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ABSTRACT 

 
A mathematical model is presented for the steady, two-dimensional magneto-convection heat transfer of a 

two-phase, electrically-conducting, particle-suspension in a channel containing a non-Darcian porous medium 

intercalated between two parallel plates, in the presence of a transverse magnetic field. The channel walls are 

assumed to be isothermal but at different temperatures. The governing equations for the one-dimensional 

steady flow are formulated following Marble (1970) and extended to include the influence of Darcian porous 

drag,  Forcheimmer quadratic drag, buoyancy effects, Lorentz body force (hydromagnetic retardation force) 

and particle-phase viscous stresses. Special boundary conditions for the particle-phase wall conditions are 

implemented. The governing coupled, non-linear differential equations are reduced from an (x,y) coordinate 

system to a one-dimensional (y) coordinate system. A series of transformations is then employed to non-

dimensionalize the model  in terms of a single independent variable, , yielding a quartet of coupled ordinary 

differential equations which are solved numerically using the  finite element method, under appropriate 

transformed boundary conditions. The influence of for example Grashof free convection number (Gr), 

Hartmann hydromagnetic number (Ha), inverse Stokes number (Skm), Darcy number (Da), Forcheimmer 

number (Fs),particle loading parameter (PL), buoyancy parameter (B)  on the fluid-phase velocity and 

particle-phase velocity are presented graphically. A number of special cases of the transformed model are also 

studied. The mathematical model finds applications in solar collector devices, electronic fabrication, jet 

nozzle flows, industrial  materials processing transport phenomena, MHD energy generator systems etc. 

  

Keywords: Two-phase hydrodynamic, Particle suspension, Buoyancy, Heat transfer, Magnetic 

fields, Non-Darcy porous medium , Stokes number, Finite element solutions.  

 NOMENCLATURE 

 

Dimensional 

 density of fluid phase 

t time 

 Del operator 

V fluid phase velocity vector 

P hydrodynamic pressure 

 dynamic viscosity of fluid phase 

p density of  particle phase 

N interphase momentum transfer    

coefficient 

Vp particle phase velocity vector 

g gravitational acceleration 

B magnetic field vector 

K permeability of porous medium 

b Forcheimmer inertial resistance 

parameter 

c specific heat of fluid phase at constant 

pressure (isobaric) 

T temperature of fluid phase 

k thermal conductivity of  fluid phase 
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cp specific heat of particle phase at    

constant pressure (isobaric) 

NT interphase heat transfer coefficient 

Tp temperature of particle phase  

p dynamic viscosity of particle  phase 

x direction parallel to channel 

y  direction transverse to channel 

u velocity of fluid phase 

up velocity of particle phase 

* coefficient of volumetric expansion 

s separation of plates comprising channel 

 particle phase wall-slip coefficient 

 

Non-dimensional Parameters 

 transformed y coordinate 

U dimensionless -direction fluid phase 

velocity 

Up dimensionless -direction particle 

phase velocity  

 dimensionless temperature of fluid 

phase  

p dimensionless temperature of particle  

phase  

Da
 Darcy number 

Fs
 Forcheimmer number  

Pr
 Prandtl number 

  specific heat ratio 

TSk
 inverse thermal Stokes number 

mSk
 inverse hydrodynamic Stokes number 

Lp
 particle loading parameter  

B dimensionless buoyancy parameter 

Ha
 Hartmann hydromagnetic number 

 viscosity ratio 

Gr Grashof number 

 dimensionless particle-phase wall slip 

parameter 

 

 
1. INTRODUCTION 

Hydromagnetic convection flows constitute a 

major branch of modern heat transfer research. 

Applications abound in many areas of technology 

including  fusion processes  in electrical furnaces, 

plasma generators, ferrohydrodynamic 

processing, plasma  aerodynamics etc. Many 

single phase numerical studies of such flows have 

been communicated in the literature. Singh and 

Cowling et al. (1963) provided an early analysis 

of hydromagnetic thermal convection. Wilkset al 

(1976) examined the buoyancy effects in 

hydromagnetic convection flows in strong 

magnetic fields. Soundalgekar  and Takhar et 

al(1977) studied  the MHD thermal convection 

flows pasta flat surface with applications in 

nuclear fusion blanket systems. Takhar and 

Soundalgekar(1980)  investigated the influence of 

Eckert number on natural convection in magnetic 

fields. Revankar (1982) studied lateral mass flux 

effects in hydromagnetic convection. Takhar and 

Pop (1984) considered the influence of low 

thermal conductivity fluids on MHD 

thermoconvection flows past a two dimensional 

wedge geometry using shooting methods. Surma 

Devi et al (1986) modeled the hydromagnetic 

flow past a conical body using finite difference 

method. Thacker et al. (1988) considered the 

natural convection hydromagnetics in the vicinity 

of a disk configuration spinning in a vertical 

plane.  Ram and Takhar (1993) analyzed the 

transient MHD free convection in a rotating fluid 

with Hall and ionslip current effects using a finite 

difference solver. Hossain et al. (1998) examined 

the effects of surface temperature oscillations on 

convection flows in transverse magnetic fields. 

Naroua et al. (2000) studied numerically the 

radiation effects on rotating transient MHD heat 

transfer. More recently Bég et al. (2001) studied 

the free convection hydromagnetics of a 

viscoelastic (second order) fluid in a non-Darcian 

porous medium. All these studies were concerned 

with single phase  hydrodynamic regimes. In 

many industrial and biophysical pheonomena 

multi-phase flows takes place. In such systems 

particles are transported in the main bulk of the 

fluid and  often accompanied by simultaneous 

heat/mass transfer. These “dusty” flows have 

been reviewed by Marble (1970). Considerable 

interest has been shown in such flows in the 

engineering science community. Greenberg et al. 

(1973)  provided an early study of  vortex two 

phase flows. Peddieson (1975) investigated the 

gas particle fluid dynamics in aerodynamic flows 

past  geometries in the presence of shock waves. 

Hwang and Chang (1988) simulated the two-

phase  gas-particle flow in a solid rocket nozzle 

system using a computational method. Chamkha 

and Peddieson (1991) presented a fresh analysis 

of hydrodynamic boundary layers of particulate 

suspensions past flat surfaces. Leung et al. (1993) 

considered the interfacial two-phase flow 

hydrodynamics of bubbly liquids. Chang et al. 

(1996) implemented a state-of-the-art CFD 

algorithm to dilute gas-particle JPL nozzle flows. 

Satyamurthy et al. (1997) have studied two-phase 

hydrodynamics in liquid metal 

magnetohydrodynamic energy converters 

(LMMHD EC) of gravity type for  electrical 

power generation. In these systems, vertical two-

phase flows consisting of steam and high density 

liquid metals like lead, lead alloys take place in 

the riser pipe. The design of optimum LMMHD 

EC and for scaling up of the system requires 

accurate modeling of the two-phase flow. The 

important parameter which governs the two-

phase flow was shown to be void fraction. 

Quantified void fraction and pressure profiles 

were compared with values based on two-phase 

bubble flow model and other well known 

empirical relations. It was noted that more robust 

mathematical models are needed for accurate 

prediction of void fraction for all ranges of liquid 

metal-nitrogen two-phase flows. Moukhalled et 
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al. (2003) presented finite volume-based 

numerical solutions for 

incompressible/compressible multi-phase flow 

phenomena for subsonic, transonic, and 

supersonic regimes. Pressure was selected as the 

dependent variable in preference to density due to 

the significant  changes in pressure at all sonic 

regimes as opposed to variations in density, 

which become very small at low Mach numbers. 

Several flow scenarios were considered including 

incompressible turbulent bubbly flow in a pipe, 

incompressible turbulent air-particle flow in a 

pipe, compressible dilute gas-solid flow over a 

flat plate, and  compressible dusty flow in a 

converging diverging nozzle. Usha et al. (2005) 

studied computationally the particulate 

suspension flow through wavy-walled channels. 

A perturbation method was employed and the 

primitive variables were defined as series  

expansions with the wall amplitude as the 

perturbation parameter. The boundary conditions 

were applied at the mean surface of the channel 

and the first-order perturbation quantities 

numerically evaluated by solving the governing 

system of ordinary differential equations using a 

Runge-Kutta shooting quadrature. The wall shear 

stress and the flow separation/reattachment points 

were simulated and the influence of the volume 

fraction density of the particles was studied in 

detail. Variations of velocity and pressure of the 

particulate suspension flow with frequency of 

excitation were also considered. More recently 

Chamkha (1999) presented a  continuum two-

phase fluid-particle model accounting for 

particle-phase stresses and a body force due to the 

presence of a magnetic field  in a mathematical 

study of two-dimensional laminar hydromagnetic 

flow of a particulate suspension over a horizontal 

surface in the presence of a gravity field. 

Analytical solutions for the velocity distributions 

and the skin-friction coefficients of both phases 

were reported. The special cases of wall 

hydrodynamic (velocity) conditions 

corresponding to stationary and oscillatory 

velocity distributions were considered. Numerical 

evaluations of the analytical solutions were 

discussed and graphically presented to highlight 

special features of the solutions. The effects of the 

particle-phase stresses and the magnetic field 

were studied via representative results for the 

horizontal velocity profiles, fluid-phase 

displacement thickness, and the complete skin-

friction coefficient for various combinations of 

the physical parameters. Magnetic field increased 

the fluid-phase skin-friction coefficient for 

various particulate volume fraction levels; 

conversely particle-phase viscous stresses were 

shown to depress fluid-phase skin-friction 

coefficient for various particle-to-fluid density 

ratios. Other applications of two-phase flows 

include  steam turbines (1998), binary mixing 

processes (1998) and pulmonary hydrodynamics 

(2000). In the above studies the presence of 

porous media was not considered. Brenner (1993) 

has discussed the importance of such a medium in 

many chemical and energy  systems applications. 

In cosmical fluid dynamics, the presence of 

debris and comet dust also exerts an important 

effect on transport processes in astro-plasmas. 

The present study therefore aims to develop a 

new mathematical model for two-phase 

hydromagnetic flow of a dusty particle-

suspension system in a non-Darcian porous 

medium. The porous effects are simulated using a 

drag force model which has been applied 

successfully by Bég et al. (1996) to a plethora of 

engineering and geophysical flow problems. The 

bulk matrix resistance of the porous medium is 

modeled using the classical Darcian linear 

pressure drop formulation. The quadratic drag 

generated at higher Reynolds numbers is 

simulated using the Forcheimmer inertial model. 

The resulting  drag force terms when combined 

constitute the Darcy-Forcheimmer resistance 

model. Bég et al. (2005) used this model recently 

in studying the rotating convection from a two-

dimensional plane to a thermally-stratified  high-

porosity medium, the micropolar heat and mass 

transfer in a porous regime with Soret/Dufour 

diffusion effects was studied using the Darcy-

Forcheimmer model by Bhargava et al. (2006) 

not only this the some is also done in channel 

using the non Newtonian fluid (2007).  

In the recent past the authors focusing on the 

impact of viscous dissipation effects or thermal 

dissipation in Darcy-Forchheimer porous medium 

and  Ghazian (2011) investigated analytically the 

impact of viscous dissipation in channel filled 

with porous medium he observed that the gap size 

between the porous region and the clear fluid 

directly affects the viscous dissipation due to 

change in the resistance of the fluid. A recent   

records reports the study of Mishra et al. (2012) 

on free convective fluctuating MHD flow past a 

vertical porous plate with variable temperature is 

cause of back flow and viscous dissipation 

accelerates the velocity. 

Keeping in view the above literature our 

objective is to understand the impact different 

terminology for magneto-convection heat transfer 

of a two-phase, electrically-conducting, particle-

suspension in a channel. 

 

 

3. Problem Formulation 

We consider the steady incompressible, 

magnetohydrodynamic fully-developed  two-

phase flow and free convective heat transfer  of a 

fluid-particle suspension in a two-dimensional 

parallel plate channel containing an isotropic, 

homogenous porous medium (as illustrated in 

Fig. 1).   
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          Fig. 1. Physical Model and Coordinate System 

 

The particles are assumed to be  homogenous (i.e. 

number density of the particles is constant 

throughout the motion), discrete and non-

conducting. Interaction between the particles is 

also ignored. The x-direction is directed along the 

longitudinal axis of the plates and the y direction 

is normal to this. For infinitely long channel walls 

the problem reduces to a one-dimensional flow 

since dependence on the y- direction swamps 

dependence of variables on the x-direction. Zero 

electrical field is assumed throughout the flow 

regime and the effects of chemical reaction, mass 

transfer and radiation between the particles and 

fluid is neglected. The porous medium is assumed 

to be in local thermal equilibrium and dispersion 

and stratification effects are ignored. The 

appropriate transport equations for the flow can 

be shown to take the form as the following 

ordinary differential equations, where y is the 

only independent variable:         

         

Conservation of fluid momentum 

 
   

    
  

  
               

 

 
  

 
  

 
   

   

 
                                               (1) 

 

Conservation of fluid energy 

 

 
   

   
                                        (2) 

 

Conservation of particle  momentum 

 

  
    

                           (3) 

 

Conservation of particle energy 

 

                         (4) 

 
All parameters relating to Eqs. (1) to (4) are 

defined in the nomenclature. The conservation of 

mass in both phases is also identically satisfied. 

Pressure gradient appears only in the fluid phase 

momentum  equation. Following Al-Subaie and 

Chamkhawe eliminate this term  from the 

momentum equation, by re-defining the transport 

equations  at a reference point within the channel.  

Denoting:  

 

 

u =  0,   T = To,    = 0 
,       = 0

  ,    

 = 0 ,    up = p0 ,    Tp = Tp0 ,     

p = p0  , p= p0  

 

and implementing the  Boussinesq approximation 

, Eq. (1) transforms to: 

 
  

  

   

              
   

  
         

   

  
  

  

 
  

   

 
   

    
 

 
          (5) 

 

 

The governing equations are now (5), (2), (3) and 

(4) and the appropriate boundary conditions at 

either channel wall are defined by: 

 

 

 

For the fluid phase: 
                

                                                                                      

                                                                         (5a) 

 

For the particle phase: 
   

       
      

  
 

 

 
          

      

  
 

 

 
                                

                                                                         (5b) 

 

where all terms are again defined in the 

nomenclature at the end of the paper. The current 

problem is therefore a sixth order system of 

ordinary differential equations with six robust 

boundary conditions. The velocity boundary 

conditions (5a) correspond to no-slip conditions 

for the fluid phase at the channel walls. 

Conditions (5b) are infact deduced from an 

analogy to rarified gas dynamics Hayes et.al 

(1970) and constitute generalized wall boundary 

conditions. This approach has been adopted by 

many researchers and is valid both numerically 

and experimentally turbines Marble (1970), Al-

subaie (2003) 

  

4. Transformation of Model 
 

To facilitate a numerical solution to the system 

(5), (2), (3), (4) and (5a,b), we now introduce a 

set of non-dimensional transformations and 

thermofluid numbers, viz: 
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where all non-dimensional quantities are defined 

in the nomenclature. The transport equations now 

become: 

 
   

   
                    

 

  
  

  

  
                                             (6) 

    
 

  

   

   
                 

                      (7) 

 

 
    

   
                

                                     (8) 

               

                      (9) 

 

with corresponding boundary conditions: 

 

For the fluid phase: 

 
                             

              (10a) 

 
For the particle phase: 

 

      
      

  
 

 

   
                        (10b) 

  

       
      

  
 

 

   
                        (10c) 

and the new parameter,  i.e. dimensionless 

particle-phase wall slip parameter, is defined in 

the nomenclature. The system (6) to (9) with 

conditions (10a,b,c) defines a well-posed two-

point boundary value problem which yields 

numerical solutions for a wide range of all the 

thermophysical parameters. Prior to embarking 

on a numerical solution we shall first describe a 

number of important special cases relating to the 

general transformed, dimensionless model. 

 

5. Special Cases for the Flow Model 

 

Case I: Hydromagnetic Inviscid Particle-

Suspension Free Convection Flow in a 

Darcy-Forcheimmer Porous Channel 

 
When the viscosity ratio vanishes i.e.   0, the 

fluid suspension loses viscosity i.e. becomes 

inviscid, a regime usually encountered in 

aerodynamic flows. This has a major influence on 

only the particle-phase momentum Eq. (8) which 

now reduces to an algebraic equation: 

 

                                                (11) 

The other conservation equations are not affected. 

 

Case II: Non-Conducting Particle-

Suspension Free Convection Flow in a 

Darcy-Forcheimmer Porous Channel 

 
When the Hartmann number is set to zero i.e. Ha 

 0, hydromagnetic drag is negated and the flow 

regime becomes non-conducting. In this case 

only the fluid phase momentum Eq (6) is 

affected, contracting to : 

 
   

                        
 

  
  

  

  
                     (12) 

 

Case III: Non-Conducting Particle-

Suspension Free Convection Flow in a 

Darcian Porous Channel 
 

Case II may be further modified for the scenario 

where the Forcheimmer number is set to zero so 

that the quadratic drag force term vanishes in Eq 

(12). The momentum equation thereby reduces 

to: 
   

                        
 

  
  

          Eq.     (13) 

 

which physically corresponds to the Darcian 

convection regime. Once again the other transport 

equations are unaffected. 

 

Case IV: Non-conducting Particle-

Suspension Free Convection Flow in a 

Non- Porous Channel 

 
For the case of infinite permeability, Da  , 

and in Eq (13) the Darcian bulk impedance term 

vanishes, so that the flow domain is now one of 

natural convection of a particle-fluid suspension 

in a non-porous channel. Equation (13) shrinks 

now to: 

 
   

                          .                  

              (14)            

 

Case V: Non-conducting Particle-

Suspension Forced Convection Flow in a 

Non- Porous Channel 

 
For the above four special cases, the fluid 

velocity field is coupled to the temperature field 

via the buoyancy term in (6). In addition there is 

a buoyancy term due to particle-fluid effects in 

(6). For forced convection, Gr  0, and this 

decouples the fluid and temperature variables in 

(6) and (7). We can therefore modify (14) to 

reduce the fluid phase momentum equation yet 

further, to give: 

 
   

                               (15) 
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We note buoyancy is still present in the last term 

in Eq. (15) which is clearly independent of the 

temperature field.  

Several of these special cases are considered in 

the numerical computations to be provided next 

 

6. Numerical Solutions by the Finite 

Element Method 

 
The governing equations amount to a set of 

nonlinear, coupled ordinary differential equations 

with corresponding boundary conditions. The 

finite element method Rao(1982) is a versatile 

numerical solver which has been applied in many 

areas of fluid dynamics including combustion, 

reactive aerodynamics, solar engineering systems, 

rheology, ocean wave dynamics, river hydraulics 

and flame acoustics etc. A finite element solution 

of the transformed equations (6) to (9) with 

(10a,b,c), encompasses initially the derivation of 

a variational formulation. Further details are 

available in the monograph by Bathe Eq (6) 

Bathe (1996). The basic stages of this technique 

are as follows: 

 

1 Discretization of the domain into 

elements: 

 
(i) The whole domain is divided into a finite 

number of sub domains, which is called the 

discretization of the domain. Each sub domain is 

called an element. The collection of elements is 

then denoted the finite-element mesh. The 

intersection of any two elements is termed an 

inter-element boundary. The intersection points 

are called the global nodes.  

 

(ii) The nodes and elements are numbered. 

 
(iii) The geometric properties needed for the 

problem are generated, which indicates the 

position of the elements.  

2 Derivation of element equations:  

 
(i) A typical element is isolated from the mesh 

and the variational formulation of the given 

problem over the typical element is constructed.  

 

(ii) An approximate solution of the variational 

problem is assumed. Substituting it into 2.(i), the 

element equations are made.  

 

(iii) The element matrix or stiffness matrix is 

constructed by using the element interpolation 

functions. The interpolation functions depend on 

the type of element (geometry, number of nodes 

and number of primary unknowns per node). 

These functions have to be derived or selected 

and are not already available in the literature.  

 

3 Assembly of Element Equations:  

 
The algebraic equations so obtained are 

assembled by imposing the interelement 

continuity conditions (i.e. the value of the nodal 

variables at the nodes are identical for two or 

more elements). This yields a large number of 

algebraic equations known as the global finite 

element model, which governs the whole domain. 

 

4- Imposition of boundary Conditions:  

 
The initial and final boundary conditions are 

imposed on the assembled equations. 

 

5 Solution of assembled equations:  

 
The assembled equations are solved by any of the 

numerical technique viz. Gaussian Elimination, 

Gauss-Seidel, LU decomposition etc.  

For computational purposes and without loss of 

generality, ∞ has been fixed as 1. The whole 

domain is divided into a set of 81 line elements of 

equal width, each element being two-noded. 

 

Variational formulation: 

 
The variational form associated with differential 

equations (6)-(8),  Eq (9) is a linear expression 

and not considered in this stage of the solution] 

over a typical two noded linear element  

 1,e e    is given by:  

 

    
   

                    
    

  

    1         2   2   =0          (16) 

 

Where, ,1 2 3w w and w , are arbitrary test 

functions and may be viewed as the variation in 

,U and U p , respectively. 

 

Finite element formulation: 
The finite element model may be obtained from 

Eqs. (6)-(8) by substituting finite element 

approximations of the form: 

 

       
 
            

 
       

      
 
                   (17) 

 

With,                 , (i=1,2), The 

parameters, i , are the shape functions for a 

typical element           , and are taken as: 

 

           
   

 
      

       
   

   
 

    

       
                                    

             (18) 

 

The finite element model of the equations thus 

formed is given by: 

 

 

               

               

               

  

   

   

    
   

    

    

    

  

            (19) 

Where,       and      (m.n=1,2,3,4,5), are the 

matrices of order 2x2  and 2x1 respectively. All 

these matrices may be defined as follows:  
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    , 

   
     

   

  

   

  
  

    

  
, 

   
     

   
             

    

  

 

   
      

   
      

   

  

   

  
  

    

  

           

    

  

 

  
          

  

  
 
  

    

,   
      

  

  
 
  

    

  , 

  
        

   

  
 
  

    

 

Where,       
   

 
   , Each element matrix is of 

the order 6x6, Since the whole domain is divided 

into a set of 81 line elements, following assembly 

of all the elements equations we obtain a matrix 

of order 246 x 246, This system of equations as 

obtained after assembly of the elements equations 

is non-linear therefore an iterative scheme has 

been used to solve it. The system is linearized by 

incorporating the function U , which is assumed 

to be known. After applying the given boundary 

conditions only a system of equations remains for 

the solution which has been solved using Gauss 

elimination method by maintaining an accuracy 

of 0.0005. We note that the present model is 

restricted to steady flow. For the transient case, 

relaxation time and Strouhal number effects have 

to be considered, and such a study is currently 

under development by Bég et al. (2006). The 

finite element technique overcomes the 

shortcoming of the traditional variational method 

and is highly efficient computationally. This 

method has been applied by the authors in many 

nonlinear flow problems including biomagnetic 

micropolar porous flow (2006), micropolar 

stagnation point convection flow (1998), the 

micropolar flow between rotating disks (2001). 

 

 

 

7. Discussion of Results 

 
The 11 parameters governing the flow and heat 

transfer in the porous channel regime are: Prandtl 

number (Pr), Grashof free convection number 

(Gr), Hartmann hydromagnetic number (Ha), 

inverse Stokes number (Skm), Darcy number 

(Da), Forcheimmer number (Fs), particle loading 

parameter (PL), buoyancy parameter (B), 

temperature inverse Stokes number (SkT), 

Viscosity ratio (), specific heat ratio ( 
).Computations have been performed for selected 

thermophysical parameters, for conservation of 

space, for example Grashof free convection 

number (Gr), Hartmann hydromagnetic number 

(Ha), inverse Stokes number (Skm), Darcy 

number (Da), Forcheimmer number (Fs), particle 

loading parameter (pL), buoyancy parameter (B) 

on the fluid-phase velocity and particle-phase 

velocity. Here we dwell therefore on the response 

of the velocities to variations in the control 

parameters. In a subsequent paper Rawat (2010),, 

we shall consider in detail the effects of such 

parameters on the temperature profiles also. From 

equation Rawat (2010), the  value 

(dimensionless temperature of fluid phase) and 

the p (dimensionless temperature of particle  

phase) will be equivalent, therefore only a 

numerical solution for  is needed, as discussed 

above in the methodology. 

We have prescribed the following default values 

for the thermophysical parameters: 

Pr =  1,  Gr = 1,  Ha =1, Skm=1, Da = 1, Fs = 1, 

PL =1, B = 1,SkT =1,   =1,    . 

 

In Figure 2, we have plotted the distribution of U 

i.e. dimensionless -direction fluid phase velocity 

versus  for various Grashof  numbers i.e. free 

convection parameter.  As Gr increases from 0 

through 100, 200, 300 and 500, U values are  

 

 

Fig. 2. U  versus   for various Gr  values 

 

initially decreased in magnitude for the regime 0 

<  < 0.5. For higher Gr values i.e. 300 and 500 

-4

4

12

0 0.5 1



U

Gr = 0

Gr = 100

Gr = 200 

Gr = 300

Gr = 500

 Ha = 1, Skm =1, Da = 1, Fs = 1, PL = 1, B = 1, Λ = 1, Ω =1
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which correspond to strong buoyancy the U 

values in fact become negative indicating low 

reversal over the range 0 <  < 0.125 and 0 <  < 

0.3 respectively; However we observe that in the 

second half of the channel, 1.0 <  < 0.5, the U 

values remain positive and in fact increase with 

buoyancy i.e. the maximum velocity in the 

channel corresponds to Gr = 500 at  ~ 0.7. It is 

interesting to note also that in the forced 

convection case, Gr = 0, the velocity profile is 

parabolic and perfectly  symmetrical  about the 

channel centre line at  ~ 0.5.Increasing 

buoyancy effects push profiles downwards over 

the first half of the channel and upwards over the 

second half of the channel. All profiles descend 

to zero at both walls of the channel in accordance 

with the zero velocity boundary conditions there.  

Figure 3 illustrates the distribution of 

dimensionless -direction fluid phase velocity, U, 

with  for  various Hartmann (hydromagnetic) 

numbers, Ha. The profiles in this plot are all 

symmetrical parabolas about the channel centre 

line, and correspond to weak buoyancy effects 

(Gr = 1). Ha defines the relative effects of the 

magnetic retarding force to the  viscous force. A 

rise in Ha clearly decreases U values from a peak 

value of 6.8 for Ha = 0 (at the channel centre-line, 

 =0.5) to approximately 5 for Ha = 3, to 1.4 for 

Ha =  5 and to 0.2 for Ha = 20. The case of Ha = 

0 corresponds to non-magnetic i.e. hydrodynamic 

flow and heat transfer, where the fluid is not 

electrically-conducting. A magnetic field applied 

in the -direction, therefore generates a resistive 

force perpendicular to this direction i.e. in the 

direction of flow (longitudinal) which decelerates 

the movement of the fluid in the channel. As a 

result the minimum velocities correspond to the 

maximum Ha values and vice versa. Magnetic 

fields therefore can be imposed normal to a 

channel flow to control flow velocities in energy 

generation devices etc. The graph again 

corresponds to non-Darcian channel flow with  

 

 

Fig. 3. U  versus   for various Ha  values 

 

weak buoyancy.  We also note that in all the 

computations reported here the viscosity ratio, , 

has been fixed at unity  implying that the both 

fluid and particle phases possess the same 

viscosity. Computations have been performed 

(not reported here for brevity) for the effects of   

which when increasing  implies that particle 

phase viscosity coefficient rises and the 

suspension becomes more viscous causing  a 

reduction in velocities and also skin friction 

values.  

Figure 4 shows the variation of the particle-phase 

velocity Up with Hartmann number (Ha). An 

increase in Ha causes an decrease in Up values 

(which are again symmetric about the centre line 

of the channel). The dimensionless particle-phase 

wall parameter, , is set to unity in both 

boundary conditions (44b,c) and with buoyancy 

parameter (B) and momentum inverse Stokes 

number (Skm) also equal to unity, which therefore 

reduce to : 
(0)

(0) 1 lim
0

dU p
U p

d x 
 


 and 

(1)
(1) 1

dU p
U p

d
   at the left wall ( = 0) and 

the right wall of the channel ( = 1) respectively. 

The least value of Up is observed for Ha = 20 

(maximum magnetic field strength case) and 

occurs at   = 0.5 and is equal to – 63 

approximately. For Ha = 0 (non-conducting case) 

the least value is about -58. In all cases the 

particle phase velocities are in fact negative. The 

maximum values for all values of Ha correspond 

to the wall where due to symmetry they are 

identical for each case of Ha.  Clearly therefore 

magnetic field has a much more pronounced 

effect on the fluid phase velocities (Fig. 3) than 

on the particle-phase velocities. This is logical 

since the U–conservation equation is directly 

affected by Ha via the Lorentz body force term in 

(40),- UHa 2
, and this via presence of the U 

term in the Up momentum equation (42), 

)( pm UUSk  , causes an indirect influence 

on the particle-phase velocity field.  

 

Fig. 4. U p  versus   for various Ha  values 

 

The influence of momentum (hydrodynamic) 

inverse Stokes number, Skm,  on U and Up 

profiles versus  are depicted in Fig. 5 and 6 Skm 

therefore signifies the hydrodynamic coupling 

between the fluid and the particle phases. As Skm 

increases, therefore there is a  
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Fig. 5. U  versus   for various Skm  values 

 

Fig. 6. U p  versus   for various Skm  values 

correspondingly greater transfer of momentum 

from the fluid phase to the particle phases, which 

causes a decreases in U (fluid phase) velocity 

throughout the channel, as shown in figure 5.  

Peak values of U therefore occur for the least 

value of Skm i.e. 0.3 (more momentum is 

transferred to the fluid than the particle phase) 

and the lowest U values arise when Skm reaches a 

maximum value of 5 (more momentum 

transferred to the particle phase). For the profile 

Skm  = 1 an equal momentum allocation is 

achieved between both phases. The maximum U 

velocities always occur at the centre-line of the 

channel  (values are zero at both channel walls),  

and are 9 and 2 approximately for Skm = 0.3 and 

5 respectively.  In consistency  with the U 

profiles, the Up profiles are seen in figure 6 to 

increase considerably i.e. become progressively 

less negative as Skm increases from 0.1 through 

0.3, 0.7, 1, 2 to 5. Profiles also become 

increasingly flatter as Skm increases. The 

minimum value computed for Up is 

approximately -105 at  = 0.5 (for Skm = 0.1 for 

which 90% of the momentum is transferred to the 

fluid) and the maximum value of -15 for Skm = 5 

(five times as much momentum transferred to 

particle phase as to the fluid phase).  

 

The influence of the Darcy number, Da, on U and 

Up distributions are illustrated in Fig. 7 and 8  

This parameter is directly proportional to the 

permeability of the porous regime i.e. K and  

 

 

Fig. 7. U  versus   for various Da  values 

 

occurs as a denominator in both the Darcian drag 

and Forchheimer drag forces in the fluid phase 

momentum conservation Eq. (6) i.e. 
1

U
Da

. As 

Da increases, the bulk matrix (Darcian) drag 

decreases and therefore an increase in velocity, U 

accompanies a rise in Da from 0.001 through 0.1, 

1 to 200 (highly permeable). Da  = 0.01 

physically relates therefore in figure 7 to the least 

permeable scenario corresponding to the 

maximum matrix resistance of the solid particles 

in the flow regime. In a geophysical context these 

would be generated by for example the 

geomaterial structure through which the fluid-

particle suspension is flowing. All profiles for Da 

= 0.1, 1 and 200 are symmetric parabolas about 

the centre line of the channel and velocities at 

either wall are zero (no-slip condition). 

 

Fig. 8. 
pU  versus   for various Da  values 

 

 For Da = 0.01 the profile is almost horizontal 

and peak velocity plummets to 0.4 at  = 0.5. In 

figure 8 we observe that the particle phase 

velocity is also increased by a rise in Darcy  

number from 0.01, through 0.1 and 1 to 200 i.e. 

Up values become less negative. However the 

increase is much less marked which is due to the 

indirect effect that the Darcy number incurs on 

the particle phase momentum field. Da does not 

occur in this momentum equation, and  only  in 
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the fluid momentum conservation equation. The 

coupling of the U and Up fields indirectly allows 

the Darcy number to effect the particle phase 

velocity, Up, explaining the much less 

pronounced effects. As with all other 

computations a Prandtl number of unity has been 

implemented.  

In Figs. 9 and 10  we have plotted the variation of 

U and Up with the quadratic porous parameter i.e. 

Forchheimer number, Fs. For the case of Fs = 0 

the regime is Darcian. As Fs is increased to 1, 5 

and then 50 (strong inertial drag), the velocity U 

is dramatically decreased as witnessed in figure 9. 

Fig. 9. U  versus   for various Fs  values 

 

With Da = 1 in the computations a rise in Fs from 

1 to 50 implies a fifty fold increase in quadratic 

impedance in the term, 2Fs
U

Da
. The profiles for 

Fs = 0, 1, and 5 are symmetric parabolas, 

however as with the case of magnetic field (figure 

3), for high values of Fs the profile becomes 

greatly flattened. Velocity gradients therefore are 

minimized at the centerline of the channel for Fs 

= 50 as are velocities. A maximum U value of 

approximately 10 is observed at the centerline of 

the channel for Fs = 0; the minimum value is 

roughly 1 for Fs = 50. 

 

Fig. 10. U p  versus   for various Fs  values 

 

As expected a rise in Fs decreases  the values of 

particle phase velocity i.e. Up  i.e. values become 

more negative, as seen in figure 10. As before 

with the Da and Ha effects, the influence of the 

same range of increase of Fs on the Up values is 

much less distinct than for the U values. As with 

the other body force effects i.e. magnetic field 

and Darcian bulk matrix drag, the influence of 

Forchheimer inertial drag is only experienced 

indirectly by the particle phase momentum field 

via coupling to the fluid phase momentum field 

through the term, ( )Sk U Um p  in equation (8). 

It is important to note that  primarily deceleration 

in the channel is experienced by the fluid phases 

rather than the particle phases due to inertial drag 

effects, which may be of significance in  filtration 

applications in chemical engineering.  

The effects of the particle loading parameter,PL, 

on the fluid phase and particle phase velocities is 

shown in Fig. 11 and 12. 
p

pL



 which 

represents the ratio of the densities of the particle 

and fluid phases. An increase in PL clearly boosts 

the fluid phase velocity, U, which rises from 

approximately 1 for PL = 0.1 to 13 for PL = 3. 

Profiles  are generally smoothly parabolic and 

symmetric about  ~ 0.5, with the exception of PL 

= 0.2 for which the density of the fluid is much 

greater than the  particle phase. In figure 12 

particle-phase velocity, Up is seen to increase 

marginally with a rise in PL from 0.1 through 0.5, 

1, 2 and ,5. 

Fig. 11. U  versus   for various PL  values 

 

Fig. 12. U p  versus   for various PL  values 
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Hence particle phase velocities become less 

negative as PL increases.  

Finally in Fig. 13 and 14 we have provided the 

distributions of U and Up for various gravitational 

buoyancy  parameter, 
2 3

2

gs
B




 . A substantial 

rise in fluid phase 

 

Fig. 13. U  versus   for various B  values 

 

Velocity, U, occurs as B increases  from 0.2 

through 0.3, 0.5, 0.7 and to 1.0. Buoyancy 

therefore substantially boosts the fluid 

momentum and accelerates the flow. Peak U 

velocity occurs for B = 0.7 and the minimum 

peak velocity (in both cases a the centre of the 

channel) for B = 0.2 (weak buoyancy). All 

profiles are symmetric parabolas and steepest at 

the channel walls.   

 
Fig. 14. U p  versus   for various PL  values 

 

The buoyancy parameter occurs as a positive 

body force in the fluid phase momentum equation 

(6) i.e. p BL  and therefore aids in momentum 

development in the fluid accounting for the boost 

in U values. Conversely the particle phase 

velocity, Up, decreases substantially with a rise in 

B value from 0.2 to 1.0. The Up value for B = 0.2, 

is approximately -10; for B = 1.0 this value falls 

dramatically to about -60. In the particle phase 

momentum equation, the gravitational buoyancy 

parameter occurs as a negative body force term, 

B  which therefore decelerates the flow 

with a rise in B values. The general results 

obtained for all parameter variations (with the 

exception of Da and Fs) agree well with the 

analytical study of Al-subaie and chamke (2003), 

lthough non-porous computations i.e. with Da  

 and Fs = 0, were performed we have not re-

produced to conserve space.  

 

8. Conclusions 

 

A mathematical model has been developed the 

one-dimensional free convection magneto-

hydrodynamic heat transfer of a particle-fluid 

suspension in a non-Darcian porous channel. The 

model has been non-dimensionalized and a 

number of special cases of pertinence in various 

engineering systems have been discussed. Finite 

element solutions have been obtained for both the 

fluid and particle phase velocity and temperature 

fields. Herein we have concentrated more on the 

velocity field computations. The present 

computations have shown that:  

i) A rise in Grashof number (Gr) depresses fluid 

phase velocity, U, in the first half of the channel 

but boosts velocity in the second half of the 

channel. 

ii) An increase in Hartmann number (Ha) 

decreases fluid phase velocity, U, and also 

particle phase velocity, Up, although a greater 

effect s observed in the case of the fluid phase. 

iii) A rise in inverse momentum Stokes number 

(Skm) decreases fluid phase velocity, U,  but 

increases the  particle phase velocity, Up. 

iv) An increase in Darcy number (Da) strongly 

accelerates the flow and boosts both fluid phase 

velocity, U,  and the  particle phase velocity, Up 

although the increase in the latter case is much 

less pronounced.  

v) An increase in Forchheimer number (Fs) 

strongly decelerates the flow and retards flow 

development; both fluid phase velocity, U,  and 

the  particle phase velocity, Up  are both reduced. 

However the effect on fluid phase velocity is 

considerably more marked.  

vi) A rise in particle loading parameter,PL, has a 

major positive effect on fluid phase velocity, U,  

which increases considerably; the  particle phase 

velocity, Up  is also increased but relatively less 

so than for the fluid phase. vii) An increase in the 

gravitational buoyancy parameter increases the 

fluid phase velocity, U,  but decreases the  

particle phase velocity, Up . 

 

The present study entails the first step in 

developing more sophisticated computational  

models of two-phase hydromagnetic flows  with 

the objective of exploring possible refinements  

in existing plasma technologies. In the near future 

a more general transient analysis of two-phase 

heat transfer of a particle-suspension in an a 

porous medium channel will be communicated, 

including rotational and also anisotropic porous 

effects. 
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