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ABSTRACT 

In this paper, we study theoretically the magnetic effect of Blasius equation with suction/blowing. The similarity 

transformations are applied to reduce the governing partial differential equations to a set of nonlinear ordinary 

differential equations in dimensionless form. A mathematical technique, namely the Differential Transform Method 

(DTM), is used to solve the nonlinear differential equations under appropriate boundary conditions, in the form of 

series with easily computable terms. Then, Pade approximants are applied to the solutions to increase the 

convergence of the given series. The combined DTM-Pade procedure is implemented directly without requiring 

linearization, discretization or perturbation. Graphical results are presented to investigate influence of the Magnetic 

field on the velocity profiles. 
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1. INTRODUCTION 

The study of magnetohydrodynamic incompressible 

viscous flow has many important engineering 

applications in devices such as power generator, the 

cooling of reactors, the design of heat exchangers and 

MHD accelerators. In hydromagnetics, the problem of 

Hiemenz flow was chosen by Na (1979) to illustrate the 

solution of a third-order boundary value problem using 

the finite difference method. Ariel (1994) has 

considered the stagnation-point flow of electrically-

conducting fluids in the presence of large transverse 

magnetic field strengths. 

There has been an interest in studying 

magnetohydrodynamic flow in porous and non-porous 

media due to the effect of magnetic fields on the 

performance of many systems using electrically 

conducting fluids. Raptis et al. (1982) have analyzed 

hydromagnetic free convection flow through a porous 

medium between two parallel plates. Takhar and Ram 

(1994) have studied MHD forced and free convection 

flow of water at 4° C through a porous medium in the 

presence of a uniform transverse magnetic field for the 

local similarity equations. 

Because of the nonlinearities in the reduced differential 

equation, no analytical solution is available and the 

nonlinear equations usually are solved numerically 

subject to boundary conditions, one of which is 

prescribed at infinity. Although with the advancement 

of the symbolic computation software such as 

MATHEMATICA, MAPLE, MATLAB and so on, 

approximate analytic methods for nonlinear problems 

have been adopted by many researchers. 

Wazwaz (2001) investigated an efficient analytical and 

numerical procedure for solving boundary value 

problems for higher- order integro-differential 

equations by using Adomian decomposition method. 

Wazwaz (2006) examined the modified decomposition 

method is applied for analytic treatment of nonlinear 

differential equations that appear on boundary layers in 

fluid mechanics. The modified method accelerates the 

rapid convergence of the series solution, dramatically 

reduces the size of work. The series solution is 

combined with the diagonal Pade approximants to 

handle the boundary condition at infinity.  

Wazwaz (2007) analyzed a reliable treatment of two 

forms of the third order nonlinear Blasius equation 

which comes from boundary layer equations by solving 

variational iteration method. This study shows that the 

series solution is obtained without restrictions on the 

nonlinearity behavior.  Kuo (2004) investigated thermal 

boundary-layer problems in a semi-infinite flat plate by 

the differential transformation method. The differential 

transformation method is used to determine some 

solutions of these velocity and thermal boundary-layer 

problems. 

In recent years, the DTM has been successfully 

employed to solve many types of nonlinear problems 

such as the linear partial differential equations of 

fractional order Odibat and Momani (2008), multi-order 

fractional differential equations Erturk et al. (2008), the 
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hyperchaotic Rossler system Al-Sawalha et al. (2009), 

the fourth-order boundary value problems Erturk and 

Momani (2007), the Volterra integral equation with 

separable kernels Odibat (2008), the differential-

difference equations Arikoglu and Ozkol (2008), the 

free vibration equations of beam on elastic soil Catal 

(2008), the integral and integro-differential equation 

systems Arikoglu and Ozkol (2008). All of these 

successful applications verified the validity, 

effectiveness and flexibility of the DTM. 

This method constructs for differential equations an 

analytical solution in the form of a power series. 

Furthermore, power series are not useful for large 

values of , say  . It is now well known that Pade 

approximants Baker (1975), Baker and Graves-Morris 

(1981) have the advantage of manipulating the 

polynomial approximation into rational functions of 

polynomials. It is therefore essential to combination of 

the series solution, obtained by the DTM with the Pade 

approximant Peker et al. (2011), Rashidi and Erfani 

(2011) to provide an effective tool to handle boundary 

value problems at infinite domains. 

In this present problem, the influence of magnetic effect 

of Blasius equation with suction/blowing is analyzed; 

the nonlinear partial differential equation is solved for 

the velocity distribution. The effect of magnetic 

parameter and suction/blowing parameter on 

dimensionless velocity is thoroughly investigated.  

2.  PROBLEM STATEMENT AND 

MATHEMATICAL FORMULATION 

Many different but related phenomena are stated and 

studied by the Blasius equation Arikoglu and Ozkol 

(2005), Fang et al. (2008), Fang and Lee (2005) that has 

a special importance for all boundary-layer equations in 

fluid mechanics. The Blasius equation can be described 

as the non-dimensional velocity distribution in the 

laminar boundary layer over a semi-infinite flat plate 

which is shown in Fig.1. 

 
Fig. 1. Velocity layer on a flat plate 

 

It is assumed that the free stream velocity,U  , is also 

uniform and constant. Further, the incompressible 

viscous fluid is electrically conducting under the 

influence of an applied magnetic field normal to the 

stretching sheet. The induced magnetic field is 

neglected. The boundary-layer equations are as follows 
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Where u and v are the velocity components in x and y 

direction of the fluid,   is the viscosity of the fluid,   

is the electrical conductivity of the fluid in Eq. (2), the 

external electric field and polarization effects are 

negligible,   is the density and 0B  is the externally 

imposed magnetic field in the y-direction. 

The boundary conditions are 

at 0 : 0 : wy u v v    (3) 

at 0 : 0 : wy u v v    (4) 

at 0 :x u U   (5) 

where wv  is the velocity across the stretching sheet 

when wv < 0 , and it is blowing velocity when 0wv  . 

A stream function, ( , )x y  , is introduced such that 
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In addition to the physical considerations which require 

the introduction of this function, the mathematical 

significance of its use is that the equation of continuity, 

i.e. Eq. (1), is satisfied identically, and the momentum 

equation becomes: 
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Introducing a similarity variable Kuo (2004) 

( )f
U x
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(8) 

where  

U
y

x



  (9) 

Substituting Eqs. (8) and (9) with  Eq. (6) into Eq. (7) 

gives 

0)(')('')(
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1
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where 
2
0B

M
U



 

  is the magnetic parameter. 

The boundary conditions Wazwaz (2001), Wazwaz 

(2006) of ( )f  are given by 

(0) , '(0) 1, '( ) 0f S f f     (11) 

where S is suction/blowing parameter(S < 0 is suction 

and S > 0 is blowing). 

3. DIFFERENTIAL TRANSFORMATION 

METHOD 
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Consider a function u(x) which is analytic in a domain 

T and let x=x0 represent any point in T. The function 

u(x) is then represented by a power series whose center 

is located at x0. The differential transform of the 

function u(x) is given by 

0

1 ( )
( )

!
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k

x x

d u x
U k

k dx
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 
  

  

 (12) 

Where u(x) is the original function and U(k) is the 

transformed function. The inverse transformation is 

defined as follows 

0
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Combining Eq. (12) and Eq. (13), we get 

0

0

0

( ) ( )
( )

!

k k

k
k x x

x x d u x
u x

k dx



 

 
  

  
  (14) 

Inspection of Eq. (14) indicates that the concept of 

differential transform is derived from Taylor series 

expansion. However, this method does not evaluate the 

derivates symbolically. In actual applications, the 

function u(x) is expressed by a finite series and Eq. (13) 

can be rewritten as follows: 
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Which means that 0

1
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k m
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negligibly small. Usually, the value of m is decided by 

convergence of the series coefficients.  

4. THE PADE APPROXIMANTS 

Suppose that we are given a power series


0i

i

i xa  , 

representing a function ( )f x , so that 

0

( ) i
i
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f x a x
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  (16) 

The Pade approximant is a rational fraction and the 

notation for such a Pade approximant is Baker (1975), 

Baker and graves-Morris (1981). 

 
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,
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Where ( )LP x is a polynomial of degree at most L and 

( )MQ x  is a polynomial of degree at most M. we have: 
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0 1 2 3( ) ...f x a a x a x a x      (18) 

2
0 1 2( ) ... L

L LP x p p x p x p x      (19) 

2
0 1 2( ) ... M

M MQ x q q x q x q x      (20) 

notice that in Eq.(17) there are L+1 numerator 

coefficients and M+1 denominator coefficients. Since 

we can clearly multiply the numerator and denominator 

by a constant and leave [L, M] unchanged, we impose 

the normalization condition 

(0) 1MQ   (21) 

So there are L+1 independent numerator coefficients 

and M independents denominator coefficients, making 

L+M+ 1 unknown coefficient in all. This number 

suggests that normally the [L, M] ought to fit the power 

series Eq. (16) through the orders 21, , ,..., L Mx x x  . 

Using the conclusion given in Baker (1975), Baker and 

graves-Morris (1981), we know that the [L, M] 

approximant is uniquely determined. 
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By cross-multiplying Eq. (22), we find that 
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From Eq. (23) one can obtained the set of equations 
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where 0na for n < 0 and 0jq for j > M. If Eqs. 

(24) and (25) are nonsingular, then we can solve them 

directly 
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If the lower index on a sum exceeds the upper, the sum 

is replaced by zero. Alternate forms are 
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(29) 

The construction of [L, M] approximants involves only 

algebraic operations Baker (1975), Baker and Graves-

Morris (1981). Each choice of L, degree of the 

numerator and M, degree of the denominator, leads to 

an approximant. The major difficulty in applying this 

technique is how to direct the choice in order to obtain 

the best approximant. This needs the use of a criterion 

for the choice depending on the shape of the solution. A 

criterion which has worked well here is the choice of 

[L, M] approximants such that L=M. More importantly, 

the diagonal approximant is the most accurate 

approximant, therefore we will construct only the 

diagonal approximants in the following discussions. 

5.  ANALYTICAL APPROXIMATIONS BY 

MEANS OF THE DTM-PADE 

The fundamental mathematical operations performed by 

DTM are listed in Table 1. taking the differential 

transform of Eq. (10), we obtain  

0
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(30) 

Where F(k) is the differential transform of ( )f  . The 

transform of the boundary conditions are: 

(0) 0, (1) 1, (2)F F F     (31) 

Moreover, substituting Eq. (31) into Eq. (30) and by a 

recursive method we can calculate the values of F[k], 

where   is a constant that is computed from the 

boundary condition. 

For computing their values, the problem is solved with 

initial condition Eq. (31) and boundary conditions Eq. 

(11) are applied. The ideal method for enlarging the 

convergence radius of the truncated series solution is 

the Pade approximant i.e. converting the polynomial 

approximation into a ratio of two polynomials. Without 

using the Pade approximant, the analytical solution 

obtained by the DTM, cannot satisfy boundary 

conditions at infinity. It is therefore essential to 

combine the series solution, obtained by DTM with the 

Pade approximant to provide an effective tool for 

accommodating boundary value problems in infinite 

domains. 

6. RESULTS AND DISCUSSIONS 

An extensive range of computations has been 

performed with both numerical shooting method and 

DTM-Pade methods. The two-point boundary value 

problem for boundary layer convection from a flat plate 

is evidently governed two independent dimensionless 

parameters, namely M and S. The far field boundary 

conditions must be applied in the computations at a 

finite value of the similarity variable , here denoted 

by max . In order to verify the accuracy of the present 

method, we have compared our results with those of 

numerical shooting method are presented in Table 2 and 

Table 3. 

 

Table 1 The operators for the one-dimensional differential transform method. 

 Original function              Transformed function 
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Fig. 2 and Fig. 3 demonstrate the plot of dimensionless 

velocity field '( )f  for suction/blowing parameter S = 

1, 0, -1 when M = 0 and M = 1 respectively.  

 
Fig. 2. Velocity profiles '( )f   for various values of 

porosity parameter S when M = 0. 

 

 
Fig. 3. Velocity profiles '( )f   for various values of 

porosity parameter S when M = 1. 

 

Table 2 Various values of suction/blowing parameter S 

obtained by the DTM-Pade and its numerical values for 

M = 1 

S DTM-Pade[20,20] Numerical 

-1 -0.8494260071 -0.849425600 

0 -1.082829541 -1.082828844 

1 -1.371012694 -1.371011260 

 

Fig. 4 displays the dimensionless velocity profile 

'( )f  for different values of Magnetic parameter M 

without suction/blowing parameter S. It is seen that the 

magnetic parameter M increases, velocity 

'( )f  decreases. Illustrating the fact that the effect of 

magnetic field is to decelerate the velocity.  

 

 
Fig. 4. Velocity profiles '( )f   for various values of 

Magnetic parameter M when S = 0. 

 

The effect of magnetic parameter M with S > 0 over the 

dimensionless velocity '( )f   is represented graphically 

through Fig. 5. It is seen that the effect of magnetic field 

is to reduce the dimensionless velocity. 

 
Fig. 5. Velocity profiles '( )f   for different values of 

Magnetic parameter M when S = 1. 

 

 

 

Table 3 Various values of magnetic parameter M 

obtained by the DTM-Pade and its numerical values for 

S = 0. 

M DTM-Pade[20,20] Numerical 

1 -1.082829541 -1.082828844 

2 -1.473041185 -1.473039150 

5 -2.273325296 -2.273317103 

 

Dimensionless velocity '( )f   the different values of the 

magnetic parameter M with S < 0 is presented 

graphically in Fig. 6. It is noticed that for increasing 

values of magnetic parameter, the velocity 
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'( )f  decreases which physically conveys the fact that 

the effect of magnetic field is to reduce the velocity 

 
Fig. 6. Velocity profiles '( )f   for different values of 

Magnetic parameter M when S = -1. 

 

 
Fig. 7. Variation of ''(0)f  with S for various values of 

Magnetic parameter M . 

The effect of suction/blowing parameter S on skin 

friction ''(0)f for different values of magnetic parameter 

M is shown through Fig. 7. It is inferred that the effect of 

magnetic field and the effect of suction/blowing 

parameter have the similar effect over skin friction so as 

to reduce it. 

Fig. 8 portrays the skin friction ''(0)f against magnetic 

parameter M for different suction/blowing parameter S. 

It is observed that the effect of magnetic field is to 

decrease the skin friction. It is also seen that the skin 

friction decreases for S > 0 whereas increases for S < 0. 

In the absence of magnetic field, Eq. (10) reduces to that 

of Peker et al (2011). 

 
Fig. 8. Variation of ''(0)f with M for various values of 

porosity parameter S. 

 

7. CONCLUSIONS 

The DTM-Pade is used to find analytical solutions of 

magnetohydrodynamics boundary-layer equations. The 

DTM combined with the Pade approximants are also 

shown to be a promising tool to solve two point 

boundary-value problems consisting of systems of 

nonlinear differential equations. This method has been 

applied directly without requiring linearization, 

discretization, or perturbation. The obtained results 

demonstrate the reliability of the algorithm and give it a 

wider applicability to nonlinear differential equations. 

In the present problem, the influence of magnetic effect 

of Blasius equation is analyzed, the nonlinear partial 

differential equation is solved for the velocity 

distribution. Dimensionless velocity is reduced due to 

the influence of Magnetic field. 
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