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ABSTRACT 

Unsteady hydromagnetic Couette flow of class-II of a viscous incompressible electrically conducting fluid in a 

rotating system with Hall effects in the presence of a uniform transverse magnetic field is studied. Both the fluid and 

plates of the channel are assumed to be at rest when time 0t   and fluid flow within the channel is induced due to 

non-torsional oscillations of the upper plate in its own plane with a velocity ( )U t  about a non-zero uniform velocity 

0U  at time 0t   . Exact solution of the governing equations is obtained by Laplace transform technique. Asymptotic 

behavior of the solution is analyzed for small and large values of rotation parameter 
2K  and magnetic parameter 

2M  when time t>>1. The numerical values of the fluid velocity are depicted graphically whereas that of shear stress 

at the plates are presented in tabular form for various values of Hall current parameter m , rotation parameter 
2K ,  

magnetic parameter 
2M  and frequency parameter  . 

 

Keywords: MHD Couette flow of class-II, Rotation, Oscillations, Stokes-Ekman boundary layers, Modified Ekman 

boundary layers, Hartmann boundary layer.    

 

 

NOMENCLATURE 

0B
 

uniform transverse magnetic field 

2K  rotation parameter 

L  width of the channel 

m  Hall current parameter 

2M  magnetic parameter 

p  Laplace transform parameter 

*p  modified pressure including centrifugal 

force 

t  non-dimensional time 

0U  uniform mean velocity in x -direction 

 

1 1,u v  non-dimensional primary and secondary 

velocity respectively 

 

, ,x y z  Cartesian coordinates 

  fluid density 

  electrical conductivity  

  kinematic coefficient of viscosity 

  frequency parameter 

  uniform angular velocity 

  channel width variable 

,x y   primary and secondary shear stress 

respectively 

 
 

1. INTRODUCTION 

Investigation of unsteady hydromagnetic flow of a 

viscous, incompressible and electrically conducting 

fluid assumes significance because transient nature of 

fluid flow may be expected at the start-up time of so 

many MHD devices viz. MHD energy generators, 

MHD pumps, induced type pumps used in nuclear 

reactors, MHD accelerators, MHD flow meters etc.. 

Keeping in view this fact unsteady MHD Couette flow 

of a viscous, incompressible and electrically conducting 

fluid is investigated by a number of researchers. 

Mentioned may be made of the research studies of Tao 

(1960), Katagiri (1962), Muhuri (1963), Soundalgekar 

(1967), Mishra and Muduli (1980),  Singh and Kumar 

(1983) and Seth et al. (2011a). Unsteady hydromagnetic 

Couette flow in a rotating system finds widespread 

applications in geophysics, planetary sciences and also 

in many areas of industrial engineering. In such types of 
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flow Coriolis and magnetic forces play an important 

role in determining flow features of the problem. It may 

be noted that Coriolis force is much stronger than the 

inertial and viscous forces and it is comparable in 

magnitude with magnetic force. Keeping in view 

importance of such fluid flow problems Seth et al. 

(1982, 1988, 2009, 2010a, 2010b, 2011b, 2012), 

Chandran et al. (1993), Singh et al. (1994), Singh 

(2000), Ghosh and Pop (2004), Hayat et al. (2004a, 

2004b, 2004c), Das et al. (2009), Guria et al. (2009) 

and Beg et al. (2011) investigated unsteady MHD 

Couette flow of a viscous, incompressible and 

electrically conducting fluid in a rotating system 

considering different aspects of the problem. On the 

basis of the above mentioned research studies on MHD 

Couette flow we are of opinion that MHD Couette flow 

may be induced in two ways and it can be put into two 

classes, namely, (i) MHD Couette flow of class-I and 

(ii) MHD Couette flow of class-II. The fluid flow which 

is induced due to the movement of a plate, when fluid is 

bounded by a stationary plate placed at a finite distance 

from the moving plate, may be recognized as MHD 

Couette flow of class-I. This fluid flow is similar to the 

fluid flow induced by a moving plate when free stream 

is stationary. The fluid flow past a stationary plate 

which is induced due to movement of a plate placed at a 

finite distance from the stationary plate may identified 

as MHD Couette flow of class-II. This fluid flow is 

similar to the flow past a stationary plate due to moving 

free stream. Research studies carried out by Seth et al. 

(1982, 1988, 2010a, 2010b, 2011b, 2012), Chandran et 

al. (1993), Singh et al. (1994), Ghosh (2002), Ghosh 

and Pop (2004), Guria et al. (2008, 2009), Das et al. 

(2009) and Beg et al. (2011) belong to MHD Couette 

flow of class-I whereas research investigations of Singh 

(2000), Hayat et al. (2004a, 2004b, 2004c), Seth et al. 

(2009, 2011c), Seth and Singh (2011) belong to MHD 

Couette flow of class-II. 

It is well known that in an ionized fluid, where density 

is very low and/or the magnetic field is strong, the 

effects of Hall current become significant as mentioned 

by Cowling (1957) because Hall current induces 

secondary flow in the flow-field. Taking into account 

this fact Ghosh and Pop (2004) and Seth et al. (2012) 

studied Hall effects on unsteady MHD Couette flow in 

a rotating environment which belongs to MHD Couette 

flow of class-I whereas Hayat et al. (2004c) and Seth et 

al. (2009) investigated effects of Hall current on 

oscillatory MHD Couette flow of class-II in a rotating 

system considering different aspects of the problem.    

Present investigation deals with the study of unsteady 

MHD Couette flow of class-II of a viscous, 

incompressible and electrically conducting fluid in a 

rotating system with Hall effects in the presence of a 

uniform transverse magnetic field applied parallel to the 

axis of rotation. Both the fluid and plates of the channel 

are assumed to be at rest when time 0t   and fluid 

flow within the channel is induced due to non-torsional 

oscillations of the upper plate in its own plane with a 

velocity ( )U t  about a non-zero uniform velocity 0U  

at time 0t  . Such study assumes importance because 

both Hall current and rotation induce secondary flow 

(i.e. cross flow) in the flow-field. 

2. MATHEMATICAL FORMULATION AND 

SOLUTION 

Consider flow of a viscous, incompressible and 

electrically conducting fluid between two infinite 

parallel plates 0z   and z L  in the presence of a 

uniform transverse magnetic field 0B  which is applied 

parallel to z -axis. The fluid and channel rotate in 

counter clockwise direction with a uniform angular 

velocity   about z-axis. Both the fluid and plates of 

the channel are assumed to be at rest at time 0t  . 

Upper plate z L  starts executing non-torsional 

oscillations in its own plane with a velocity ( )U t  

about a non-zero uniform mean velocity 0U  in x-

direction at time 0t   and the lower plate 0z  , 

which coincides with xy-plane, is kept fixed. Geometry 

of the problem is presented in Fig.1. It is assumed that 

the induced magnetic field produced by fluid motion is 

neglected in comparison to applied one. This is justified 

because magnetic Reynolds number is very small for 

metallic liquid and partially ionized fluids (Cramer and 

Pai, 1973). Also no applied or polarization voltage 

exists i.e. electric field 0E  . This corresponds to the 

case when no energy is added or extracted from the 

fluid by electrical means (Meyer, 1958). Since plates 

are of infinite extent in x  and y -directions, all 

physical quantities except pressure depend on z  and t   
only. 

 

Fig. 1. Geometry of the problem 

In view of the assumptions made above the governing 

equations for the fluid flow problem in a rotating 

system with Hall effects are given by 
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where , , , , , , ,e e e eu v m        and 
*p  are, 

respectively, fluid velocity in x-direction, fluid velocity 

in y-direction, kinematic coefficient of viscosity, 

electrical conductivity of the fluid, fluid density, Hall 

current parameter, cyclotron frequency, electron 

collision time and modified pressure including 

centrifugal force.

 
The initial and boundary conditions are given by 

0for 0 and 0u v z L t       (4) 

0 at 0 for 0u v z t      (5) 

( ), 0 at for 0u U t v z L t      (6) 

Equation (3) shows that modified pressure 
*p  is 

uniform along z -axis i.e. axis of rotation. Taking into 

the consideration of research studies made on MHD 

Couette flow till now, we are of the opinion that MHD 

Couette flow may be classified in two forms, namely, 

(i) MHD Couette flow of class-I and (ii) MHD Couette 

flow of class-II. The fluid flow induced due to 

movement of a plate, when fluid is bounded by a 

stationary plate placed at a finite distance from the 

moving plate, may be identified as MHD Couette flow 

of class-I. This fluid flow is similar to the flow induced 

due to movement of a plate when free stream is 

stationary. The fluid flow past a stationary plate, which 

is induced due to movement of a plate placed at a finite 

distance from the stationary plate, may be regarded as 

MHD Couette flow of class-II. This fluid flow is similar 

to the flow past a stationary plate due to moving free 

stream. For unsteady MHD Couette flow of class-I the 

pressure gradient terms 
*1 p

x





 and 

*1 p

y





, which 

are present in Eqs. (1) and (2) respectively, are not 

considered by Seth et al (1982, 1988, 2010a, 2010b, 

2011b, 2012), Chandran et al. (1993), Singh et al. 

(1994), Ghosh (2002), Ghosh and Pop (2004), Guria et 

al. (2008, 2009), Das et al. (2009) and Beg et al. 

(2011). This assumption is justified and it is clearly 

evident from Eq. (5). For unsteady MHD Couette flow 

of class-II values of pressure gradient terms in Eqs. (1) 

and (2) are obtained with the help of boundary 

conditions, Eq. (6) which are given below 
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Making use of Eq. (7), the Eqs. (1) and (2) reduce to 
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Equations (8) and (9), in non-dimensional form, 

become 

21
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
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


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 

 (11) 

where /z L  , 1 0/u u U , 1 0/v v U , 0 ( )U U F t , 

2 2 2
0 ( / )M L B    is magnetic parameter which is 

square of Hartmann number and 2 2 /K L   is 

rotation parameter which is reciprocal of Ekman 

number.  

The initial and boundary conditions, Eq. (4) to Eq. (6), 

in non-dimensional form, become 

1 1 0 for 0 1 and 0u v t      (12) 

1 1 0 at 0 for 0u v t     (13) 

1 1( ), 0 at 1 for 0u F t v t     (14) 

Combining Eq. (10) with Eq. (11), we obtain 

2
2

2

2 2

2 2

2 ( )
1

( )
1

q mM
i K q F

t m

F q M
q F

t m

 
   

   

 
   
  

 (15) 

where 1 1q u iv  . 

The initial and boundary conditions, Eq. (12) to Eq. 

(14), in compact form, become 

0 for 0 1 and 0q t     (16) 

0 at 0 for 0q t    (17) 

( ) at 1 for 0q F t t    (18) 

Since fluid flow is of oscillatory nature we may assume 

( )F t  in the following form 

( ) 1 ( )i t i tF t ae be     (19) 
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where a  and b  are complex constants and b  is 

complex conjugate of a . 
2 /L    is frequency 

parameter where   is frequency of oscillations. 

Using Laplace transform, Eq. (15) subject to the initial 

condition, Eq. (16) reduces to   

2 2 2
2

2 2 2

2 2
2

2 2

2
1 1

2
1 1

d q M mM
p i K q

d m m

M mM
p i K F

m m
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  
     

     

  
      

     

 (20) 

where 
0 0

( , ) , ( )pt ptq e q t dt F e F t dt
 

     and 

p  being Laplace transform parameter. 

Boundary conditions, Eq. (17) and Eq. (18) with use of 

Eq. (19) after taking Laplace transform become 

0 at 0q    (21) 

1
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a b
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Solution of Eq. (20) subject to the boundary conditions, 

Eq. (21) and Eq. (22) is given by 
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Taking inverse Laplace transform of Eq. (23), we 

obtain 
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(24) 

2for N   
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(25) 
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The upper and lower signs in Eq. (24) are considered 

for 
2N   and 

2N   respectively. 

When 
2N   i.e. when the natural frequency 

2N , 

which is due to rotation and Hall current, is equal to the 

impressed frequency   the inverse Laplace transform 

of Eq. (23) gives 
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Equations (24)-(27) represent the solution for fluid 

velocity in general case. The solutions, Eq. (24) and Eq. 

(26) exhibit a unified representation of initial MHD 

Couette flow induced due to non-torsional oscillations 

of the upper plate, final steady state flow and decaying 

oscillations excited by interaction of magnetic field, 

Coriolis force, Hall current and initial oscillatory 

motion. In the absence of magnetic field (i.e. 
2 0M  ) 

and Hall current (i.e. 0m  ) solutions, Eq. (24) and 

Eq. (26) are in agreement with the solutions obtained by 

Das et al. (2008). 

We shall now examine the solutions, Eq. (24) and Eq. 

(26) for large values of time t  and for small as well 

large values of rotation parameter 
2K and magnetic 

parameter 
2M .  

It may be noted that when time t  is large i.e. t>>1 then 

 is small (i.e. ω<<1) such that t is finite. For large 

time t  and / 2a b    the solutions, Eq. (24) and 

Eq. (26) assume the following form 
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 (28) 

for 
2N   
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 (29) 

2for N   

The solutions, Eq. (28) and Eq. (29) represent the 

solution for fully developed oscillatory hydromagnetic 

Couette flow in a rotating system. In the absence of the 

Hall current (i.e. 0m  ) solutions, Eq. (28) and Eq. 

(29) are in agreement with the solutions obtained by 

Singh (2000).  

3. ASYMPTOTIC SOLUTION 

We shall now examine the asymptotic behavior of the 

solution (28) for small as well as large values of 
2 2andK M  when 1   to gain some physical 

insight into the flow pattern. 

Case I: K2 << 1 and M2 << 1
 

Since 
2 2,M K  and   are very small, neglecting 

square and higher powers of 
2 2,M K  and   in Eq. 

(28), primary velocity 1u  and secondary velocity 1v  

assume the following form 

1

2
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(30) 

2
2

1 (1 )( 2 )(1 cos )
6

N
v t          (31) 

It is evident from the Eq. (30) and Eq. (31) that for a 

slowly rotating system with small frequency of 

oscillations when the conductivity of the fluid is low 

and/or the applied magnetic field is weak, primary 

velocity 1u  is independent of rotation while the 

secondary velocity 1v  is affected by magnetic field, 

Hall current and rotation. The fluid flow in both the 

directions has considerable effects of oscillations. In the 

absence of Hall current secondary velocity 1v  is 

unaffected by magnetic field. 

Case II: K2 >>1 and M2 ~ O(1)
 

When 
2K  is very large and 

2M  is small order of 

magnitude fluid flow becomes boundary layer type. For 

the boundary layer flow near the lower plate 0  , 

primary velocity 1u  and secondary velocity 1v  in Eq. 

(28) assume the following form 
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(33) 

where  

2
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 (34) 
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 (34) 

It is revealed from the expressions Eq. (32) and Eq. (33) 

that the solution is in quasi-steady state. Steady state 

flow is confined within a boundary layer of thickness 

4(1/ )O   which may be identified as modified Ekman 

boundary layer and can be viewed as classical Ekaman 

boundary layer modified by Hall current and magnetic 

field. It is noticed from the expressions Eq. (32) and Eq. 

(33) that the unsteady flow has three modes of 

oscillations. The first mode corresponds to the pure 

oscillations of frequency   due to non-torsional 

oscillations of upper plate of the channel which persist 

in the entire fluid region. The other two modes of 

oscillations correspond to modified Stokes flow and are 

confined within boundary layers of thickness 5(1/ )O   

and 6(1/ )O  . These boundary layers may be 

recognized as modified Stokes-Ekaman boundary layers 

and may be viewed as classical Ekman bounadry layers 

modified by magnetic field, oscillations and Hall 

current. It may be noted from Eq. (34) that 4 -layer is 

thicker than 5 -layer whereas 6 -layer is thicker than 

4 -layer. The thickness of 4 -layer decreases with 

increase in either 
2K  or 

2M  whereas it increases with 

increase in m . The thickness of 5 -layer decreases 

with increase in either 
2K  or 

2M  or   whereas it 

increases with increase in m . The thickness of 6 -

layer decreases with increase in either
2K  or 

2M  

whereas it increases with increase in either   or m . 

Similar type of boundary layers arise in the 

neighborhood of the upper plate. It is evident from Eq. 

(32) and Eq. (33) that unsteady flow is divided into two 

parts. One part oscillates with amplitude 5
1

2
e

 
 and 

the other one with 6
1

2
e

 
. The unsteady flow 

corresponding to the former part oscillates with phase 

lag of 5   whereas the unsteady flow corresponding to 

latter part oscillates with a phase lead of 6  . 

The exponential terms in Eq. (32) and Eq. (33) damped 

out quickly as   increases. When 61/   i.e. 

outside the boundary layer region, Eq. (32) and Eq. (33) 

reduce to 

1 11 cos , 0u t v  
 

(35) 

It is evident from the expression Eq. (35) that, in a 

certain core given by 61/   i.e. outside the 

boundary layer region, the fluid has velocity in primary 

flow direction which oscillates with the same frequency 

  as that of the upper plate when 0t  . 

Case III: M2 >>1 and K2 ~ O(1)
 

This case also corresponds to the boundary layer type 

flow. For the boundary layer flow near the lower plate 

0  , we obtain fluid velocity from Eq. (28) as 
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 (38) 

The expressions Eq. (36) and Eq. (37) show that the 

fluid flow is in quasi-steady state. Steady state flow is 

confined within a modified Hartmann boundary layer of 

thickness  2 21/ / (1 )O M m  which decreases with 

increase in magnetic parameter 
2M  and increases with 

increase in Hall current parameter m . Unsteady state 

flow has three modes of oscillations. The first mode 

corresponds to pure oscillations with frequency   due 

to non-torsional oscillations of the upper plate of the 

channel when 0t   and fills the entire fluid region. 

The other two modes of oscillations correspond to the 

modified Stokes flow and are confined within a thin 

modified Hartmann boundary layer of thickness 

 2 21/ / (1 )O M m . Similar type of boundary layer 

appears adjacent to the upper plate of the channel. It is 

interesting to note that unsteady flow is divided into 

two parts and both the parts oscillate with amplitude 

 2/ 11

2

M m
e

 
. The unsteady flow corresponding to 

first part oscillates with phase lag 8    when 
2N  . 

However, unsteady flow corresponding to second part 

oscillates with phase lead of 9   when 
2N   and 

this part oscillates with phase lag of 9   when 
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2N  . Outside the boundary layer region, the fluid 

velocity assumes the form 

1 11 cos , 0u t v    (39) 

It is revealed from Eq. (39) that fluid flows in primary 

flow direction only and oscillates with the same 

frequency   as that of the upper plate when 0t  .  

4. SHEAR STRESS AT THE PLATES 

The Non-dimensional shear stress at the lower and 

upper plates due to primary and secondary flows, for 
2N  , are given by 
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(41) 

Non-dimensional shear stress at the lower and upper 

plates due to primary and secondary flows, for 
2N  , are given by 
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(43) 

5. RESULTS AND DISCUSSION 

To study the effects of Hall current, rotation, magnetic 

field and oscillations on the flow-field the numerical 

values of the fluid velocity, computed from the 

analytical solution Eq. (24) mentioned in section 2, are 

displayed graphically versus channel width variable   

in Figs. 2 to 9 for various values of Hall current 

parameter m , rotation parameter 
2K , magnetic 

parameter 
2M and frequency parameter   when 

/ 2t   and 
2N  . It is evident from Fig. 2 and 

Fig. 3 that primary velocity 1u  decreases whereas 

secondary velocity 1v  increases on increasing m  

which implies that Hall current tends to retard primary 

flow whereas it has reverse effect on secondary flow.  
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Fig. 2. Velocity profiles when 2 2K  ,  

 2 210 and 5M N     
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Fig. 3. Velocity profiles when 2 2,K   

 2 210 and 15M N   
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It is revealed from Fig. 4 and Fig. 5 that primary 

velocity 1u  and secondary velocity 1v  increase on 

increasing 
2K  which implies that rotation tends to 

accelerate both the primary and secondary flows.  
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Fig. 4. Velocity profiles when 0.5,m   

 2 210 and 5M N   
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 Fig. 5. Velocity profiles when 0.5,m   

 2 210 and 15M N     

It is noticed from Fig. 6 and Fig. 7 that primary velocity 

1u  increases whereas secondary velocity 1v  decreases 

on increasing 
2M  which implies that magnetic field 

tends to accelerate primary flow whereas it has reverse 

effect on secondary flow. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



u
1
, 

v 1

u
1

v
1

M2=10, 15, 20

 

Fig. 6. Velocity profiles when 0.5,m   

 2 22 and 5K N   
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Fig. 7. Velocity profiles when 0.5,m   

 2 22 and 15K N   
 

 It is revealed from Fig. 8 and Fig. 9 that primary 

velocity 1u  decreases on increasing   when 
2N   

whereas the secondary velocity 1v  increases on 

increasing   when 
2N   and it decreases on 

increasing   when 
2N   which implies that 

oscillations tend to retard primary flow when 
2N   

and secondary flow when 
2N   whereas it have 

reverse effect on secondary flow when 
2N  . 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



u
1
, 

v 1

u
1

v
1

=3, 5, 7

=3, 5, 7

 

Fig. 8. Velocity profiles when 0.5,m   

 2 2 22 and 10K M N  
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Fig. 9. Velocity profiles when 0.5,m   

 2 2 22 and 10K M N  
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The numerical values of the primary and secondary 

shear stress at the lower and upper plates, computed 

from the analytical expressions Eq. (40) and Eq. (41) 

mentioned in section 4, are presented in tabular form in 

Tables 1-8 for various values of 
2, ,m K  and 

2M  

when 
2N   by considering / 2t  . It is evident 

from Table 1 that, for 
2N  , primary shear stress at 

the lower plate i.e. 0x    decreases whereas 

secondary shear stress at the lower plate i.e. 0y    

increases on increasing either m  or  . This implies 

that Hall current and oscillations tend to reduce primary 

shear stress at the lower plate whereas it have reverse 

effect on secondary shear stress at the lower plate when 
2N  .  

Table 1 Shear stress at the lower plate due to primary 

and secondary flows when 
2 2K   

2 2and 10( )M N   

               ↓ m → 0.5 1.0 1.5 

 

0x    

3 2.6795 2.3162 1.9845 

5 2.3999 2.0254 1.6727 

7 2.1227 1.7286 1.3479 

 

0y    

3 1.4
69 1.849
 2.0177 

5 1.5332 1.9886 2.1874 

7 1.6146 2.1054 2.3241 
 

It is observed from Table 2 that, for
2N  , on 

increasing m , 0x    decreases when 

13 and 15   and it decreases, attains a minimum 

and then increases in magnitude when 17   

whereas, on increasing  , 0x    decreases when 

0.5 and 1.0m   and it decreases, attains a minimum 

and then increases in magnitude when 1.5m  . 

0y    increases on increasing m . On increasing , 

0y    increases when 0.5m  , it increases, attains a 

maximum and then decreases when 1.0m   and it 

decreases when 1.5m  . This implies that, for 

2N  , Hall current tends to enhance secondary 

shear stress at the lower plate whereas it has reverse 

effect on the primary shear stress at the lower plate 

when 15  . Oscillations tend to reduce primary 

shear stress at the lower plate when 1.0m   and 

secondary shear stress at the lower plate behaves in 

oscillatory manner with respect to oscillations. It may 

be noted from Table 2 that there exists flow separation 

at the lower plate in the primary flow direction on 

increasing either m  or  . It is revealed from Table 3 

that, for 
2N  , primary shear stress at the upper 

plate i.e. 1x    and secondary shear stress at the 

upper plate i.e. 1y    increase on increasing  . 

1x    decreases, attains a minimum and then 

increases on increasing m . 1y    increases on 

increasing m . This implies that, for 
2N  , Hall 

current tends to enhance secondary shear stress at the 

upper plate whereas oscillations have tendency to 

enhance both the primary and secondary shear stress at 

the upper plate.  

Table 2 Shear stress at the lower plate due to primary 

and secondary flows when 
2 2K   

2 2and 10( )M N 
 

               ↓ m → 0.5 1.0 1.5 

 

0x    

13 1.3378 0.8603 0.4007 

15 1.1021 0.6027 0.1335 

17 0.8818 0.3674 -0.1031 

 

0y    

13 1.7505 2.2758 2.4749 

15 1.7643 2.2803 2.4585 

17 1.7680 2.2701 2.4288 
 

Table 3 Shear stress at the upper plate due to primary 

and secondary flows when 
2 2K   

2 2and 10( )M N   

               ↓ m → 0.5 1.0 1.5 

 

1x    

3 0.2296 0.2100 0.2426 

5 0.2588 0.2360 0.2755 

7 0.2885 0.2712 0.3251 

 

1y    

3 0.3197 0.4907 0.6374 

5 0.3672 0.5661 0.7381 

7 0.4018 0.6219 0.8094 
 

It is noticed from Table 4 that, for 
2N  , 1x    

and 1y    increase on increasing m . 1x    

increases when 0.5 and 1.0m   and it increases, 

attains a maximum and then decreases when 1.5m   

on increasing  . 1y    decreases on increasing  . 

This implies that, for 
2N  , Hall current tends to 

enhance both the primary and secondary shear stress at 

the upper plate and oscillations tends to reduce 

secondary shear stress at the upper plate while it tends 

to enhance primary shear stress at the upper plate when 

1.0m  . It is observed from Table 5 that, for 

2N  , 0x    and 0y   increase on increasing 

2K . On increasing 
2M , 0x    decreases when 

2 2K   and it increases when 
2 3 and 4K  . On 

increasing 
2M , 0y    increases when 

2 2K  , it 

decreases, attains a minimum and then increases when 
2 3K   and it decreases when 

2 4K  . This implies 
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that, for
2N  , rotation tends to enhance both the 

primary and secondary shear stress at the lower plate. 

Magnetic field tends to enhance primary shear stress at 

the lower plate when 
2 3K  . Secondary shear stress 

at the lower plate behaves in oscillatory manner with 

respect to magnetic field.  

Table 4 Shear stress at the upper plate due to primary 

and secondary flows when 
2 2K   

2 2and 10( )M N 
 

               ↓ m → 0.5 1.0 1.5 

 

1x    

13 0.3575 0.3848 0.4826 

15 0.3662 0.4041 0.5021 

17 0.3665 0.4091 0.5003 

 

1y    

13 0.4165 0.6368 0.7964 

15 0.3977 0.6007 0.7384 

17 0.3731 0.5559 0.6740 
 

Table 5 Shear stress at the lower plate due to primary 

and secondary flows when 0.5m   

2and 5( )N  
 

2M ↓ 
2K → 

2 3 4 

 

0x    

10 2.3999 2.5680 2.7420 

15 3.1140 3.2357 3.3629 

20 3.7094 3.8050 3.9054 

 

0y    

10 1.5332 1.8322 2.0963 

15 1.5468 1.8002 2.0337 

20 1.5848 1.8083 2.0190 
 

It is evident from Table 6 that, for 
2N  , 0x    

and 0y   increase on increasing 
2K . 0x    

increases on increasing 
2M . 0y    increases when 

2 2K   and it decreases when 
2 3 and 4K   on 

increasing 
2M . This implies that, for 

2N  , 

rotation tends to enhance both the primary and 

secondary shear stress at the lower plate. Magnetic field 

tends to enhance primary shear stress at the lower plate 

whereas it has reverse effect on the secondary shear 

stress at the lower plate when
2 3K  . It is observed 

from Table 7 that, for
2N  , 1x    decreases 

whereas 1y    increases, attains a maximum and then 

increases on increasing
2K . 1x    and 1y    

decreases on increasing 
2M . This implies that, 

for
2N  , rotation tends to reduce primary shear 

stress at the upper plate. Magnetic field tends to reduce 

both the primary and secondary shear stress at the upper 

plate.  

Table 6 Shear stress at the lower plate due to primary 

and secondary flows when 0.5m   

2and 15( )N  
 

         
2M ↓ 

2K → 
2 3 4 

 

0x    

10 1.1021 1.2890 1.4972 

15 1.9593 2.1080 2.2695 

20 2.6682 2.7893 2.9189 

 

0y    

10 1.7643 2.1373 2.4744 

15 1.8020 2.1065 2.3867 

20 1.8372 2.0972 2.3405 

Table 7 Shear stress at the upper plate due to primary 

and secondary flows when 0.5m   

2and 5( )N  
 

         
2M ↓ 

2K → 
2 3 4 

 

1x    

10 0.2588 0.1618 0.0718 

15 0.1365 0.0820 0.0316 

20 0.0740 0.0414 0.0112 

 

1y    

10 0.3672 0.3894 0.3859 

15 0.2431 0.2509 0.2464 

20 0.1662 0.1683 0.1640 

It is found from Table 8 that, for 
2N  , 1x    

decreases whereas 1y    increases on increasing 

2K . 1x    and 1y    decrease on increasing 
2M . 

This implies that, for
2N  , rotation tends to reduce 

primary shear stress at the upper plate whereas it has 

reverse effect on secondary shear stress at the upper 

plate. Magnetic field has tendency to reduce both the 

primary and secondary shear stress at the upper plate.  

Table 8 Shear stress at the upper plate due to primary 

and secondary flows when 0.5m   

2and 15( )N  
 

         
2M ↓ 

2K → 
2 3 4 

 

1x    

10 0.3662 0.2706 0.1703 

15 0.2033 0.1407 0.0777 

20 0.1127 0.0718 0.0319 

 

1y    

10 0.3977 0.4481 0.4742 

15 0.2913 0.3133 0.3210 

20 0.2111 0.2198 0.2202 

6. CONCLUSION 

The Present investigation deals with the theoretical 

study of unsteady MHD Couette flow of class-II in a 

rotating system. The significant results are summarized 

below: 
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1. Hall current tends to retard primary flow whereas 

it has reverse effect on secondary flow. 

2. Rotation tends to accelerate both the primary and 

secondary flows. 

3. Magnetic field tends to accelerate primary flow 

whereas it has reverse effect on secondary flow. 

4. Oscillations tend to retard primary flow when 
2N   and secondary flow when 

2N   

whereas it has reverse effect on secondary flow 

when 
2N  . 

5. For 
2N  , Hall current and oscillations tend to 

reduce primary shear stress at the lower plate 

whereas it have reverse effect on secondary shear 

stress at the lower plate.   

6. For 
2N  , Hall current tends to enhance 

secondary shear stress at the lower plate whereas it 

has reverse effect on the primary shear stress at the 

lower plate when 15  . Oscillations tend to 

reduce primary shear stress at the lower plate when 

1.0m   and secondary shear stress at the lower 

plate behaves in oscillatory manner with respect to 

oscillations. There exists flow separation at the 

lower plate in primary flow direction on increasing 

either m  or  .  

7. For 
2N  , Hall current tends to enhance 

secondary shear stress at the upper plate whereas 

oscillations have tendency to enhance both the 

primary and secondary shear stress at the upper 

plate.  

8. For 
2N  , Hall current tends to enhance both 

the primary and secondary shear stress at the upper 

plate and oscillations tends to reduce secondary 

shear stress at the upper plate while it tends to 

enhance primary shear stress at the upper plate 

when 1.0m  . 

9. For 
2N  , rotation tends to enhance both the 

primary and secondary shear stress at the lower 

plate. Magnetic field tends to enhance primary 

shear stress at the lower plate when 
2 3K  . 

Secondary shear stress at the lower plate behaves 

in oscillatory manner with respect to magnetic 

field.  

10. For 
2N  , rotation tends to enhance both the 

primary and secondary shear stress at the lower 

plate. Magnetic field tends to enhance primary 

shear stress at the lower plate whereas it has 

reverse effect on the secondary shear stress at the 

lower plate when 
2 3K  . 

11. For 
2N  , rotation tends to reduce primary 

shear stress at the upper plate. Magnetic field tends 

to reduce both the primary and secondary shear 

stress at the upper plate. 

12. For 
2N  , rotation tends to reduce primary 

shear stress at the upper plate whereas it has 

reverse effect on secondary shear stress at the 

upper plate. Magnetic field has tendency to reduce 

both the primary and secondary shear stress at the 

upper plate. 
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