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ABSTRACT 

An analysis is carried out to study the flow and heat transfer due to an exponentially stretching sheet in a Boussinesq-

Stokes suspension. Two cases are studied in heat transfer, namely (i) the sheet with prescribed exponential order 

surface temperature (PEST-case) and (ii) the sheet with prescribed exponential order heat flux (PEHF-case). The 

governing coupled, non-linear, partial differential equations are converted into coupled, non-linear, ordinary 

differential equations by a similarity transformation and are solved numerically using shooting method. The classical 

explicit Runge-Kutta-Fehlberg 45 method is used to solve the initial value problem by the shooting technique. The 

effects of various parameters such as the couple stress parameter, Reynolds number and Prandtl number on velocity 

and temperature profiles are presented and discussed. The results have possible technological applications in the 

liquid-based systems involving stretchable materials. 

 

Keywords: Exponential stretching, Couple stress parameter, Shooting method. 

NOMENCLATURE 

A0, A1 parameters of temperature distribution                                 

Cp specific heat at constant pressure    

H0 applied magnetic field 

k  thermal conductivity 

l  reference length 

Pr Prandtl number 

Q Chandrasekhar number 

Q* heat source 

Re Reynolds number 

T temperature 

Tw temperature at the wall 

T∞  temperature outside the  

dynamic region 

U0  constant  

Uw stretching velocity of the boundary 

u, v  velocity in x, y directions 

 

Greek symbols 

 
 similarity variable 

 heat source parameter 

m  magnetic permeability 

  kinematic coefficient of  viscosity 

   couple stress viscosity 

  density 

   electric conductivity of the fluid 

 non-dimensional stream function 

 dimensionless stream function 

 non-dimensional temperature in PEST 

case 

 non-dimensional temperature in PEHF 

case 
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1. INTRODUCTION 

Boundary layer flow on continuous moving surface is 

an important type of flow occurring in a number of 

engineering processes. Aerodynamic extrusion of 

plastic sheets, cooling of an infinite metallic plate in a 

cooling path, the boundary layer along a liquid film in 

condensation process and a polymer sheet of filament 

extruded continuously from a die are examples of 

practical applications of continuous moving surfaces. 

Gas blowing, continuous casting and spinning of fibers 

also involve the flow due to a stretching surface. 
 

Sakiadis (1961 a, b, c) initiated the study of the 

boundary layer flow over a continuous solid surface 

moving with constant speed. Erickson et al. (1969) 

extended the work of Sakiadis to account for mass 

transfer at the stretching sheet surface. Tsou et al. 

(1967) reported both analytical and experimental results 

for the flow and heat transfer aspects developed by a 

continuously moving surface. Crane (1970) studied the 

steady two dimensional boundary layer flow caused by 

the stretching sheet, which moves in its own plane with 

a velocity which varies linearly with the axial distance. 

Several researchers considered various aspects of 

momentum and heat transfer characteristics in boundary 

layer flow over a stretching boundary (Gupta and Gupta 

(1977), Rajagopal et al. (1984), Siddappa and Abel 

(1985), Andersson (1992), Kumaran and Ramanaiah 

(1996) and Cortell (2007)). 
 

Magyari and Keller (1999) studied the heat and mass 

transfer on the boundary layer flow due to an 

exponentially stretching surface. Elbashbeshy (2001) 

added new dimension to the study on exponentially 

stretching surface. Partha et al. (2005) have examined 

the mixed convection flow and heat transfer from an 

exponentially stretching vertical surface in quiescent 

liquid using a similarity solution. Heat and mass 

transfer in a viscoelastic boundary layer flow over an 

exponentially stretching sheet were investigated by 

Khan and Sanjayanand (2005, 2006). Sajid and Hayat 

(2008) considered the influence of thermal radiation on 

the boundary layer flow due to an exponentially 

stretching sheet. The constitutive equations for couple 

stress fluids are given by Stokes (1966). The present 

work analyses the flow and heat transfer due to an 

exponentially stretching continuous surface in the 

presence of Boussinesq-Stokes suspension. 

 

2.  Mathematical formulation 

 
 We consider a steady, two-dimensional MHD 

boundary layer flow of an incompressible Boussinesq-

Stokes suspension flow due to an exponentially 

stretching sheet .The flow is assumed to be generated 

by stretching of the sheet from a slit with a velocity 

which varies exponentially in the direction of x-axis. In 

this situation the governing boundary layer equations 

for momentum and heat transfer are 
 

0
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subject to the boundary conditions: 
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                                     (2.4) 
 

where u and v are the velocity components of the fluid 

in x and y directions, is the kinematic coefficient of 

viscosity,   is the couple stress viscosity, m is the 

magnetic permeability,  is the density,   is the 

electric conductivity of the fluid, H0 is the applied 

magnetic field, Uw stands for stretching velocity of the 

boundary, U0 is a constant, l  is the reference length, k 

is the thermal conductivity, T is the temperature, Tw is 

the temperature at the wall, T∞ is the temperature 

outside the dynamic region, Q* is the heat source and Cp 

is the specific heat at constant pressure. Here A0 and A1 

are parameters of the temperature distribution on the 

stretching surface. 
 

We introduce the stream function  (x, y) defined by 
 

u , v
y x

  
 
 

                                        (2.5) 

 

The above set of partial differential equations is 

converted in to ordinary differential equations using the 

following similarity transformation. 
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where is the similarity variable and 
U l

Re


 0  is the 

Reynold’s number. 
 

Using the similarity transformation given by Eq. (2.6) 

in the Eq. (2.2), one immediately obtains  
 

 
22 2 2 4 4 0vC Re f f f f f Q f ,                         (2.7) 

 

The boundary conditions Eq. (2.4) for velocity can be 

written as:  

     

   

0 0 0 1 0 0

0 0

f , f , f ,

f , f .

   

                      (2.8) 

 

Using Eq. (2.6) in Eqs. (2.3) and (2.4), we get: 
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 (i)  PEST:   

        

     
2

2 0Pr f f ,
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               (2.9) 

         0 1 0, .                     (2.10) 

 

(ii) PEHF: 

 

     
2
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         0 1 0, .                       (2.12) 

 

where  

2

2
C

l






 is the couple stress parameter,   

2 2

m 0

w

H l
Q

U

 


  is 

the Chandrasekhar’s number  and 
* 2

p

Q l
λ

C 
  is the heat source parameter. 

 

We now outline the procedure for solving two boundary 

value problems Eqs. (2.9)-(2.10) and Eqs. (2.11)-(2.12) 

which are coupled with Eqs.(2.7)-(2.8). 

 

3. Method of Solution 

 
We adopt the shooting method with Runge-Kutta 

Fehlberg 45 scheme to solve the initial value problems 

in PEST and PEHF cases mentioned in the previous 

section. The coupled non-linear Eqs. (2.7)-(2.10) in 

PEST case are transformed in to a system of seven first 

order ordinary differential equations as follows.  
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(2.13)  

 

 

 
The corresponding boundary conditions are 
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              (2.14)   

 

Here, y1 = f () and y6 =  (). 
 

Aforementioned boundary value problem is converted 

in to an initial value problem by choosing the values of  

y3(0) and y7(0) appropriately. The value of y5(0) can be 

obtained from the known initial conditions. Resulting 

initial value problem is integrated using Runge-Kutta-

Fehlberg 45 method. Newton-Raphson method is used 

to correct the guess values of y3(0) and y7(0). In solving 

Eqs. (2.13) subjected to the boundary conditions given 

by Eq. (2.14) the appropriate ‘∞’ is determined through 

actual computation. Same procedure is adopted to solve 

Eqs. (2.7)-(2.8) and (2.11)-(2.12). The results are 

presented in several graphs. 

 

    
  4.  Results and Discussion 

 

The MHD boundary layer flow and heat transfer of a 

stretching sheet in the presence of Boussinesq-Stokes 

suspension is analyzed.The effects of various 

parameters such as couple stress parameter, Reynolds 

number, Prandtl number are shown in several graphs in 

Fig 1.1 to 1.9. 

 
  (a) 

   

 
 

   (b) 

 

Fig. 1.1. Plot of f () versus  for different values of 

couple stress Parameter (C)  and Chandrasekhar number 

(Q). 
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    (a) 

 
    (b) 

Fig. 1.2. Plot of f ′ () versus  for different values of C 

and Q. 

 
 (a) 

 (b) 

Fig. 1.3. Plot of temperature profiles for different 

values of C and Q. 

 
(a) 

 
(b) 

Fig. 1.4. Plot of f () versus  for different values of Re  

and Q. 
 

 
(a)

 

 (b) 

Fig. 1.5. Plot of f ′ () versus  for different values of 

Re and Q. 
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 (a) 

 

 (b) 

Fig. 1.6. Plot of temperature profiles for different 

values of Re and Q. 

 

Figures 1.1-1.3 illustrates the effect of couple stress 

parameter C and the Chandrasekhar number Q on the 

flow and heat transfer in
 
PEST and PEHF cases. It is

 observed from these plots that  f   and  f   

increases with increasing values of C, where as
    decreases with increasing values of C. This

 
means 

that the increasing values of C
 
results in

 
thickening of 

the momentum boundary layer and thinning of thermal 

boundary layer.
 

 

Figures 1.4-1.6 demonstrates the effect of Reynolds 

number Re and the Chandrasekhar number Q on the 

flow and heat transfer. The effect of Re is similar to that 

of C in both PEST and PEHF cases. 

 

The impact of Prandtl number Pr and the 

Chandrasekhar number Q on the momentum and heat 

transfer is depicted in Figs. 1.7-1.9. Increasing values of
 

Pr does not affect the profiles of  f   and  f  , 

whereas the temperature at a given point
 
decreases with

 an increase in the Prandtl number Pr. This is in 

agreement with the physical fact that the thermal 

boundary layer thickness decreases with increasing 

Prandtl number. 

 

 

 (a) 

 

 (b) 

Fig. 1.7. Plot of f () versus  for different values of Pr 

and Q. 

 (a) 

 (b) 

Fig. 1.8. Plot of f ′ () versus  for different values of 

Pr and Q. 
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 (a) 

  

(b) 

Fig. 1.9. Plot of temperature profiles for different 

values of Pr and Q. 

 

From Figs 1.1-1.9 it is also clear that increasing values 

of Q results in flattening of  f  and  f  . The 

transverse contraction of the velocity boundary layer is 

due to the applied magnetic field which invokes the 

Lorentz force producing considerable opposition to the 

motion. The effect of transverse magnetic field on 

temperature profiles results in thickening of thermal 

boundary layer in both PEST and PEHF cases. 
 

Figure 1.10 illustrates the influence of heat generation 

(thermal source) (>0) and heat absorption (thermal 

sink) (<0) parameter on dimensionless temperature 

profiles in PEST and PEHF cases. For >0, thermal 

boundary layer generates energy and this causes the 

temperature of the fluid to increase with increase in the 

value of , whereas for  < 0 the temperature decreases. 

 
 

(a) 

 
(b) 

 

Fig. 1.10. Plot of temperature profiles for different 

values of  and Q. 

 

In order to validate our results, we have compared the 

skin friction  0f   and rate of heat transfer  0  

in the absence of couple stress viscosity, Chandrasekhar 

number (Q = 0) and heat source/sink parameter ( = 0) 

with the published results and found them to be in good 

agreement (see Tables 1 and 2). 
 

 

Table1 Comparison of values of skin friction 

 0f  with C = 0 and Q = 0. 

     0f   

Magyari 

and  

Keller 

(1999) 

Elbashbeshy 

(2001) 

Present 

study 

1.28180 1.28181 1.281816 
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Table 2 Comparison of wall temperature gradient 

 0  in PST case with C = 0,      Q = 0 and  = 0 for 

different values of Pr. 
 

Parameter 

 0  

Bidin 

 and  

Nazar 

(2009) 

Elbashbeshy 

(2001) 

Present 

study 

Pr 

0.72 - 0.767778 0.767645 

1 0.9548 0.954779 0.954808 

2 1.4714 - 1.471455 

3 1.8691 1.869070 1.869069 

 
 

5. CONCLUSIONS 

 
1. Increasing values of couple stress parameter 

results in thickening of the momentum 

boundary layer and thinning of the thermal 

boundary layer. 

         

2. Increasing values of Chandrasekhar number 

results in flattening of velocity profiles.  

 

3. The temperature profiles are higher in the 

presence of magnetic field than in the absence 

of the same. 

 

4. PEHF boundary condition is better suited for 

the effective cooling of the stretching   sheet. 
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