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ABSTRACT 

The paper presents a study of a forced flow and heat transfer of an electrically conducting Newtonian fluid 

due to an exponentially stretching sheet. The governing coupled, non-linear, partial differential equations are 

converted into coupled, non-linear, ordinary differential equations by a similarity transformation and are 

solved numerically using shooting method. The influence of various parameters such as the Prandtl number, 

Chandrasekhar number, variable viscosity parameter, heat source (sink) parameter and suction/injection on 

velocity and temperature profiles are presented and discussed.  

 

Keywords: Stretching sheet, Variable viscosity, Prandtl number, Chandrasekhar number, Shooting Method, 

Heat transport, Heat source.  

NOMENCLATURE 

A, D    prescribed constants 

Cp       specific heat at constant pressure 

H0       applied uniform vertical magnetic field 

H         heat source (sink) parameter 

Hsx       local heat source (sink) parameter 

k          thermal conductivity 

Pr        Prandtl number 

Q         Chandrasekhar number 

Qs        heat source parameter 

Qx        local Chandrasekhar number 

t           fluid temperature of the moving sheet 

tw         wall temperature 

t         temperature far away from the sheet 

u, v      velocity components along x and y 

            direction 

U, V    non-dimensional velocity components along x  

           and y direction 

V        variable viscosity parameter 

 x       flow directional co-ordinate along the  

          stretching sheet 

  y      distance normal to the stretching sheet 

 X, Y  dimensionless co-ordinates 

       kinematic viscosity 

        dynamic viscosity 

 m     magnetic permeability 

        dimensionless temperature in PEST case   

        dimensionless temperature in PEHF case 

        density of the fluid 

      electrical conductivity 

  dimensionless stream function 

 Subscripts 

 m       magnetic quantity 

 w       wall temperature 

 ∞       ambient temperature condition 

         non-dimensional temperature in PEST  

         non-dimensional temperature in PEHF 
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1. INTRODUCTION 

Flows due to a continuously moving surface are 

encountered in several important engineering 

applications .viz, in the polymer processing unit of a 

chemical engineering plant, annealing of copper 

wires, glass fiber and drawing of plastic films. 

Sakiadis   (1961 a, b, c)  initiated the theoretical 

study of these applications by considering the 

boundary layer flow over a continuous solid surface 

moving with constant speed. This problem was 

extended by Erickson et al. (1969) to the case where 

the transverse velocity at the moving surface is non-

zero with heat and mass transfer in the boundary 

layer accounted for.  

Crane (1970) studied the steady two-dimensional 

boundary layer flow caused by the stretching sheet, 

which moves in its own plane with a velocity which 

varies linearly with the axial distance. There after 

various aspects of the above boundary layer 

problem on continuous moving surface were 

considered by many researchers (Vleggar (1977), 

Gupta and Gupta (1977), Grubka and Bobba (1985), 

Chen and Char (1988) Kumaran and Ramanaiah 

(1996), Siddheshwar et al. (2005) and Sekhar and 

Chethan (2010)). 

Many metallurgical processes involve the cooling of 

continuous strips or filaments by drawing them 

through a quiescent fluid. During this process of 

drawing the strips are sometimes stretched. The 

properties of final product depend on the rate of 

cooling. Pavlov (1974) examined the flow of an 

electrically conducting fluid caused solely by the 

stretching of an elastic sheet in the presence of a 

uniform magnetic field. Chakrabarthi and Gupta 

(1979) considered the flow and heat transfer of an 

electrically conducting fluid past a porous stretching 

sheet. Anderson (1992) presented an analytical 

solution of the magnetohydrodynamic flow using a 

similarity transformation for the velocity and 

temperature fields. In all the above mentioned 

studies the physical properties of the ambient fluid 

were assumed to be constants. However, it is well 

known that these physical properties of the ambient 

fluid may change with temperature (Herwig and 

Wickern (1986),  Takhar et al. (1991), Pop et al. 

(1992), Subhash Abel et al. (2002), Pantokratoras 

(2004),   Ali (2006), Andersson and Aaresth (2007), 

Prasad et al. (2009), Sekhar and Chethan (2010)).  

Magyari and Keller (2000) studied the heat and 

mass transfer on the boundary layer flow due to an 

exponentially stretching surface. Elbashbeshy 

(2001) added new dimension to the study on 

exponentially stretching surface. Partha et al. (2004) 

have examined the mixed convection flow and heat 

transfer from an exponentially stretching vertical 

surface in quiescent liquid using a similarity 

solution. Heat and mass transfer in a viscoelastic 

boundary layer flow over an exponentially 

stretching sheet were investigated by Khan and 

Sanjayanand (2005; 2006). Sajid and Hayat (2008) 

considered the influence of thermal radiation on the  

boundary layer flow due to an exponentially 

stretching sheet. Sekhar and Chethan (2012) 

analyzed the flow and heat transfer due to an 

exponentially stretching continuous surface in the 

presence of Boussinesq-Stokes suspension. 

Siddheshwar et al. (2014) extended this problem by 

including the effect of the transverse magnetic field. 

In the present work, we study the boundary layer 

flow behavior and heat transfer of a Newtonian 

fluid past an exponentially stretching sheet, when 

viscosity is a function of temperature and in the 

presence of external magnetic field.  

2.  MATHEMATICAL   FORMULATION 

We consider a steady, two-dimensional boundary 

layer flow of an incompressible, weakly electrically 

conducting Newtonian fluid due to a stretching 

sheet. The liquid is at rest and the motion is affected 

by pulling the sheet at both ends with equal force 

parallel to the sheet and with speed u, which varies 

exponentially with the distance x from the origin.  

The boundary layer equations governing the flow 

and heat transfer in a Newtonian fluid over a 

stretching sheet, assuming that the viscous 

dissipation is negligible, are 

0
u v

,
x y

 
 

 
                                                     (2.1) 

 

  2 2
0m

t Hu u u
u v u,

x y y y

  

 

    
   

    

    (2.2) 

                                            

 
2

2 s

p

t t k t
u v Q t t .

x y C y


  
   

  

                   (2.3) 

Here u and v are the components of the liquid 

velocity in the x and y directions, respectively,  t is 

the temperature of the sheet, t is the temperature of 

the fluid far away from the sheet,   is the dynamic 

viscosity, m is the magnetic permeability, H0 is the 

applied magnetic field,  is the density,   is the 

electric conductivity of the fluid, k is the thermal 

conductivity, Cp is the specific heat at constant 

pressure and Qs is the heat source coefficient.    

The coefficient of viscosity is assumed to be a 

reciprocal function of temperature and it is of the 

form 

 
 1










 

t
t t

.                             

If 
1


 is expanded in Taylor’s series about  t t  

then the scalar appearing in the above expression 

can be written as 
1

t t
t






  
   

   
. 

Here ∞ is the coefficient of viscosity far away from 

the sheet 

The following boundary conditions are 

used.
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 
2

30
2

0

0

x

Lx w
L

xw c
L

w

t t t Ae in PEST case

u U x U e , v v , at y ,
t

k De in PEHF case
y

u ,T T as y .





 
   

 
     

   
   

  

                               (2.4)  

where  

 

2



 
 
 

   
 
 
 

x

L

xw

L

Ae in PEST case
t t

DL
e in PEHF case

k Re

 

where tw is the temperature of the sheet, U0 is the 

reference velocity and L is the reference length. 

We now make the equations and boundary 

conditions dimensionless using the following 

definition: 

 
 

 
 

0

, ,
c

c

x, y u,v ,v
X,Y U,V,V

U

t t
T

t

Re Re Re

L
 

 


                                                         (2.5)  

where 
0




U L
Re  is the Reynolds number and  

wt t t   is the sheet-liquid temperature 

difference. 

The boundary layer Eqs. (2.1) to (2.3) on using Eq. 

(2.5) take the following form. 

0,
U V

X Y

 
 

 

                                      (2.6) 

   

2
V 1

,
2 21 V1 V

U V T U U
U V QU

X Y Y Y T YT

    
    

     

 

            (2.7) 

2
1

2
H

s

T T T
U V U

X Y Pr Y
T T 

  
 

  

         (2.8) 

where   

V  t  is the variable viscosity parameter,    

2
0

 


2Hm

Q  is the Chandrasekhar number, 

Cp
Pr

k


  is the Prandtl number and   

s
s

Q
H


  is the heat source (sink) parameter. 

The boundary conditions (2.4) take the form 

1

0

0 0

X
Xc

T in PEST

U e ,V V , at Y ,T
e in PEHF

Y

U ,T as Y .



  
 



   

 
 
 
  

      (2.9) 

 

We introduce the stream function X,Y ( )  as: 

,U , V
Y X

  
  
 

                                          (2.10) 

 

Using Eq. (2.10), the boundary layer equations Eqs. 

(2.7) and (2.8) can be written as 

 

   

   

V V V

V V 0,

3 2 2
T 2

1+ T + 1+ T
3 2 2Y XY Y Y

2
2 2

1+ T 1+ T Q
Y X Y Y

   

  

    


   

  
  

   

                                                          

       (2.11) 

2
1

2
T H T

s

T T T
- U .

Y X X Y Pr Y

 
 

    


    

             (2.12) 

 

The corresponding boundary conditions in terms of 

the stream function can be written as  

1

0

0 0

X
XcY X

Y

T in PEST

e , V , at Y ,T
e in PEHF

Y

,T as Y .

 



 

 







   
 



  

 
 
 
  

(2.13) 

The following similarity transformation will now be 

used on Eqs. (2.11) and (2.12).   
 

     
 

 
X

X

in PEST case
x, f e , T X ,Y ,

in PEHF case

Y e .

 
  

 



  
   

  



                      (2.14) 

Using the transformations given by Eq. (2.14) in 

Eqs. (2.11) and (2.12), we get the following 

boundary value problems. 

(i) PST:  

     2 21 V V 1 V 2 0
x

+ f f + f f f Q f              (2.15) 

0,
sx

Pr f Pr f Pr H                   (2.16) 
 

 

 

1 0 10 0

0 0

,
cx

f ( ) V , f ( ) ,

f ( ) , .





  

   





                    (2.17) 

(ii) PHF:  

     2 2V V V 2 0
x

1+ f f 1+ f f f Q f               (2.18) 

0,
sx

Pr f Pr f Pr H                  (2.19) 

 

 

1 0 10 0

0 0

,
cx

f ( ) V , f ( ) ,

f ( ) , .





    

    

                  (2.20) 

where 
Vc

cx Xe
V  is the local suction/injection 

parameter, 2


Q

x Xe
Q is the local Chandrasekhar 

number and 2
0


Q Ls

sx XU e
H is the local heat source 

(sink) parameter. 

Here, primes denote the differentiation with respect 

to .  
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2. METHOD OF SOLUTION 

The boundary value problems due to an exponential 

stretching sheet are solved numerically by shooting 

method. We adopt the shooting method with Runge-

Kutta-Fehlberg-45 scheme to solve the boundary 

value problems in PEST and PEHF cases mentioned 

in the previous section. The coupled non-linear Eqs. 

(2.15) and (2.16) in the PEST case are transformed 

to a system of five first order differential equations 

as follows: 

 
  

0

0 0

0

0

0 0 0

V
1 V 2

1 V










  





    




  

1

1
2

22 1
2 2 1 x 1

1

1
1 1 sx

df
f ,

dY

df
f ,

dY

df
f -f f f Q f ,

dY

d
,

dY

d
f Pr f Pr H .

dY
Pr

                      

                                                                          (2.21) 

 

Subsequently the boundary conditions in Eq. (2.17) 

take the form 

 

     

   

0

0 0

0 0 1 0    

    

cx 1 1f V , f , f ,

0 1, 0.

                (2.22) 

Here  0 f f  and  0   . 

A forementioned boundary value problem is 

converted into an initial value problem by choosing 

the values of   02f  and  01  appropriately. 

Resulting initial value problem is integrated using 

the fourth order Runge-Kutta method. Newton-

Raphson method is implemented to correct the 

guess values of  2f 0  and  1 0 . In solving Eqs. 

(2.21) subjected to boundary conditions (2.22) the 

appropriate ‘’ is determined through the actual 

computation. Same procedure is adopted to solve 

the boundary layer equations in PEHF case.  

4. RESULTS AND DISCUSSION 

The hydromagnetic boundary layer flow and heat 

transfer in a weakly electrically conducting 

Newtonian fluid past an exponentially stretching 

sheet with temperature dependent viscosity are 

investigated. Numerical solution of the problem is 

obtained by shooting method.  

Figures 1 to 3 are plots of the stream lines for 

various values of the parameters, Hsx, V, Vcx, Pr 

and Qx.  Quite clearly we see that the effect of  

and V is to push the dynamics away from the 

stretching sheet and away from the slit at (0,0). The 

effect of suction  0Vcx  and Prandtl number Pr is 

to bring the region of dynamics closer to the slit. 

The effect of injection  0Vcx  is similar to V and 

so is the effect of Qx.  

 
(a) 

 
   (b) 

Fig. 1. Plot of stream lines for different values of 

and Hsx in PEST and PEHF cases. 

    (a) 

 
    (b) 

Fig. 2. Plot of stream lines for different values of V 

and Vcx in PEST and PEHF cases.  
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 (a) 

 (b) 

Fig. 3. Plot of stream line for different values of Pr 

and Qx in PEST and PEHF cases. 

 
(a) 

   
(b) 

Fig. 4. Plot of temperature profiles (T) versus Y for 

different values of V and Vc in PEST and PEHF 

cases. 

Figure 4 demonstrates the effect of variable 

viscosity parameter V and suction/injection 

parameter Vc on the temperature distribution. The 

effect of V and injection  0Vcx  is to increase the 

thermal boundary layer thickness whereas suction 

 0Vcx  reduces it. 

The effect of Chandrasekhar number Qx and Prandtl 

number Pr on temperature profiles are shown in 

Fig.5. It is noticed that the effect of Qx is to increase 

the temperature in the boundary layer. This is 

because of the fact that the introduction of 

transverse magnetic field to an electrically 

conducting fluid gives rise to a resistive type of 

force known as Lorentz force. This force has the 

tendency to slow down the motion of the fluid in the 

boundary layer and to increase the temperature 

profile. Also, the effect of increasing values of 

Prandtl number is decrease the temperature 

distribution in the flow region. 

 

 (a)
        

 (b) 

Fig. 5. Plot of stream lines for different values of Qx 

and Pr in PEST and PEHF cases. 

It is observed that the effect of heat source 

 0Hsx  in the boundary layer generates energy 

which causes the temperature to increase, while the 

presence of heat sink  0Hsx  in the boundary 

layer absorbs the energy which causes the 

temperature to decrease. These behaviors are seen 

in Fig. 6.  
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(a) 

 

 (b) 

Fig. 6. Plot of temperature profiles for different 

values of Hsx in PEST and PEHF cases. 

In order to validate our results, we have compared 

the rate of heat transfer  0  in the absence of 

variable viscosity  V 0 , Chandrasekhar number 

 0Qx  and heat source/sink parameter  0Hsx  

with the published results and found them to be in 

good agreement (see Table 1). 

 
 

Table 1 Comparison of values of skin 

friction  0 f  for various values of Vcx with                        

V = Qx = Hsx = 0 in case of exponential stretching 

Vcx 
Elbashbeshy 

(2001) 
Present study 

0 

-0.2 

-0.4 

-0.6 

1.28181 

1.37889 

      1.4839 

1.59824 

1.281816 

1.378894 

1.484389 

1.598242 

Thus suction can be used as a means to get better 

cooling of the continuous sheet. Larger the value of 

Pr, larger is the magnitude of the wall temperature 

gradient. The wall temperature gradient in the PEST 

case decreases but the wall temperature in the PEHF 

case increases as Hsx increases from a negative 

value to a positive value. Therefore PEHF boundary 

conditions are better suited than PEST boundary 

conditions in cooling the stretching sheet relatively 

faster as can be seen from the tabulated values. 

 

Table 2 Values of wall temperature gradient and 

wall temperature for different values of V, Vcx, Qx, 

Pr and Hsx 

Parameters 

Wall 

temperature 

gradient 

-(0) 

Wall 

temperature 

 (0) 

Pr = 1, Qx = 1, Hsx = 0.1, Vcx = 0 

V 

0 

0.1 

0.2 

1.098308 

1.076160 

1.054422 

0.910492 

0.927866 

0.946307 

V = 0.2, Pr = 1, Qx = 1, Hsx = 0.1 

Vcx 

0.25 

0 

-0.25 

0.929581 

1.054422 

1.199609 

1.169142 

0.946307 

0.828875 

V = 0.2, Vcx = 0, Pr = 1, Hsx = 0.1 

Qx 

0 

0.5 

1 

1.199513 

1.124547 

1.054422 

0.830559 

0.886122 

0.946307 

V = 0.2, Vcx = 0, Qx = 1, Hsx = 0.1 

Pr 

1 

2 

3 

1.124547 

1.788236 

2.289972 

0.886122 

0.554558 

0.433010 

 V = 0.2, Vcx = 0, Pr = 1, Qx = 1 

Hsx 

0.1 

0 

-0.1 

1.054422 

1.145893 

1.213054 

0.946307 

0.869503 

0.820987 

 

5. CONCLUSION 

 
1. The effect of variable viscosity parameter V is 

to push the dynamics away form the stretching 

sheet. 

2. Increase in suction/injection parameter Vcx will 

blow up stream lines. 

3. The effect of variable viscosity parameter V is 

to increase the temperature in the boundary 

layer. 

4. The temperature in the boundary layer 

decreases (increases) due to suction (injection). 

5. The effect of Prandtl number is to decrease the 

thermal boundary layer thickness. 

6. The heat source parameter Hsx increases the 

heat transfer in both PEST and PEHF cases 

and the opposite is observed in the case of a 

sink. 
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