak scaling); that is the ratio of total computa-
tional work per time for p CPU cores (Np/tp) to that with
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Fig. 3. Speed-up (strong scaling) and scalability (weak scaling) comparisons of the IPLMC versus uniform decompo-
sition, based on wall-clock timings for chemistry substep and total iteration step. Np denotes the total number of MC
particles, and is increased linearly with number of CPUs (p) for the scalability benchmark.

a single core (N1/t1). In this analysis, the Eulerian mesh
is kept fixed, but the number of MC particles per mesh
point is increased in direct proportion to p. In the speed-
up analysis, only p is varied for the same mesh with a
fixed number of MC particles. In Fig. 3, the MC substep
curves (solid) are for that subset of the computation, and
message passing is done by the particle solver (includ-
ing particle migration). The label ‘total’ (dashed) refers
to these and everything else within the whole time step.
As seen in both the speed-up and scalability curves, the
IPLMC performs better, and is nearly perfect in scaling
up-to 250 CPU cores for the MC solver. However, scaling
to much larger number of CPUs is less impressive. This
is not surprising, because with more CPUs no matter how
well the load is balanced at the particle level, overall par-
allel performance is constrained by the sequential flow
solver limiting the scalability as governed by Amdahl’s
law Amdahl (1967). The time spent on the parallel (MC)
and sequential parts of the simulation are shown in Fig. 4.
The MC substep time is sharply reduced in IPLMC; and
after 150 or so CPU cores, the sequential parts start dom-
inating the computation. With uniform decomposition,
this ratio does not decrease nearly as much, agreeing with
the observation made in Fig. 3 where the scalability char-
acteristic of the total simulation is not very different than
that in the MC substep. Future work includes the full par-
allelization by a similar strategy for the Eulerian solver,
and aggressively reducing the sequential parts of the im-
plementation. As demonstrated for the perfect scaling in
the MC substep, this may facilitate near perfect scaling
up to 1000s of CPU cores.

4. UNSTRUCTURED FDF SOLVER

The FDF and its IPLMC (or other MC) simulator(s) must
be coupled with a base flow solver which identifies the
computational domain. A major challenge in doing so
is the discretization of complex geometries. Structured
grids, as are typically used, lack the required flexibility
and robustness for handling such geometries. Also, the
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Fig. 4. Percentages of computational work for the Monte
Carlo solver and the rest of the simulation for different
CPU counts.

grid cells may become too skewed and/or twisted, pro-
hibiting efficient simulations. Unstructured grids provide
an excellent remedy for the problem of producing grids
for complex geometries. Such grids have irregularly dis-
tributed nodes and their cells are not required to be of a
specific shape. Furthermore, the connectivity of neigh-
boring cells can vary spatially.

For LES of problems of practical interest, we have devel-
oped an unstructured grid system on which the MC sim-
ulator can be constructed Ansari et al. (2011). The Eule-
rian flow solver is based on a second order finite-volume
(FV) method. The sacrifice for this lower discretization
accuracy, as compared to that of high-order finite differ-
ence methods, is justified by the versatility provided by
the FV method for consideration of complex configura-
tions. The computational domain is discretized via cells
of arbitrary shapes. These cells serve two purposes: (1)
they identify the regions where the statistical information
from the MC are obtained; (2) they are used to couple the
FV and MC solvers for LES. The FV solver is primarily
based on a bounded central composite normalized vari-
able diagram (NVD) scheme Darwish (1993), and con-
sists of a blended scheme of central differencing and a
second order upwind scheme. The statistics are gener-
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ated by consideration of the MC particles within a vol-
ume centered at the point of interest. Effectively, this
volume constitutes an “ensemble domain” characterized
by the length scale ∆E in which the FDF is discretely rep-
resented. For reliable statistics with minimal dispersion,
it is required to maximize the number of particles and to
minimize the size of the ensemble domain. In most of
our work, the tetrahedral cell is taken as the ensemble
domain. To maximize accuracy with a finite number of
particles, a variant of the “basis function method” (Sub-
ramaniam and Haworth 2000) is considered. Solution of
the modeled stochastic differential equation (7) requires
the input of the filtered velocity, the diffusion coefficient
and gradients of the scalars field. These are provided by
the FV solution and are subsequently interpolated to the
particles’ locations via a piecewise linear reconstruction
method (Barth and Jespersen 1989). Within the cell, the
filtered values are expressed in terms of the vertex mean
values. In doing so, an efficient particle tracking proce-
dure is constructed Ansari et al. (2011).

Fig. 5. Lagrangian Monte Carlo particles over unstruc-
tured Eulerian tetrahedrons for LES of a homogeneous
turbulent flow Sheikhi et al. (2009). The colors of the
particles denote their transport properties.

We demonstrate the feasibility of the method by applying
our S-FMDF for LES of a homogeneous turbulent flow.
Figure 5 shows an instantaneous ensemble of MC parti-
cles overlaid on an unstructured grid. The inset shows
the schematics of a tetrahedral cell, and the MC particles
it contains. The success of this new solver is assessed
by duplicating our previous results via a high-order fi-
nite difference algorithm Sheikhi et al. (2009). We have
implemented the solver for LES of a variety of turbu-
lent flames. The most complex case considered thus far
is the PRECCINSTA experimental burner from the Ger-
man Aerospace Center (DLR) Meier et al. (2007). This
is an excellent representation of an industrial gas turbine
burner. The mesh for this burner is shown in Fig. 6. It
consists of 2.2 million tetrahedral unstructured mesh el-
ements. Figure 7 shows the volume rendered, instanta-
neous CO mass fraction. The flame with a V-shape is
located near the burner inlet and shows wrinkling in its
structure. The structure of the turbulent flow field is ev-

ident in the isosurface of the second invariant of the ve-
locity deformation tensor colored by velocity as shown in
Fig. 8.

5. CONCLUDING REMARKS

The filtered density function (FDF) has proven very ef-
fective for reliable and affordable prediction of turbulent
reactive flows. The primary advantage of the FDF is that
it accounts for the effects of subgrid-scale (SGS) chemi-
cal reactions in an exact manner regardless of the speed
of reaction. Also, it provides all the higher SGS moments
of the flow; whereas most other LES strategies predict
only the mean values, at best. Since its original devel-
opment, the FDF has experienced widespread applica-
tions for LES of a variety of reacting flows, as reviewed
in this article. The methodology has been the subject of
broad coverage in modern text- and hand-books (Bilger
2000; Fox 2003; Heinz 2003a; Kuo and Acharya 2012;
Minkowycz et al. 2006; Peters 2000; Pope 2000). It has
been implemented in commercial and government com-
bustion codes such as FLUENT/ANSYS Ansari et al.
(2011), VULCAN Drozda et al. (2012), and US3D Otis
et al. (2012), among others.

Recent developments in FDF simulation consist of
(1) construction of an irregularly portioned Lagrangian
Monte Carlo FDF solver and (2) implementation of (any)
Monte Carlo simulator on Eulerian domains portrayed by
unstructured grids. The former allows efficient FDF sim-
ulations on massively parallel platforms, and the latter
facilitates discretization of flows in complex geometrical
configurations. With these developments, it is now possi-
ble to apply FDF for LES of practical problems, such as
gas-turbine combustors.
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Fig. 6. Tetrahedral mesh on the PRECCINSTA burner
Meier et al. (2007) and combustion chamber.
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Fig. 7. Instantaneous volume rendered plot of CO mass
fraction.

Fig. 8. Flow structure for PRECCINSTA burner (Meier
et al. 2007) visualized by the isosurface of the second
invariant of the velocity deformation tensor colored by
velocity.
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