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ABSTRACT 

This article concerns with a steady two-dimensional flow of an electrically conducting incompressible dissipating 

fluid over an inclined semi-infinite surface with heat and mass transfer. The flow is permeated by a uniform 

transverse magnetic field. A scaling group of transformations is applied to the governing equations. The system 

remains invariant due to some relations among the parameters of the transformations. After finding three absolute 

invariants, a third-order ordinary differential equation corresponding to the momentum equation, and two second-

order ordinary differential equations corresponding to energy and diffusion equations are derived. The coupled 

ordinary differential equations along with the boundary conditions are solved numerically. Comparisons with 

previously published work are performed and the results are found to be in very good agreement. Many results are 

obtained and a representative set is displayed graphically to illustrate the influence of the various parameters on the 

dimensionless velocity, temperature and concentration profiles. It is found that the velocity increases with an increase 

in the thermal and solutal Grashof numbers. The velocity and concentration of the fluid decreases with an increase in 

the Schmidt number. The results, thus, obtained are presented graphically and discussed.  

 

Keywords: Lie group analysis, Natural convection, MHD, Viscous dissipation, Heat and mass transfer, Inclined 
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NOMENCLATURE 

0B
 applied magnetic field T  

the temperature of the fluid in the boundary 

layer 

C  species concentration in the boundary layer ,u v  velocity components in ,x y  directions 

C  
the species concentration in the fluid far away from the 

plate 
  similarity variable 

pc
 

specific heat at constant pressure   angle of inclination 

D  mass diffusivity 
 coefficient of thermal expansion 

Ec  Eckert number *  
coefficient of concentration expansion 

f
 dimensionless stream function   electrical conductivity 

g  acceleration due to gravity   density of the fluid 

Gr  local temperature Grashof number   kinematic viscosity 

Gm  local mass Grashof number   dimensionless temperature 

k  thermal conductivity of the fluid   dimensionless concentration 

M  magnetic field  parameter   

Pr  Prandtl number w  condition at wall 

Sc  Schmidt number   condition at infinity 

T  
temperature of the fluid in the boundary layer    differentiation with respect to   
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1.  INTRODUCTION 

The study of natural convection flow for an 

incompressible viscous fluid past a heated surface has 

attracted the interest of many researchers in view of its 

important applications to many engineering problems 

such as cooling of nuclear reactors, the boundary layer 

control in aerodynamics, crystal growth, food 

processing and cooling towers. In this paper, symmetry 

methods are applied to a natural convection boundary 

layer problem. The main advantage of such methods is 

that they can successfully be applied to non-linear 

differential equations. The symmetries of differential 

equations are those continuous groups of 

transformations under which the differential equations 

remain invariant, that is, a symmetry group maps any 

solution to another solution. The symmetry solutions 

are quite popular because they result in the reduction of 

the number of independent variables of the problem. 

Chen (2004) performed an analysis to study the natural 

convection flow over a permeable inclined surface with 

variable wall temperature and concentration. The results 

show that the velocity is decreased in the presence of a 

magnetic field. Increasing the angle of inclination 

decreases the effect of buoyancy force. Heat transfer 

rate is increased when the Prandtl number is increased. 

Ibrahim et al. (2005) investigated the similarity 

reductions for problems of radiative and magnetic field 

effects on free convection and mass-transfer flow past a 

semi-infinite flat plate. They obtained new similarity 

reductions and found an analytical solution for the 

uniform magnetic field by using Lie group method. 

They also presented the numerical results for the non-

uniform magnetic field. 

Hydro magnetic incompressible viscous flow has many 

important engineering applications such as magneto 

hydrodynamic power generators and the cooling of 

reactors also its applications to problems in geophysics, 

astrophysics etc. The study of magnetohydrodynamics 

(MHD) plays an important role in agriculture, 

engineering and petroleum industries. The problem of 

free convection under the influence of a magnetic field 

has attracted the interest of many researchers in view of 

its applications in geophysics and astrophysics. 

Soundalgekar et al. (1979) analyzed the problem of free 

convection effects on Stokes problem for a vertical 

plate under the action of transversely applied magnetic 

field. Elbashbeshy (1997) studied the heat and mass 

transfer along a vertical plate under the combined 

buoyancy effects of thermal and species diffusion, in 

the presence of magnetic field. Helmy (1998) presented 

an unsteady two-dimensional laminar free convection 

flow of an incompressible, electrically conducting 

(Newtonian or polar) fluid through a porous medium 

bounded by an infinite vertical plane surface of constant 

temperature. 

Kalpadides and Balassas (2004) studied the free 

convective boundary layer problem of an electrically 

conducting fluid over an elastic surface by group 

theoretic method. Their results agreed with the existing 

result for the group of scaling symmetry. They found 

that the numerical solution also does so. The Navier-

Stokes and boundary layer equations for incompressible 

flows were derived using a convenient coordinate 

system by Pakdemirli (1992). The results showed that 

the boundary layer equations accept similarity solutions 

for the constant pressure gradient case. The importance 

of similarity transformations and their applications to 

partial differential equations was studied by Pakdemirli 

and Yurusoy (1998). They investigated the special 

group transformations for producing similarity 

solutions. They also discussed spiral group of 

transformations. Using Lie group analysis, three 

dimensional, unsteady, laminar boundary layer 

equations of non-Newtonian fluids are studied by 

Yurusoy and Pakdemirli (1997, 1999). They assumed 

that the shear stresses are arbitrary functions of the 

velocity gradients. Using Lie group analysis, they 

obtained two different reductions to ordinary 

differential equations. They also studied the effects of a 

moving surface with vertical suction or injection 

through the porous surface. They further studied exact 

solution of boundary layer equations of a special non-

Newtonian fluid overa stretching sheet by the method 

of Lie group analysis. They found that the boundary 

layer thickness increases when the non-Newtonian 

behaviour increases. They also compared the results 

with that for a Newtonian fluid. Yurusoy and 

Pakdemirli (2001) investigated the Lie group analysis 

of creeping flow of a second grade fluid. They 

constructed an exponential type of exact solution using 

the translation symmetry and a series type of 

approximate solution using the scaling symmetry.  

Viscous mechanical dissipation effects are important in 

geophysical flows and also in certain industrial 

operations and are usually characterized by the Eckert 

number. In most of the studies mentioned above, 

viscous dissipation is neglected. Gebhart (1962) 

reported the influence of viscous heating dissipation 

effects in natural convective flows, showing that the 

heat transfer rates are reduced by an increase in the 

dissipation parameter. Gebhart and Mollendorf (1969) 

considered the effects of viscous dissipation for the 

external natural convection flow over a surface.  

Combined heat and mass transfer problems of 

importance in many processes and have, therefore, 

received a considerable amount of attention in recent 

years. In processes such as drying, evaporation at the 

surface of a water body, energy transfer in a wet 

cooling tower and the flow in a desert cooler, heat and 

mass transfer occur simultaneously. Possible 

applications of this type of flow can be found in many 

industries. For example, in the power industry, among 

the methods of generating electric power is one in 

which electrical energy is extracted directly from a 

moving conducting fluid. Gnaneswara Reddy and 

Bhaskar Reddy (2010) studied the radiation and mass 

transfer effects on unsteady MHD free convection flow 

past a vertical porous plate with viscous dissipation by 

using finite element method. Recently, Gnaneswara 

Reddy and Bhaskar Reddy(2011) investigated mass 

transfer and heat generation effects on MHD free 

convection flow past an inclined vertical surface in a 

porous medium. Sivasankaran et al. (2006) analyzed lie 

group analysis of natural convection heat and mass 

transfer in an inclined surface. Gnaneswara Reddy and 

Bhaskar Reddy(2010) have presented soret and dufour 

effects on steady MHD free convection flow past a 

semi-infinite moving vertical plate in a porous medium 

with viscous dissipation. 
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In this article, application of scaling group of 

transformation for Heat and mass transfer effects on 

steady free convection flowin an inclined plate in the 

presence of MHD and viscous dissipation has been 

employed. This reduces the system of nonlinear 

coupled partial differential equations governing the 

motion of fluid into a system of coupled ordinary 

differential equations by reducing the number of 

independent variables. The system remains invariant 

due to some relations among the parameters of the 

transformations. Three absolute invariants are obtained 

and used to derive a third-order ordinary differential 

equation corresponding to momentum equation and two 

second-order ordinary differential equations 

corresponding to energy and diffusion equations. With 

the use of Runge-Kutta fourth order along shooting 

method, the equations are solved. Finally, analysis has 

been made to investigate the effects of thermal and 

solutalGrashof numbers, magnetic field parameter, 

Prandtl number, Viscous dissipation parameter, and 

Schmidt number on the motion of fluid using scaling 

group of transformations, viz., Lie group 

transformations. 

2. MATHEMATICAL ANALYSIS  

Consider the heat and mass transfer of a steady two-

dimensional hydromagnetic flow of a viscous, 

incompressible, electrically conducting and dissipating 

fluid past a semi-infinite inclined plate with an acute 

angle  to the vertical. The flow is assumed to be in 

the x - direction, which is taken along the semi-infinite 

inclined plate and y - axis normal to it. The flow 

configuration and coordinate system are shown in 

Fig.1. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flow configuration and coordinate system. 

A magnetic field of uniform strength 0B is introduced 

normal to the direction of the flow. In the analysis, we 

assume that the magnetic Reynolds number is much 

less than unity so that the induced magnetic field is 

neglected in comparison to the applied magnetic field. 

It is also assumed that all fluid properties are constant 

except that of the influence of the density variation with 

temperature and concentration in the body force term. 

The surface is maintained at a constant temperature wT , 

which is higher than the constant temperature T  of the 

surrounding fluid and the concentration wC  is greater 

than the constant concentration C . The level of 

concentration of foreign mass is assumed to be low, so 

that the Soret and Dufour effects are negligible. Then, 

under the usual Boussinesq’s and boundary layer 

approximations, the governing equations are 

Continuity equation 

0        









y

u

x

u
 (1) 

Momentum equation 

 

 

2

2

2
* 0

cos

cos

u u u
u v g T T

x y y

B
g C C u

  


 







  
   

  

  

 
(2) 

Energy equation 

22

2
p p

T T k T u
u v

x y c c yy



 

    
    

    

 
(3) 

Species equation 

  D     v      
2

2

y

C

y

C

x

C
u














 

(4) 

The boundary conditions for the velocity, temperature 

and concentration fields are  

0, , 0

0, ,

w wu v T T C C at y

u T T C C as y 

    

   
  (5) 

On introducing the following non-dimensional 

quantities 

 

2
0
3 3

*

3

2

, , , ,

( )
, , ,

( )
, ,

Pr , ,

w

w

w

w

p w

xU yU u v
x y u v

U U

B g T T T T
M Gr

T TU U

g C C C C
Gm

C CU

U
Ec Sc

c T T D

 

   


 


 



 

 

 

 

 







   

 
  



 
 



  


 (6) 

Substituting Eq. (6) into Eqs. (1) - (4) and dropping the 

bars, we obtain, 

0    
u v

x y

 
 

 
 (7) 

2

2

u u u
u v Gr Cos

x y y

Gm Cos Mu

 

 

  
  

  

 

 (8) 
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22

2

1

Pr

u
u v Ec

x y y y

       
    

    
 (9) 

2

2

1
u v

x y Sc y

    
 

  
 (10) 

The corresponding boundary conditions take the form 

 

0, 1, 1 0

0, 0, 0

u v at y

u as y

 

 

    

   
 (11) 

By using the stream function ,u v
y x

  
  

 
we 

have 

2 2 3

2 3
Gr Cos

y x y x y y

Gm Cos M
y

    
 


 

     
   

       


 



 
(12) 

2
2 2

2 2

1

Pr
Ec

y x x y y y

            
               

 (13) 

2

2

1

y x x y Sc y

         
  

     

 (14) 

We now introduce the simplified form of Lie-group 

transformations namely, the scaling group of 

transformations (Mukhopadhyay et al. 2005), 

31 2 4

5 6 7

* * * *

* * *

: , , , ,

, ,

x xe y ye e u ue

v ve e e

  

  

 

   

    

  

 (15) 

where 1 2 3 4 5 6, , , , ,        and 7  are transformation 

parameters and ε is a small parameter. 

Equation (15) may be considered as a point-

transformation which transforms co-ordinates 

 , , , , , ,x y u v   to the coordinates 

 * * * * * * *, , , , , ,x y u v   . 

Substituting transformations Eq. (15) in Eqs. (12), (13) 

and (14), we get 

 

 

 

1 2 3

2

2 3 6
3

2 37

* 2 * * 2 *
2 2

* * * * *

3 *
3

*

*

*

e
y x y x y

e e Gr Cos
y

e Gm Cos Me
y

   

   

  

   


 


 

 

 



    
 
      


 




 



 
(16) 

 

   

1 2 3 6

2 6 2 3

2 2

* * * *

* * * *

2
2 * 2 *

2 4 2

* *

1

Pr

e
y x x y

e e Ec
y y

    

     

   

 

  

 

    
 

     

  
  
   

 
(17) 

 

 

1 2 3 7

2 7

2

* * * *

* * * *

2 *
2

*

1

e
y x x y

e
Sc y

    

  

   



  



    
 

     






 
(18) 

The system will remain invariant under the group of 

transformations  , and we would have the following 

relations among the parameters, namely 

1 2 3 2 3 6 7 2 32 2 3                 

1 2 3 6 2 6 2 32 4 2               

1 2 3 7 2 72           

These relations 

gives 2 1 3 4 1 2 1

1 1 1 1
, ,

4 3 2 4
           , 

6 7 0    

Thus the set of transformations  reduce to one 

parameter group of transformations as 

1 1

1

1 1

3

* * *4 4

* * * *2 4

, , ,

, , ,

x xe y ye e

u ue v ve

 
 



 
 

 

   


  

   

 

Expanding by Tailors method in powers of   and 

keeping terms up to the order ε we get : 

* * 1
1

* *1 1

* * *1

, ,
4

3
, ,

4 2

, 0, 0
4

x x x y y y

u u u

v v v


 

 
   


    

   

   

      

 

The characteristic Equations are : 

1 1 1 11
3

4 4 2 4

0 0

dx dy d du dv

x
y u v

d d



    

 

   



 

 (19) 

Solving the above Equations, we find the similarity 

transformations 

     
1 3

* * *4 4, , ,x y x f        


     (20) 

Substituting these values in Eqs. (16) - (18), we finally 

obtain the system of nonlinear ordinary differential 

Equations 

23 1

4 2

0

f ff f Gr Cos

Gm Cos Mf

 

 

    

  

 (21) 

23
Pr Pr 0

4
f Ecf       (22) 

3
0

4
Scf   

 
(23) 

The corresponding boundary conditions take the form 
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0, 0, 1, 1 0

0, 0, 0

f f at

f as

  

  

    

   
 (24) 

3. NUMERICAL SOLUTION 

The set of nonlinear ordinary differential Eqs. (21) - 

(23) with boundary conditions Eq. (24) have been 

solved by using the Runge-Kutta fourth order along 

with Shooting method.  First of all, higher order non-

linear differential Eqs. (21) - (23) are converted 

intosimultaneous linear differential equations of first 

order and they are further transformed into initial value 

problem by applying the shooting technique (Jain et al. 

1985). The resultant initial value problem is solved by 

employing Runge-Kutta fourth order technique. The 

step size 0.01  is used to obtain the numerical 

solution with five decimal place accuracy as the 

criterion of convergence. In the next section, the results 

are discussed in detail. 

4. RESULT AND DISCUSSION  

As a result of the numerical calculations, the 

dimensionless velocity, temperature and concentration 

distributions for the flow under consideration are 

obtained and their behavior  have been discussed for 

variations in the governing parameters viz., the thermal 

Grashof number Gr , solutal Grashof number Gm , 

magnetic field parameter M, angle of inclination α, 

Prandtl number Pr, Eckert number Ec and Schmidt 

number Sc. In the present study following default 

parameter values are adopted for 

computations: 02.0, 30 ,Gr Gm    2.0,M 

Pr 0.71 , 0.01Ec  , 0.6Sc  . All graphs therefore 

correspond to these values unless specifically indicated 

on the appropriate graph. 

In order to assess the accuracy of our computed results, 

the present result has been compared with Sivasankaran 

et al. (2006) for different values of Gr is shown Fig. 2. 

It is observed that the agreements with the solution of 

velocity profiles are excellent. 

Gr  2.0

Gr  1.0

Present Result

Sivasankaran et al. 2006

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

f

 
Fig. 2. Comparison of velocity profiles 

 

The influence of the thermal Grashof number Gr on the 

velocity is presented in Fig. 3. The thermal Grashof 

number Gr signifies the relative effect of the thermal 

buoyancy force to the viscous hydrodynamic force in 

the boundary layer. As expected, it is observed that 

there is a rise in the velocity due to the enhancement of 

thermbuoyancy force. Here, the positive values of Gr  

correspond to cooling of the plate. Also, as 

Gr increases, the peak values of the velocity increases 

rapidly near the porous plate and then decays smoothly 

to the free stream velocity.  

Gr  1.0, 2.0, 3.0, 4.0

1 2 3 4 5 6

0.2

0.4

0.6

0.8

f

 
Fig. 3. Velocity profiles for different values of Gr  

 

Figure 4 presents typical velocity profiles in the 

boundary layer for various values of the solutal Grashof 

number Gm , while all other parameters are kept at 

some fixed values.  The solutal Grashof number 

Gm defines the ratio of the species buoyancy force to 

the viscous hydrodynamic force. As expected, the fluid 

velocity increases and the peak value is more distinctive 

due to increase in the species buoyancy force. The 

velocity distribution attains a distinctive maximum 

value in the vicinity of the plate and then decreases 

properly to approach the free stream value.  

Gm  1.0, 2.0, 3.0, 4.0

1 2 3 4 5 6

0.2

0.4

0.6

0.8

f

 
Fig. 4. Velocity profiles for different values of Gm  
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For various values of the magnetic parameter M , the 

velocity profiles are plotted in Fig. 5. It can be seen that 

as M increases, the velocity decreases. This result 

qualitatively agrees with the expectations, since the 

magnetic field exerts a retarding force on the free 

convection flow. 

Figure 6 shows the effect of angle of inclination to the 

vertical direction on the velocity profiles. From this 

figure we observe that the velocity is decreased by 

increasing the angle of inclination. The fact is that as 

the angle of inclination increases the effect of the 

buoyancy force due to thermal diffusion decreases by a 

factor of cos . Consequently the driving force to the 

fluid decreases as a result velocity profiles decrease.  
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Fig. 5. Velocity profiles for different values of M  
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Fig. 6. Velocity profiles for different values of   

 
Figures 7 and 8 illustrate the velocity and temperature 

profiles for different values of the Prandtl number Pr . 

The Prandtl number defines the ratio of momentum 

diffusivity to thermal diffusivity. The numerical results 

show that the effect of increasing values of Prandtl 

number results in a decreasing velocity (Fig. 7). From 

Fig. 8, it is observed that an increase in the Prandtl 

number results a decrease of the thermal boundary layer 

thickness and in general lower average temperature 

within the boundary layer. The reason is that smaller 

values of Pr  are equivalent to increasing the thermal 

conductivities, and therefore heat is able to diffuse 

away from the heated plate more rapidly than for higher 

values of Pr .Hence in the case of smaller Prandtl 

numbers as the boundary layer is thicker and the rate of 

heat transfer is reduced. 
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Fig. 7. Velocity profiles for different values of Pr  

 

 

Pr  0.71, 1.0, 1.5, 7.0

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

 
Fig. 8. Temperature profiles for different values of Pr  

 
 

The effect of the viscous dissipation parameter i.e., the 

Eckert number Ec on the velocity and temperature are 

shown in Figs 9 and 10 respectively. The Eckert 

number Ec  expresses the relationship between the 
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kinetic energy in the flow and the enthalpy. It embodies 

the conversion of kinetic energy into internal energy by 

work done against the viscous fluid stresses. The 

positive Eckert number implies cooling of the plate i.e., 

loss of heat from the plate to the fluid. Hence, greater 

viscous dissipative heat causes a rise in the temperature 

as well as the velocity, which is evident from Figs 8 and 

9. 
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Fig. 9. Velocity profiles for different values of Ec  
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Fig. 10. Temperature profiles for different values of 

Ec  
 

The influence of the Schmidt number Sc on the velocity 

and concentration profiles are plotted in Figs 11 and 12 

respectively. The Schmidt number embodies the ratio of 

the momentum to the mass diffusivity. The Schmidt 

number therefore quantifies the relative effectiveness of 

momentum and mass transport by diffusion in the 

hydrodynamic (velocity) and concentration (species) 

boundary layers. As the Schmidt number increases the 

concentration decreases. This causes the concentration 

buoyancy effects to decrease yielding a reduction in the 

fluid velocity. The reductions in the velocity and 

concentration profiles are accompanied by simultaneous 

reductions in the velocity and concentration boundary 

layers. These behaviors are clear from Figs 11 and 12. 
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Fig. 11. Velocity profiles for different values of Sc  
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Fig. 12. Concentration profiles for different values of 

Sc  

5. CONCLUSION 

With the use of the Lie group analysis, we first find the 

symmetries of the partial differential equations and then 

reduce the equations to ordinary differential equations 

by using scaling and translational symmetries. Exact 

solutions for translation symmetry and numerical 

solution for scaling symmetry are obtained. Since the 

equations are highly nonlinear, a numerical treatment 

would be more appropriate. From the numerical results, 

it is predicted that the effect of increasing thermal and 

solutal Grashof numbers on a viscous incompressible 

fluid is to increase the flow velocity. It is interesting to 

note that the temperature of the fluid decreases at a very 

fast rate in the case of water in comparison with air. 
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Therefore, as the Schmidt number increases the 

concentration decreases. This causes the concentration 

buoyancy effects to decrease yielding a reduction in the 

fluid velocity. The analysis has helped engineers 

understand the mechanisms that are most important in 

the deposition process. Free convective flow through 

porous media is an area of research undergoing rapid 

growth in the fluid mechanics and heat and mass 

transfer field due to its broad range of scientific and 

engineering applications. It is associated with petroleum 

and geothermal processes, fiber and granular insulation 

materials, high performance insulation buildings, 

transpiration cooling, packed bed chemical reactors, 

control of pollutant spread in ground water. 
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