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ABSTRACT 

This work concerns the study of heat transfer by means of natural convection with fluids circulating in enclosures.  

This is largely studied both experimentally and numerically due to their wide industrial application in various fields 

such as nuclear energy, the heating and cooling of buildings, solar collectors, etc. A great deal of relevant research 

work consists of numerical simulations of natural convection mechanisms with laminar flows in closed cavities. In 

this context, the present study comes as a contribution in numerical form of investigating the turbulent natural 

convection in a vertical enclosure which has sinusoidal protuberances on one of its vertical walls. Both the top and 

bottom of the enclosure are open to allow the fluid flow. The horizontal walls are supposed to be adiabatic.  

We are interested in determining the flow for various amplitudes and periods. The influence of geometry on several 

factors such as: temperature, the local Nusselt number, turbulent kinetic energy k and its dissipation  are considered. 

Based on the Navier-Stokes equations and Boussinesq approximation, the equations were solved by a CFD technique 

using the Finite Volume Method in the case of enclosures having the form ratio equal to 0.6 (A=0.6). Given the 

steady conditions of heat flow on the vertical walls and the pressures at the entry and exit of the cavity, the results 

show that when we gradually increase the amplitudes of the protuberance wall (say a=0.005 m, a=0.010, a=0.015, a= 

0.02, and a=0.025), the maximal temperature increases with the increase of amplitude. This is due to the rise of the 

heat transfer surface of the modified wall. Regarding heat transfer parameters, the results show that the number of 

local Nusselt varies accordingly with the amplitudes. This explains that the modified wall is affected locally by a pure 

conduction. The results obtained in this study are in agreement with recent works of several authors. 
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NOMENCLATURE 

a amplitude wave q heat flux 

Β thermal expansion coefficient  U,V dimensionless axial and radial velocities 

Gr* modified Grashof number X, Y     dimensionless coordinates 

H height of the cavity  dimensionless temperature 

h height of protuberance p dimensionless temperature at the wall     

k turbulent kinetic energy  dimensionless stream function 

L length of the cavity  dimensionless time 

Nu Nusselt number    turbulence dissipation rate 

Nux local Nusselt number t        dynamic turbulence viscosity 

P pressure, Pa  dynamic viscosity  

Pr Prandtl number  cinematic viscosity     

1. INTRODUCTION 

The analysis of heat transfer by natural convection and 

the circulation of fluids in enclosures were largely 

studied using experimental and numerical techniques. 

Because of their large application in nuclear energy, the 

heating and cooling of buildings, solar collectors, etc, 

several works have made numerical studies on laminar 

flows inside closed cavities taking into account the 

mechanism of natural convection. Larson and Viskanta 

(1976) have numerically studied the heat transfer in an 

opaque closed square cavity. In a similar study, Webb 

and Viskanta (1987) have included a semi-transparent 

vertical wall (glass leaf) in the cavity. Behnia et al. 

(1990) have also examined a rectangular cavity with 
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Semi-transparent wall. The wall had convection loss in 

its environment. 

The results of Bahnia et al. (1990) indicate that the 

external convection weakens the circulation of internal 

flows. Further studies are already classified, namely 

Ostrich (1988), Catton (1978), Bejan (1995), Khalifa-

abduljabe (2001), and Vahl Davis et al. (1983). 

Esherbiny (1996) has carried out an experimental study 

on convection heat transfer in an inclined, closed 

enclosure. Bairi et al. (2007) have realized a study with 

a high number of Rayleigh in a rectangular enclosure 

using numerical and experimental techniques. 

Aounallah et al. (2007) have performed a numerical 

study on the turbulent natural convection of air flow in 

a cavity being limited to two outside heated walls until 

a high number of Rayleigh (1012) by which they have 

analyzed the slope effects. The models of turbulence   

were soon reviewed by Chowdhury and Ahmadi 

(1992). The requirements of the models were integrated 

in a recent study of Yilmaz and Oztop (2006) on 

turbulences of heat transfer by forced convection. The 

Navier-stockes and energy equations have been solved 

numerically by the technique of CFD. Subsequently, the 

solutions were obtained using fluent code which uses 

the finite volume method. Han and Rank (1988) have 

developed a study on turbulent heat transfer in a 

rectangular channel with a sudden contraction at the 

entry.  Hwang and Liou (1992) have studied the local 

characteristics of heat transfer with turbulent flow in a 

rectangular pipe with abrupt contraction at the entry. 

The natural turbulent convection along a vertical plate 

was experimentally examined by Mulawah (2002).  

Because of their importance in industrial practice (heat 

exchanger, cooling of electronic components..), heat 

transfers by natural convection in cavities of complex 

geometries have been subject to numerous 

investigations. 

For the complex dynamic behavior of the fluid at 

undulated walls level. Mahmud et al. (2002) have 

highlighted the effect of the undulating surface. Adjout 

et al. (2002) have studied the natural convection in an 

inclined, undulated cavity comprising an undulated hot 

wall. Prodip et al. (2003) have presented a numerical 

simulation of natural convection in an enclosure with 

undulated, plane vertically parallel walls. Saidi et al. 

(1987) have carried out a numerical and experimental 

study on the natural convection in a sinusoidal cavity. 

Mabrouk Rebhi et al. (2005) have presented a 

numerical simulation study of natural convection in a 

cavity with sinusoidal bottom.  

To improve the functional performances of the heat-

transfer surface, this work concerns the study of the 

natural convection by laminar and turbulent flow in a 

vertical top- and bottom-open enclosure showing the 

role of protuberances. The horizontal walls are 

adiabatic. 

2. FORMULATION 

Adopting the Boussinesq approximation, the 

adimensional equations are written as: 

- Equations of Continuity 
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- Equations of Energy 
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The Nusselt local number Nux at the sinusoidal wall is 

calculated according to the relation below:  
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Where, p is the dimensionless temperature at the wall. 

 

2.1 Turbulence model 

Using the standard k-  model for the turbulence 

coupling, the turbulence kinetic energy k and its rate of 

dissipation are obtained from the following transport 

equations: 
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Gk represents the generation of turbulence kinetic 

energy due to the mean velocity gradients. Gb is the 

generation of turbulence kinetic energy due to 

buoyancy. YM represents the contribution of the 

fluctuating dilatation in compressible turbulence to the 

overall dissipation rate. C1., C2, and C3 are constants. 

k and  are the turbulent Prandtl numbers for k  and , 

respectively.  Sk and S are user-defined source terms.  

2.2 Modeling the Turbulent Viscosity 

The turbulent (or eddy) viscosity , t, is computed by 

combining k and  as follows 


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Where,  C   is a constant.   

The model constants C1., C2, C , k   and    have the 

following default values:  

C1=1.44, C2=1.92,C=0.09, k=1.0,   =1.3   

These default values have been determined from 

experiments with air and water for fundamental 

turbulent shear flows including homogeneous shear 

flows and decaying isotropic grid turbulence.  

They have been found to work fairly well for a wide 

range of wall-bounded and free shear flows. 

 

3.  MODEL GEOMETRY 

The physical system, considered in this work, consists 

of a vertical enclosure presenting in one of their vertical 

walls sinusoidal protuberances and openings at the 

bottom and the top of the vertical walls allowing the 

fluid flow. The horizontal walls are supposed adiabatic. 

This enclosure has a length L, a height H and a width L, 

filled with a fluid (air), Fig.1. The width L (in the 

direction perpendicular to the cross-section of the 

cavity) being selected is sufficiently large compared to 

the length L so that the flow is two-dimensional. 

4. NUMERICAL RESOLUTION 

The two-dimensional governing equations are solved by 

a CFD software which is primarily based on the method 

of finite volumes and is realized using the simpler 

logarithm. The choice of the meshing grid is selected in 

such a way that the refinement of the grid is of a high 

degree of accuracy in vertical sides precisely at the 

protuberances region. 
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Fig. 1. Calculation Field with the imposed conditions 

(Contours represent the flow circulation). 

5. VALIDATION 

The results of the present numerical simulation code 

were validated by considering a cavity with 

protuberances on one of its walls. They have been 

compared to those of Khanafer et al. (2009) studying 

natural convection in an enclosure presenting 

protuberances in one of its vertical walls. 

Figure 2 shows the streamlines for an amplitude of a=0 

and Ra= 106. The present results are (a) and Khanafer’s 

results are (b). 
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(a) 

 
(b) 

Fig. 2. Streamlines (a=0, Ra=106) for:  (a) our 

calculation and (b) Khanafer et al. (2009) 

 
Figures 3-5 give the results concerning an amplitude of 

a= 0.025 m for the same Rayleigh number. With these 

parameters, our calculations were similar to those of 

Khanafer (streamlines in Fig. 3 and isotherms contour 

in Fig. 4 and Fig. 5. 

In Fig. 6 we have plotted axial velocities evolution for 

our case and for Khanafer’s. The present results are in a 

good agreement with the works of Khenafar et al. 

(2009).
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(a) (b) 

Fig. 3. Streamlines (a=0.025 m, Ra=106) for: (a) our calculation and (b) Khanafer et al. (2009) 
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(a) (b) 

Fig. 4. Isotherm lines (a=0, Ra=106) for: (a) our calculation and (b) Khanafer et al. (2009). 
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(a) (b) 

Fig. 5. Isotherm lines (a=0.025, Ra=106) for :(a)Our calculation and  (b) Khanafer et al. (2009) 
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Fig. 6. Axial velocities profiles for a=0.025 m and Ra=106 

 

6. RESULTS AND DISCUSSION 

We have carried out a numerical study for various 

amplitudes. The results show various Factors like: 

temperature, local Nusselt number, turbulent kinetic 

energy k and its dissipation. 

Figures 7-10 show the fluid (air) flow characterized by 

the streamlines moving upward and by a set of contra-

rotating cells which meet in the hollows and at the tops 

of the sinusoid. We observe also, that the increasing of 

the amplitude, we have the formation of the vortices 

zone in the top and bottom regions of the cavity.  
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Fig. 7. Streamlines in the protuberant enclosure for an 

amplitude a=0.005m 
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Fig. 8. Streamlines in the protuberant enclosure  for 

an amplitude a=0.01 m 
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Fig. 9. Streamlines in the protuberant enclosure for an 

amplitude a=0.015 m 
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Fig. 10. Streamlines in the protuberant enclosure for an 

amplitude a=0.020 m 

Figure 11 presents the evolution of temperature profiles 

for various amplitudes. It is noticed that there is a 

progressive increase in temperature going from the low 

amplitude up to the high amplitude. This is due to the 

increase of the heat transfer surface in the deformed 

wall because the transfer in the sinusoids is carried out 

primarily by the mode of pure conduction and the 

natural convection transfer increases beyond the tops of 

the sinusoids. 

In Fig.12 and Fig.13 respectively we observe the 

evolution of the Nusselt numbers and the turbulent 

kinetic energy according to the height of protuberance 

for various amplitudes. The effect of increasing the 

amplitudes generates a slight increase in turbulence as 

well as in the rate of heat transfer. 

According to the same calculation, Fig.14 presents the 

evolution of temperature for various periods. We 

observe that temperature increases as protuberance 

periods increase for fixed amplitude according to the 

increase of the exchange area. 
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Fig. 11. Temperature profiles according to the height of the deformed wall, for various 

amplitudes 
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Fig. 12. Evolutions of Nusselt according to the height of the deformed wall, for various amplitudes 
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Fig. 13. Evolution of the turbulent kinetic energies versus the height of the protuberances, for various amplitudes 
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Fig. 14. Evolution of the Temperature versus the height of the protuberances, for various periods 

7. CONCLUSION 

In this work, we studied the influence of three factors 

evolution, in an enclosure presenting the vertical walls 

which is partially deformed. Two openings on the 

vertical walls are posed; the obtained results show that 

the flow is characterized by a circulation upwards and 

undulatory in the vicinity of the protuberances (hollow). 

In the vicinity of the sinusoids, we note the existence of 

a mode of heat transfer, purely, conductive and beyond 

the tops there which will be the convective mode where 

the numbers of Nusselt are higher compared with a heat 

transfer for a plane wall. 

According to these results of this work, we can 

conclude that our calculation seems in concordance 

with some other works found in literature for simple 

geometries. In our case, the study represents a coupling 

of protuberances and opening in the same cavity. 
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