
  

 

 

 

MHD Pulsatile Flow through a Porous Medium 

R. Kumar
1†

, B. G. Prasad
2 

1
 Department of Applied Mathematics, Birla Institute of Technology, Patna Campus,  Patna-14, Bihar, India 

2 Department of Mathematics, B.N. College, Patna University, Patna-4, Bihar, India 

†Corresponding Author Email: rajnish.bitpatna@gmail.com 

(Received May 7,
 
2012; accepted January 18, 2013) 

ABSTRACT 

This paper develops a mathematical model with an aim to compute the analytic solution for the MHD pulsatile flow 

driven by an unsteady pressure gradient between permeable beds of a viscous incompressible Newtonian fluid 

saturated porous medium. The dimensionless governing equations for this investigation are solved analytically after 

separating into a steady part and an unsteady part. The influence of pertinent parameters on the flow is delineated and 

appropriate conclusions are drawn. The results presented in this work constitute an innovative way to describe 

correctly the boundary conditions at both the walls. Favorable comparisons with previously published work 

authenticate a remarkable accuracy of the results investigated in the paper.  
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1. INTRODUCTION 

The MHD (magnetohydrodynamics) flow through a 

porous medium has been a fervent topic of study owing 

to its wide ranging applications in a numbers of field 

such as the MHD generators and accelerators in 

geophysics, soil sciences, astrophysics, nuclear power 

reactors, biomedical engineering and physiological 

fluid dynamics for more than five decades.  

A number of investigations concerning the MHD flows 

of fluid saturated porous medium are available in the 

literature. For example; Raptis et al. (1982,1983), 

Hassanien (1989), Aldoss (1996), Chamkha (1997), 

(1999) and  Chamkha et al. (2000).  

NOMENCLATURE 

 

Cartesian co-ordinates  
  frequency parameter 

 

velocity component in x-direction  
  Hartmann number 

 

suction/injection velocity  
  mass flow 

 

permeability of the lower bed  
  pressure 

 

permeability of the upper bed  
  slip parameter 

 

dimensionless parameter  
  width of the channel 

 

dimensionless parameter  
  density 

 

 slip velocity at the lower bed  
  frequency 

 

 slip velocity at the upper bed  
  coefficient of viscosity 

 

Darcy's velocity  
  shear stress 

 

Darcy's velocity  
  kinematic viscosity 

 

 Darcy number   
 electrical conductivity 

 

 Reynolds number  
 magnetic field 
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An early classical study was conducted by Uchida 

(1956). It was shown in these studies that for large 

blood vessels, the flow of blood is principally 

Newtonian and therefore approximations of the Navier–

Stokes equations are justified. When applied transverse 

to the direction of flow, magnetic fields have been 

shown to impede blood flow, since blood as a plasma 

suspension is electrically-conducting. In a pioneering 

work of Wang (1971), the pulsatile flow in a porous 

channel was studied. Earlier, Berman (1958) 

investigated the steady two-dimensional laminar 

viscous incompressible fluid flow driven by uniform 

injection (or suction) in a rectangular channel through 

permeable and stationary walls. Meanwhile, Beavers 

and Joseph (1967) in their experimental work on 

boundary conditions at a naturally permeable wall 

confirmed the existence of slip at the interface 

separating the flow in the channel and the permeable 

boundaries. Radhakrishnamacharya and Maiti (1977) 

have made an investigation of heat transfer to pulsatile 

fluid flow in a porous channel. Khodadadi (1991) 

treated analytically an oscillatory, rather than a 

pulsating, flow through a porous medium-filled channel 

bounded by two impermeable parallel plates. Kim et al. 

(1994) examined the qualitative behavior of the 

pulsating flow and heat transfer in a channel fully filled 

with porous media.  Chandra and Prasad (1994) provide 

a small sample of the research in pulsatile flow problem 

with varying cross-section of tubes. In a very significant 

study of pulsatile flow between permeable beds by 

Vajravelu et al. (2003), it was shown that the maximum 

velocity is attained between the permeable beds and 

gradually the velocity decreases towards the upper 

permeable bed. Hassan and Das (2008) discussed 

laminar sinusoidal pulsating flow through a modeled 

arterial stenosis with a trapezoidal profile up to peak 

Reynolds number of 1000. Malathy and Srinivas (2008) 

simulated the pulsatile hydromagnetic flow between 

permeable beds. The study indicated that the maximum 

velocity is attained even at the lower permeable bed in 

the case of some specific choice of parameters. 

The motivation of the present study stems from the 

above considerations, i.e., to augment velocity profile 

by the presence of porous media and the use of 

pulsation. The following strategy is pursued in the rest 

of the paper.  In Section 2 and 3 the details of the 

mathematical formulation the problem are outlined in 

Cartesian coordinates. Section 4 contains the analytical 

result, both for the steady and unsteady state basic flow. 

Many deductions including mass flux and shear stress 

are analyzed in Section 5. Our results are presented 

pictorially and discussed in Section 6 and finally in 

Section 7 interesting conclusions have been pointed out. 

2. MATHEMATICAL STATEMENT OF THE 

PROBLEM 

Consider Consider the fully developed laminar pulsatile 

flow between two permeable beds at  and  

of a viscous conducting fluid through a porous medium. 

The fluid is assumed to be Newtonian and 

incompressible. A magnetic field of uniform strength 

 is applied in the direction of normal to the beds and 

the induced magnetic field is neglected. The x-axis is 

taken along the interface and the  is taken 

normal to it. The porous medium regime and the 

permeable beds are homogeneous and isotropic. The 

fluid is injected into the channel from the lower 

permeable bed with a velocity  and is sucked out into 

the upper permeable bed with the same velocity. The 

domain of interest is shown in Fig. 1. The flow is 

driven by pressure gradient which comprises a steady 

and a periodic fluctuating component in the axial 

direction, 
1

,i tp
A Be

x






 


where   and  are 

constants and is the frequency of the pressure 

pulsations. 

 

Fig. 1. The Physical Model and Coordinate system 

The governing momentum equations from the 

incompressible Navier-Stokes equations can be shown 

to reduce to the following form for the MHD flow 

regime: 
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The above boundary conditions are the commonly used 

slip conditions given by Beavers and Joseph (1967). 

They proposed that the tangential component of the 

normal stress of the flow in the conduit at the interface 

is proportional to the jump of the tangential velocity 

across the interface. 

We separate all the above equations into a steady part 

and an unsteady part represented by a bar  and a 

tilde  respectively, they become 

 

2.1 Steady Part 

0
u

x





 (5) 

* 22
0
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B ud d u
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
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2.2 Unsteady Part 
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2.2 Steady Part 

0,
u

x





        (17) 
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0
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
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where 1 2
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 
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3. NON- DIMENSIONALIZATION 

In order to transform the above system of equations into 

a non-dimensionless form, use will be made of the 

following transformations: 
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3.2 Unsteady Part 
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where 1 .B B    

Using above dimensionless quantities, Eq. (5)- Eq. (16) 

yield: Ignoring the asterisks  for clarity, we obtain 

the dimensionless governing equations as, 

 

Steady Part: 

0
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

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Unsteady Part 
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and letting      1 1 2 2,i t i t
B By e y eu f u f   . 

The boundary conditions reduce to 
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The mathematical statement of the problem is now 

complete and embodies the solution of Eqs. (24) and 

(30b) subject to the above mentioned boundary 

conditions 

4. ANALYTICAL SOLUTION 

4.1 Steady part 

Using boundary conditions Eq. (25) - Eq. (28), we get 

the velocity field by solving Eq. (24) as 
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and the slip velocities are given by 
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4.2 Unsteady Part 

Using boundary conditions Eq. (31) to Eq. (34), we get 

the velocity field by solving Eq. (38b) as 
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The unsteady part of the velocity is expressed as 
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Collecting the real and imaginary part, this in virtue of 

(41) reduces to 
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where the coefficients and are obtained but not 

listed here for simplicity. The above equations describe 

the steady and unsteady fluid velocity profile in the 

general case. Many particular results appear emerge 

easily from the above solutions which have been 

discussed in next section. 

5. DEDUCTIONS 

5.1 If the permeability of upper and lower beds is 

equal  , both the steady and unsteady 

velocity profiles reduce from the general case to: 

Steady Part 
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(47) 

And the slip velocities are given by 
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And the slip velocities are given by 
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where 

 
   

   

2 1

1 2 2 1

2 1 1 2

1 1 2 2 2 1

3 1 2 4 2 1

1 1

, ,

, ,

, ,

P e e P

P e P e e

R e e Q e e

 

   

   

   

   





   

   

   

 

 2 1
2 ,Q e e

    

1 2
1 1

2 2
,

1

P P
Z R

iN M R
Da






  

 

 

3 4
2 1

2 2
.

1

P P
Z R

iN M R
Da






  

 

 

5.2 Mass Flow 

The instantaneous Mass Flux  of unsteady velocity 

field is given by 
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(55)  

5.3 Shear Stress 

Although One can easily obtain the shear stress  at 

the walls using 

1

u

hB y






  
     

    (56) 

6. RESULTS AND DISCUSSION 

Numerical evaluations have been performed and some 

graphical results have been obtained to illustrate the 

details of the flow characteristics. Figures 2 and 3 

reveals the effect of an increase in permeability 

parameter  and Hartmann number  on the steady 

state velocity profile. It is seen that an increase in 

permeability parameter  and Hartmann number  

leads to a decrease in the steady state velocity. It can be 

also observed that for fixed  and  the velocity 

increases with increase in  initially and attains a 

maximum value slightly away from the middle of 

permeable beds and is in the neighborhood of 

point .  After achieving maximum value, the 

velocity decreases with the increment in . Fig. 4 

depicts the influence of Darcy number  on the steady 

state velocity profile. As  increases from 0.01 to 100, 

a considerable increment in steady state velocity occurs.  

The unsteady velocity distributions for various values 

of the significant parameters are illustrated in Figs. 5-

10.  It can be seen from Fig. 5 that the velocity is 

greater when  is minimum. It is interesting to note 

that the velocity can attain its maximum even at the 

lower permeable bed for some specific choice of 

parameters ( for  ). Figure 6 

explains that velocity decreases as  increases and the 

maximum velocity occurs towards the upper bed. 

Figures 7 and 8 exhibit the effect of an increase in 

Hartmann number  on the velocity profile. As  

increases from 0 to 3, a considerable reduction in the 

unsteady state velocity occurs. It is because that the 

application of transverse magnetic field will result a 

resistive type force (Lorentz force) similar to drag force 

which tends to resist the fluid and thus reducing its 

velocity. Moreover, for fixed , the velocity increases 

as y increases initially and attains the maximum 

velocity towards the upper bed then velocity decreases 

with the increment in  . But in the case of 

with , velocity decreases 

initially with the increment in . 
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                       Fig. 2. Steady state velocity profiles for  

 

Fig. 3. Steady state velocity profiles for  

 

Fig. 4. Steady state velocity profiles for  



R. Kumar and B. G. Prasad / JAFM, Vol. 7, No. 1, pp. 63-74, 2014.  

 

70 

 

 
As a fact the presence of a porous medium increases the 

resistance to flow resulting in decrease in the fluid 

velocity. Fig. 9 shows that the velocity increases 

gradually with increase of value which is as 

expected. The maximum velocity is shifted towards the 

upper bed whereas the point of maximum is found 

slightly distant from the middle of the beds  

Figure 10 reveals the effect of an increase in  on the 

mass flow. We observe that the mass flow decreases 

gradually with increase of  value which is as 

expected. Figure 11 shows that with the increase of 

Darcy number  the mass flow decreases. It can be 

also seen that for a particular value of , the mass 

flow decreases with the increment in Reynolds 

number .  

Tables 1(A) and (B) represent the values of the shear 

stress at the lower and upper walls for 

 and for different 

values of . We observe that an increase in Darcy 

number , leads to a decrease in the stress on the 

lower wall and increase on the upper wall. Also it is 

seen that for a particular value of , the stress at the 

lower wall of the permeable bed is lower than that of 

the upper permeable bed. The effect of the cross-flow 

Reynolds number on the values of shear stress on the 

permeable walls are exhibited in Table 1(C) for 

different values of the cross-flow Reynolds number . 

It is obvious that as the cross-flow Reynolds number 

increases the shear stress on both the lower and upper 

walls decreases. Further, when , stress takes the 

maximum value at lower wall but for upper wall it 

attains the maximum value at . Table 1(D) 

presents the values of the shear stress for 

and for different 

values of Hartmann number . We find that the shear 

stress at both the lower and upper walls of the 

permeable bed increases with the increase of . Table  

 
Fig. 5. Unsteady state velocity profiles for  

 
Fig. 6. Unsteady state velocity profiles for  
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 Fig. 7. Unsteady state velocity profiles for  

 
Fig. 8. Unsteady state velocity profiles for  

 
Fig. 9. Unsteady state velocity profiles for  
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Fig. 10. Mass flux flow for  

 

Fig. 11. Mass flux flow for  

 

1(E) exhibits the values of the shear stress for 

and for 

different values of frequency parameter . We find that 

the stress on the lower wall of the permeable bed 

increases with the increase of  while on the upper 

wall it decreases with the increment of . The effect of 

an increase in the permeability parameter,  on the 

shear stress on the walls of permeable beds is presented 

in Table 1(F). It can be observed that the shear stress on 

both the lower and upper walls of the permeable beds 

increase with an increase of permeability parameter. 

Further, when these observations are compared with the 

findings in Malathi and Srinivas (2008) for the clear 

fluid case and Vajravelu et al. (2003) for the clear fluid 

case and the absence of magnetic field we find very 

good agreement.  
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Table 1 Variation of shear stress 

(A):  

 

 

0.01 0.1 1 10 100 

Lower 

wall 0.0623 0.0297 0.0217 0.0208 0.0207 

Upper 

wall 0.0720 0.0417 0.0320 0.0309 0.0307 

 (B):  

 

 

0.01 0.1 1 10 100 

Lower 

wall 0.0534 0.0403 0.0914 0.0990 0.0998 

Upper 

wall 0.0649 0.0834 0.2311 0.2544 0.2594 

 (C):  

 

                     R 

0 2 4 6 8 

Lower 

wall 0.3657 0.2805 0.1983 0.1450 0.1124 

Upper 

wall 0.3657 0.3896 0.3548 0.3067 0.2647 

 (D):  

 

                    M 

2 4 6 8 10 

Lower 

wall 0.0297 0.0667 0.0798 0.0859 0.0893 

Upper 

wall 0.0417 0.0754 0.0847 0.0890 0.0914 

 (E):  

 

 

1 2 3 4 5 

Lower 

wall 0.0099 0.0124 0.0196 0.0304 0.0424 

Upper 

wall 0.0806 0.0801 0.0785 0.0770 0.0767 

 (F):  

 

 

2 4 6 8 10 

Lower 

wall 0.0463 0.0693 0.1035 0.1200 0.1296 

Upper 

wall 0.0624 0.1117 0.1879 0.2374 0.2738 
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