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ABSTRACT 

In the present paper, first of all, it is proved that the ‘principle of the exchange of stabilities’ is not, in general valid, 

for the case of free boundaries and then a sufficient condition is derived for the validity of this principle in 

ferromagnetic convection, for the case of free boundaries, in a horizontal ferrofluid saturated porous layer in the 

presence of a uniform vertical magnetic field and uniform rotation about the vertical axis.   
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NOMENCLATURE 

a overall horizontal wave number 

thickness of the porous layer 
   thermal expansion coefficient 

d 

D=d/dz differential operator         temperature gradient 

  = k/   Darcy number   =     
  ) 0, 0 

magnetic susceptibility 

g acceleration due to gravity           constant temperature difference 

between the boundaries 

H magnetic field intensity    porosity of porous medium 

    imposed uniform vertical magnetic 

field 
          effective thermal diffusivity 

k permeability of the porous medium            constant angular velocity 

    unit vector in the vertical direction    complex growth rate 

K =  
  

  
 

     

 pyromagnetic coefficient ⋀=       ratio of viscosities 

             Magnitude of the magnetization          dynamic viscosity 

                 constant mean value of magnetization      effective viscosity 

      
      

         

magnetic number     free space magnetic permeability 

of vacuum 

      
              

nonlinearity of magnetization 

parameter 
         kinematic viscosity 

   
        

  
  modified Prandtl number    amplitude of perturbed magnetic 

potential Fluid density 

R=g        Rayleigh number    amplitude of perturbed 

temperature 

   temperature ζ amplitude of vertical component 

of vorticity 

    temperature of the lower boundary Superscripts  

    temperature of the upper boundary    complex conjugation 

               Taylor number Subscripts  

w amplitude of vertical component of 

perturbed velocity 

f fluid 

(x , y , z) Cartesian coordinates s solid 
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1. NTRODUCTION 

A Ferrofluid is a colloid suspension containing 

magnetic nanoparticles covered by a surfactant for 

preventing their aggregation and suspended in a 

nonconducting fluid. In recent years Ferrofluids have 

attracted many researchers due to their practical 

applications in various fields like viscous damping 

system, medical sciences (drug targeting, endoscopic 

analysis, magnetic separation of cells and Magnetic 

Resonance Imaging (MRI), noiseless printing system 

etc.(Rosenweig 1985). The magnetization of 

ferrofluids depends on the magnetic field, 

temperature and density. Any change in these 

parameters effects the body force distribution in the 

fluid layer and give rise to convection in ferrofluids. 

The magnetic properties of such fluids have been 

investigated for a considerable time since the 1930s 

(Elmore 1938). There after there have been numerous 

studies on convection in ferrofluids with different 

physical configurations and different boundary 

conditions. Finlayson (1970) investigated convective 

instability of a ferromagnetic fluid layer heated from 

below in the presence of a uniform vertical magnetic 

field by using linear stability theory and predicted the 

critical temperature gradient for the onset of 

convection when both buoyancy and magnetic forces 

are considered. An exact solution for the case of free 

boundaries and approximate solutions (for stationary 

convection) of rigid boundaries have been derived by 

him. Thermoconvective stability of ferrofluids 

without considering buoyancy effects has been 

studied by Lalas and Carmi (1971), whereas Shliomis 

(1974) studied the linear relation for magnetized 

perturbed quantities at the limit of instability. 

Polevikov (1997) studied the stability of a static 

magnetic fluid under the action of an external 

pressure drop. Schwab et al. (1983) experimentally 

investigated the problem of Finlayson in the case of a 

strong magnetic field and detected the onset of 

convection by plotting the Nusselt number verses the 

Rayleigh number. Later, Stiles and Kagan (1990) 

extended the problem to allow for the dependence of 

effective shear viscosity on temperature and colloid 

concentration. 

The Benard convection in ferromagnetic fluids has 

been considered by many authers (Gupta and Gupta 

1979, Rudraiah and Shekar 1991, Siddeshwar 1993, 

Qin and Kaloni 1994, Souhar et al. 1999, Aniss et al. 

2001, Siddheshwar and Abraham 2003). In the 

Benard convection problem the instability is driven 

by a density difference caused by a temperature 

difference between two planes bounding the fluid. If 

we add some concentration component to this 

configuration then the resulting phenomenon of 

convection is known as thermohaline convection or 

double diffusive convection. Vaidyanathan et al. 

(1997) investigated ferrothermohaline convection in 

which an incompressible ferromagnetic fluid layer in 

the presence of transverse magnetic field, heated 

from below and salted from above is considered and 

showed that the salinity of a ferromagnetic fluid 

enables the fluid to get destabilized more when it is 

salted from above. Sunil et al. (2005) studied the 

effect of magnetic field dependent viscosity on 

ferrothermohaline convection.  

To study the effect of rotation on ferrofluids is an 

interesting topic. The convective instability analysis 

for a rotating layer of ferrofluid between free 

boundaries is studied by Gupta and Gupta (1979) 

.Sekar et al. (2000) studied the effect of rotation on 

ferrothermohaline convection and derived the 

conditions for both stationary and oscillatory motions 

using linear stability theory. Venkatasubramanian and 

Kaloni (1994) studied the effect of rotation on the 

Thermoconvective instability of a horizontal 

ferrofluids layer and discussed the stabilizing effect 

of rotation. Recently Sunil et al. (2011) have studied 

the effect of rotation on double diffusive convection 

in a magnetized ferrofluid with internal angular 

momentum and showed that oscillatory motions are 

possible due to the presence of rotation, coupling 

between vorticity and spin, microinertia and solute 

gradient. 

In recent years, many researchers have shown their 

keen interest in analyzing the onset of convection in a 

fluid layer subjected to a vertical temperature 

gradient in a porous medium. The stability of flow of 

a fluid through porous medium was studied by 

Lapwood (1948) and Wooding (1960). Taunton and 

Lightfoot (1972) characterized salt fingers in 

thermohaline convection in porous medium. Borglin 

et al. (2000) performed experiments to study the 

nature of flow of ferrofluids in porous media. 

Ferrothermohaline convection in a porous medium 

for different configuration is studied by Vaidyanathan 

et al. (1995); Sunil et al. (2005) and Vaidyanathan et 

al. (2007). Ferroconvection in an anisotropic porous 

medium is studied by Sekar et al. (1996) using linear 

stability analysis and found that the vertical 

anisotropy stabilizes the system through marginal or 

stationary mode. Mittal and Rana (2009) studied the 

effect of dust particles on a layer of micropolar 

ferromagnetic fluid heated from below saturating a 

porous medium. The onset of thermomagnetic 

convection in a ferrofluid saturated porous layer, for a 

variety of velocity and temperature boundary 

conditions, is investigated by Shivakumara et al. 

(2009). The effect of rotation on ferromagnetic 

convection in a ferrofluids saturated porous layer is 

investigated by Shivakumara et al. (2011) and 

derived the conditions for the occurrence of direct 

and Hopf bifurcations (oscillatory).The conditions 

obtained by them for the occurrence of direct 

bifurcations, for the case of free boundaries, are wave 

number dependent and do not include magnetic 

parameters, thus raising doubts about the accurate 

utilization of the results. 

In the present paper it is proved that ‘exchange 

principle’ is not, in general, valid for the case of free 

boundaries but a sufficient condition for the validity 

of this principle can be derived by using Pellew and 

Southwell technique (1940) for the case of free 

boundaries. While this case is of little physical 

interest but it is mathematically important as it 



J. Prakash. / JAFM, Vol. 7, No. 1, pp. 147-154, 2014.  

 

149 

 

enables us to find analytical solutions and to make 

some qualitative conclusions. For the case of rigid 

boundaries, to the author’s knowledge, it is still an 

open problem. The results obtained herein are 

independent of wave number and involve magnetic 

parameter, thus making the results more realistic. 

2. THE PHYSICAL CONFIGURATION AND 

THE GOVERNING EQUATIONS  

A viscous ferrofluid saturated porous layer in the 

presence of a uniform applied magnetic field H0 

acting in the vertical direction is statically confined 

between two horizontal boundaries z = 0 and z = d 

which are respectively maintained at constant 

temperatures    and    (<   ), thus maintaining a 

constant temperature difference ∆   (=      ) 

between the boundaries. A Cartesian coordinate 

system (x, y, z) is used with z-axis normal to the 

porous layer. The entire system is rotating with 

uniform angular velocity           where    is the unit 

vector in the vertical direction; with the assumption 

that rotation has no effect on the isotropy of the 

porous medium. Also the fluid viscosity is taken 

different from effective viscosity. The governing 

equations for the flow of an incompressible ferrofluid 

in a layer of rotating porous medium are 

(Nanjundappa et al. 2010, Venkatasubramanian and 

Kaloni 1994): 

The equation of continuity is  

        

  

(1) 

The equation of motion is 

   
 

 

    

  
 

 

  
                  

  

 
   

                     
  

 
        +

  

 
       

     

 

(2) 

The equation of heat conduction is 

                 
     

  
     

  

  
    

        
  

  
   T 

     

  
     .

     

  
    

  

 

(3) 

The Maxwell equations in the magnetostatic limit are 

       ,                 o r         

 

(4a,b) 

Also      ,       and       are related by 

            +       

 

(5) 

The magnetization is assumed to be aligned with the 

magnetic field, but allow a dependence on the 

magnitude of magnetic field as well as temperature in 

the form 

     
 

 
         

  

(6) 

The magnetic equation of the state is linearized about 

   and     to take the form 

                     

  

(7) 

Equation of state for density is  

               

  

(8) 

where                is the velocity vector, p is the 

pressure,                 is the magnetic field 

intensity,                 is the magnetic induction , 

                 is the magnetization,    is the 

dynamic viscosity,     is the effective viscosity, C is 

the specific heat,      is the specific heat at constant 

volume and magnetic field, φ is the magnetic scalar 

potential,    
  

    
  

    
  

    is the Laplacian 

operator,    is value of density   at some reference 

temperature    and the subscript s denotes the solid. 

The initial stationary state is given by  

                      ,     ,  
                  , 

     =[0,0,      ] and T=     , where subscript b 

denotes the basic state. Thus Tb satisfies 

   T b =0,   

 

(9) 

together with the already mentioned boundary 

conditions. Solving Eq. (9), we obtain         , 

where   
  

 
 . Clearly Eq. (4b) is identically 

satisfied and Eq. (4a) yields, 

              

  

(10) 

where    is a constant. Thus it is clear that there 

exists the following solutions for the basic state     

    ,           ,    
              

   

   
   ,    

              
   

   
   ,  

(11) 

where    is the unit vector in the vertical direction.     

To analyze the stability of the system, we perturb all 

the variables in the form  

                        ,   =         ,  

    =  
                 ,        =  

                  ,         
(12) 

where       ,   ,   ,         and         are perturbed variables 

and are assumed to be small. Using Eq. (12) in Eq. 

(5) and Eq. (6) and using Eqs. (4a,b), we get 

(dropping the primes for convenience) 

         
  

  
           

   
  

  
                       

    

(13) 

where              is assumed. 

Now taking curl of Eq. (2) and linearizing, the z-

component of the resulting equation can be written as 

  

 

  

  
  

  

 
         

   

 
 

  

  
  (14) 

which is the vorticity  transport equation for the 

present problem.    

Again, substituting Eq. (12) into Eq. (2), linearizing , 

eliminating the pressure term by operating curl twice 
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and using Eq. (13), together with            the z-

component of the resulting equation can be written as 

(dropping the primes for convenience) 

 
  

 

 

  
 

  

 
           

     
 

  
   

    
     

   
  

   

       
   

   

 
 

  

  
 ,  

 

(15) 

where   
  

  

    
  

     is the horizontal Laplacian 

operator. Eq. (3) on using Eq. (12) and linearizing, 

becomes (dropping the primes)    

      

  

  
      

 

  
 
  

  
 

    
  

         
     

 

   
   

 

(16) 

where                       
           and                       .  

Equations (4a) and (4b), on using Eq. (12) and Eq. 

(13), may be written as (dropping the primes) 

(1+χ)
   

       
  

  
   

    
  

  
  

 

(17) 

Now we analyze the perturbations w,T,  ,   into two-

dimensional periodic waves. We assume normal 

mode expansion of these variables of the form 

(w,T,   ,   ) (x,y,z )=

   (z),        (z),ζ     exp        

        

 

(18) 

where    and    are the wave numbers in the x- and 

y- directions respectively and    =    
    

  is the 

resultant wave number ; n is a constant which can be 

complex in general.  

Substituting Eq. (18) into Eqs. (14)-(17), and 

nondimensionalizing the variables by setting 

   
 

 
     

 

 
  ,   

 

   
 ,   

      

       , 

  =
  

 
ζ, a=     and     

 

  
 ,

 

(19) 

where ν=
  

  
 is the kinematic viscosity,   

  

      
 is 

the effective thermal diffusivity , we get (dropping 

the asterisks) 

 ⋀                        

                      

 
       

  

(20) 

                          
          

(21) 

                (22) 

 ⋀                     

 
         (23) 

where z is the real independent variable such that 0 ≤ 

z ≤ 1, D is differentiation w.r.t. z, a2 is the square of 

the wave number,    
        

  
> 0 is the modified 

Prandtl number,   
   

  
 is complex growth rate, 

  
      

  
> 0 is the thermal Rayleigh number,   

 
     

    
 is the Taylor number, ⋀  

   

  
>0 is the ratio of 

viscosities ,   
 

  > 0 is the Darcy number,    

   
            g> 0 is the magnetic number, 

                  > 0 is the measure of 

nonlinearity of magnetization ,   
      

      
 is a 

positive constant and    
      

           
 is a 

nondimensional parameter.              is a 

complex constant in general such that    and    are 

real constants and as a consequence the dependent 

variables w(z) = wr(z) + iwi(z),             
                                         
        are complex valued functions of the real 

variable z such that wr(z), wi(z),  

                                     are real 

valued functions of the real variable z. 

Since    is of very small order3), it is neglected in 

the subsequent analysis and thus Eq. (21) takes the 

form 

                  (24) 

The constant- temperature boundaries are considered 

to be either free or rigid. Hence the boundary 

conditions are: 

w =  0  =   =  DØ =  D  =  D 2 w at  z  = 0  

and  z  = 1  
(25) 

(both the boundaries free)  

o r  w = 0  =   =  Ø =   =  Dw at  z  = 0  

and  z  = 1 ,       
(26) 

(both the boundaries rigid)  

It may further be noted that Eq. (20) and Eq. (22) to 

Eq. (26) describe an eigen value problem for   and 

govern ferromagnetic convection in a rotating 

ferrofluid saturated porous layer. 

3. MATHEMATICAL ANALYSIS 

First of all it is shown that ‘principle of exchange of 

stabilities’ is not, in general, valid for the case of free 

boundaries. It is shown as follows:  

Multiplying Eq. (20) by   (* denotes the complex 

conjugation) throughout and integrating the resulting 

equation over the vertical range of z, we get 

    ⋀          
     

 

 
    

                         
 

 
  

                   
 

      

 

 

 
      

(27) 
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Using Eqs. (24), (22), and Eq. (23) and the boundary 

conditions Eq.  (25), we can write 

                           
 

 

 

 

      
        

=               
 

 
        

  

   
         

 

 
 

=              
 

 
        

  

   
          

 

 
 

=              
 

 
        

  

   
              

    
 

 
  

(28) 

 using Eq. (3): 

         
              

 

 

    
             

  
 

 
      

(29) 

and 

  
 

      

 
        

 
     

 

 
      

   ⋀          
           

 

 
  

(30) 

Combining Eq. (27) and Eq.  (30), we obtain 

    

 
            

         

                      
 

 
 

       
  

   
              

   
 

 
 

                     
       

 

 

     ⋀          
          

 

 
  

(31) 

Integrating the various terms of Eq. (31) by parts for 

an appropriate number of times and making use of the 

boundary conditions Eq. (25) and the equality 

                

             
 

 
  (32) 

Where                             we 

may write Eq. (31) in the form 

               

 
              

   
                       

 

 
  

               
 

 
        

  

     
                       

 

 
  

                        
 

 

   
                           

 

 

  
                   

(33) 

Now multiplying complex conjugate of Eq. (22) by   

and integrating over the vertical range of z , we 

obtain                      
 

         
 

 
    

which clearly implies that         
 

 
 is real. 

Now multiplying Eq. (22) by D   and integrating 

over the vertical range of z, we obtain 

         
 

 
            

 

 
          

 

 
  

since         
 

 
 is real, therefore          

 

 
  is 

also real as right hand side is real.        

Equating imaginary parts on both sides of Eq. (33) 

and using the fact that          
 

 
 is real, we get 

                     
 

 

      
                     

 

 

           
         

 

        
 

 
     

(34) 

which clearly implies that    , in general, is not equal 

to zero. Hence the required conclusion directly 

follows from this. 

Now we derive a sufficient condition for the 

existence of ‘principle of exchange of stabilities’ in 

the present case. 

We now prove the following theorem:   

Theorem1: If            ,       i,  r≥ 0, is 

a solution  of Eqs.(20) and Eq. (22) to Eq. (25) and 
     

    
  

  
        , then     . 

Proof: Equating imaginary parts on both sides of Eq. 

(33), using the fact that          
   

    
 is real and 

cancelling     ), we can write 

                  
 

 

       
                     

 

 

           
         

 

        
 

 
  

(35) 

Now multiplying Eq. (22) by    (complex conjugate 

of    throughout and integrating first term on the left 

hand side and the right hand side by making use of 

appropriate boundary conditions on        , we have 

from the final equation 

                     
 

 

       
 

 
     

           
 

 
   

            
 

 
  

       
 

 
           

 

 
       

          
 

 
 

   

      
 

 
   

   

   

(36) 

(utilizing the Schwartz inequality) 

which implies that  

                  
 

 
 

 
        

 

 
 

    

 
  

Thus 

         
 

 
 

   

         
 

 
 

   

   

Using this inequality in inequality Eq. (36), we obtain 



J. Prakash. / JAFM, Vol. 7, No. 1, pp. 147-154, 2014.  

 

152 

 

                             
 

 

 

 
 (37) 

Now multiplying Eq. (23) by    (complex conjugate 

of   ) and integrating the various terms of the 

resulting equation by parts for an appropriate number 

of times by making use of boundary conditions on   

and w, we have  

                      
                 

 

 

    
   

    
 

 
               

         
 

 
     

Equating the real partson both sides, we get 

          
 

 

         
   

       
      

     

              
   

      
 

 
     

    
            

 

 

  

   
   

         
 

 
    

   
   

           
 

 
  

   
   

     
 

 
       

   
          

 

 
   

   

      
 

 
   

   

  

(38) 

 (using the Schwartz inequality) which implies that  

       
 

 
   

  
            

 

 
 

 
  
      

 

 
         

Thus  

       
 

 
   

   

 
  

   

 
     

 

 
dz. 

Using this inequality in inequality Eq. (38), we have 

                      
        

 

 

      
     

  

 
       

 

 
  

(39) 

We note that since w and   satisfy w(0) = 0 = w(1) 

and   (0) = 0  (1), we have by Rayleigh-Ritz 

inequality (Schultz 1973) 

      
 

 
          

 

 
    (40) 

and 

      
 

 
          

 

 
    (41) 

Now upon using Eq. (40) in Eq. (39), we obtain 

        
 

     

 

         
 

 
 

  
           

 

 
    

(42) 

Now multiplying Eq. (24) by    (complex conjugate 

of   ) throughout and integrating the first term on the 

left hand side once by making use of the boundary 

conditions on   namely      = 0 =       we have 

from the real part of the final equation 

                              
 

 

                
 

 
        

 

 
          

 

 
 

        
 

 
          

 

 
    

       
 

 
   

   

        
 

 
 

   

   

(using Schwartz inequality) 

Combining this inequality with the inequality (41) 

and the fact that r    we obtain 

       
 

 
           

 

 
 

   

        
 

 
 

   

   

which implies that 

        
 

 
 

   

 
 

  
        

 

 
 

   

  

and thus 

                          
 

 
   

 

       
 

 
    

which upon using inequality (40) gives 

       
 

 
   

 

        
 

 
    

(43) 

Using inequalities Eq. (37), Eq. (42) and Eq. (43) in 

Eq. (35), we obtain                 
 

 
   

     

        
 

 
           

        
 

 
   

  

  
           

 

 
    

which gives 

    
     

  
  

  

  
     

        
 

 
   

        
 

 
             

      
 

 
      

and thus we necessarily have 

     

    
  

  
       (44) Hence, if  

     

   

 
  

  
        , we must have     .  

This establishes the theorem. 

Theorem1 may be stated , from the physical point of 

view, as: for ferromagnetic convection in a rotating 

ferrofluid saturated porous layer,for the case of free 

boundaries, a necessary condition for the occurrence 

of Hopf bifurcations (oscillatory motions) is 

that
     

    
  

  
        and hence a sufficient 

condition for the occurrence of direct bifurcation 

(stationary convection) is that 
     

    
  

  
       . 

4. CONCLUSION  

Thus it is analytically shown that the ‘principle of the 

exchange of stabilities’ is not, in general, valid. A 

sufficient condition for the validity of this principle 

is also derived. The sufficient condition obtained 

herein is independent of wave number and 

incorporate a magnetic parameter, thus showing a 

definite improvement over the existing results. 
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