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ABSTRACT 

Unsteady MHD visco-elastic fluid flow has been studied numerically under the action of transverse magnetic 

field with diffusion-thermo and thermal diffusion for small magnetic Reynolds number. The governing 

equations are non-dimensionalized by usual non-dimensional variables. The obtained equations are solved by 

explicit finite difference technique. The solutions of the dimensionless velocity, temperature and 

concentration equations are shown graphically. The effects of parameters on the shear stress, Nusselt number 

and Sherwood number are discussed in graphical form. Finally, a qualitative comparison with previous work 

is tabulated. 
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1. INTRODUCTION

The mixed convection boundary layer flow of non-

Newtonian fluid in the presence of strong magnetic 

field has wide range of application in nuclear 

engineering and industries. In astrophysical and 

geophysical studies, the MHD boundary layer flows 

of an electrically conducting fluid have also 

enormous applications. Many researchers have 

studied the transient laminar natural convection 

flow past a vertical porous plate for the application 

in the branch of science and technology such as in 

the field of agriculture engineering and chemical 

engineering. In petroleum refineries, movement of 

oil, water and gas through porous media for 

purification and filtration are bright applied areas of 

research. With the advancement of science and 

technology, MHD study on any fluid flow 

phenomenon exhibits some results which have 

constructive application for the design of devices. 

MHD heat transfer has great importance in the 

liquid metal flows, ionized gas flow in a nuclear 

reactor and electrolytes. Research works on 

radiation of heat in natural convection flow are very 

limited, though these have many modern 

applications viz. missile technology used in army, 

nuclear power plant, parts of aircraft and ceramic 

tiles.  

Heat and mass transfer in non-Newtonian fluids is 

of great interest in many operations in the chemical 

and process engineering industries including 

coaxial mixers, blood oxygenators, milk processing, 

steady-state tubular reactors, and capillary column 

inverse gas chromatography devices, mixing 

mechanisms, bubble-drop formation processes , 

dissolution processes, and cloud transport 

phenomena. Many geometrical configurations have 

been addressed including flat plates, channels, 

cones, spheres, wedges, inclined planes, and wavy 

surfaces. Non-Newtonian heat transfer studies have 

included power-law fluid i.e. shear-thinning and 

shear thickening fluids, simple viscoelastic fluids, 

Criminale-Ericksen-Fibley viscoelastic fluids, 

Johnson-Segalman rheological fluids, Bingham 

yield stress fluids, second grade (Reiner-Rivlin) 

viscoselastic fluids, third grade viscoelastic fluids, 

and bi-viscosity rheological fluids. Viscoelastic 

properties can enhance or depress heat transfer 

rates, depending upon the kinematic characteristics 

of the flow field under consideration and the 

direction of heat transfer. Firstly for such a fluid 

considering the oscillatory two-dimensional 

viscoelastic flow along an infinite porous wall, 

showing that an increase in the Walters elasticity 

parameter and the frequency parameter reduces the 

phase of the skin-friction has been investigated by 

Soundalegkar and Puri (1969). The laminar flow of 

an electrical-conducting Walter’s liquid, past an 

infinite non-conducting vertical plate for impulsive 

as well as uniformly accelerated motion of the plate 

has been presented by Samria et al. (1990), in the 

presence of a transverse magnetic field. The 

Unsteady magnetohydrodynamic flows in a rotating 

elasto-viscous fluid have been analyzed by 

Nanousis (1992). The MHD free convection flow of 
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a visco-elastic fluid past a vertical porous plate has 

been investigated by Chowdhury and Islam (2000). 

Recently, the effects of thermal radiation on 

unsteady free convection flow of an elasto-viscous 

fluid over a moving vertical plate with variable 

temperature in the presence of magnetic field 

through porous medium have been studied be 

Rajesh and Varma (2010). The analytical study of 

Heat source and mass transfer effects on MHD free 

convection flow of a visco-elastic fluid past an 

exponentially accelerated infinite vertical plate with 

variable temperature through porous medium has 

been investigated by Rakesh Kumar et al. (2011).  

The heat and mass transfer occur simultaneously 

between the fluxes, the driving potentials are of 

more intricate nature. An energy flux can be 

generated not only by temperature gradients but by 

composition gradients. The energy flux caused by a 

composition is called Dufour or diffusion-thermo 

effect. Temperature gradients can also create mass 

fluxes, and this is the Soret or thermal-diffusion 

effect. Generally, the thermal-diffusion and the 

diffusion-thermo effects are of smaller-order 

magnitude than the effects prescribed by Fourier’s 

or Fick’s laws and are often neglected in heat and 

mass transfer processes. The thermal-diffusion 

effect, for instance, has been utilized for isotope 

separation and in mixture between gases with very 

light molecular weight (H2, He) and of medium 

molecular weight (Nitrogen-air) the diffusion-

thermo effect was found to be of a magnitude such 

that it cannot be neglected. Many transport 

processes can be found in various ways in both 

nature and technology, in which the combined heat 

and mass transfer occur due to buoyancy forces 

caused by thermal diffusion and mass diffusion. 

Some of the convective heat and mass transfer 

processes with phase change include the 

evaporation of liquid at the interface between a gas 

and liquid or the sublimation at a solid-gas 

interface. The process of mass transfer affects all 

separation processes in chemical engineering such 

as the drying of solid materials, distillation, 

extraction and absorption. Heat and mass transfer 

for Soret and Dufour effect on mixed convection 

boundary layer flow over a stretching vertical 

surface in a porous medium filled with a 

viscoelastic fluid has been analyzed by Hayat et al. 

(2010). The steady mixed convection boundary 

layer flow due to the combined effect of heat and 

mass transfer over a stretched vertical surface in a 

porous medium filled with a viscoelastic fluid under 

Soret and Dufour effects in the presence of 

magnetic field has been investigated by Gbadeyan 

et al. (2011). Mixed convective MHD flow of 

visco-elastic fluid past a vertical infinite plate with 

mass transfer in the presence of magnetic field has 

been studied by Mahanta and Choudhury (2012). 

MHD unsteady memory convective flow through 

porous medium with variable suction has been 

studied by Hussaini et al. (2013). 

The objective of this study is to extend the work of 

Mahanta and Choudhury (2012) with visco-elastic 

flow characterized by second-order fluid as MHD 

free convection and mass transfer visco-elastic fluid 

flow in vertical porous plate with mass diffusion 

and thermal diffusion. The governing equations 

involved in this problem have been transformed 

into non-similar coupled partial differential 

equations by usual transformations. The problem 

has been solved by explicit finite difference 

method. Finally, the comparison of the present 

results with the results of Gbadeyan et. al. (2011) 

has been shown in tabular form. 

2. MATHEMATICAL

FORMULATION

Consider an unsteady MHD visco-elastic 

(Walters's liquid B') mixed convective heat and 

mass transfer flow of an incompressible, 

electrically conducting viscous fluid past an 

electrically nonconducting isothermal impulsive 

vertical plate. The positive x  coordinate is 

measured along the plate in the direction of fluid 

motion and the positive y  coordinate is measured 

normal to the plate. A uniform transverse magnetic 

field of magnitude 0B  is applied in the direction 

of axisy . Initially, it is considered that the plate 

as well as the fluid is at the same temperature 

  TT  and concentration level   CC . Also it 

is assumed that the temperature of the plate and 

concentration are raised to   TTw  and

  CCw respectively, which are there after 

maintained constant, where wT , wC  are 

temperature and concentration at the wall  and T ,

C  are the temperature and concentration of the 

species outside the boundary layer respectively. The 

physical configuration of the problem is furnished 

in Fig. 1.  

Fig. 1. Physical configuration and coordinate 

system.

The magnetic Reynolds number of the flow is taken 

to be small enough and the magnetic field is 

negligible in comparison with applied magnetic 

field and the magnetic lines are fixed relative to the 

fluid. Using the relation 0 J  for the current 

density  zyx JJJ ,,J  where constantyJ .

Since the plate is nonconducting, 0yJ  at the 

plate and hence zero everywhere. 
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Within the framework of the above-stated 

assumptions the generalized equations relevant to 

the unsteady problem are governed by the following 

system of coupled partial differential equations as; 

The Continuity equation; 
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 The Energy equation; 
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The Concentration equation; 
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corresponding boundary conditions are; 

0yCCTTvUu ww   at,,0,  (6) 

  yCCTTvu as,,0,0     .(5) 

where vu and

 

are the yx and  components of 

velocity vector,   is the electric conductivity, 

21,   are the kinematic coefficient viscosity,   is 

the density of the fluid,   is the thermal 

conductivity, pc  is the specific heat at the constant 

pressure , D  is the coefficient of mass diffusivity, 

tk  is the thermal diffusion ratio, sc  is the 

concentration susceptibility, mT

 

is the mean fluid 

temperature, T  is the co-efficient of volumetric 

expansion for heat transfer, C  is the co-efficient 

of volumetric expansion for mass transfer. 

To obtain the governing equations and the boundary 

condition in dimension less form, the following 

non-dimensional quantities are introduced as; 
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Substituting the above dimensionless variables in 

equations (1) to (4) and corresponding boundary 

conditions (5), the obtained dimensionless coupled 

non-linear partial differential equations are; 
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boundary conditions are; 

1,1,0,1  VU at 0Y  

(10) 0,0,0,0  WU  as Y

where   represents the dimensionless time, 

YX and  are the dimensionless Cartesian 

coordinates, U is the dimensionless velocity,   is 

the dimensionless temperature,   is the 

dimensionless concentration,  
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3. SHEAR STRESS, NUSSELT AND 

SHERWOOD NUMBER

All the quantities of chief physical interest are shear 

stress, Nusselt number and Sherwood number. The 

following equations represent the local and average 

shear stress at the plate, local shear stress, (Mahanta 

and Choudhury (2012)) 
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respectively. From the temperature field, the effects 

of various parameters on the local and average heat 

transfer coefficients. The following equations 

represent the local and average heat transfer rate 

that is well known Nusselt number, local Nusselt 
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number, 
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respectively. And from the concentration field, the 

effects of various parameters on the local and 

average mass transfer coefficients. The following 

equations represent the local and average mass 

transfer rate that is well known Sherwood number, 

local Sherwood number, 
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4. NUMERICAL SOLUTIONS

The system of non-dimensional, nonlinear, coupled 

partial differential equations (6) to (9) with 

boundary condition (10) are solved numerically 

using explicit finite difference method. To obtain 

the difference equations, the region of the flow is 

divided into a grid or mesh of lines parallel to X  

and Y  axes, where X -axis is taken along the plate 

and Y -axis is normal to the plate. 

Here the plate of height  100max X  is considered

i.e. X  varies from 0  to 100  and assumed 

 35m ax Y  as corresponding to Y  i.e. Y

varies from 0  to 35 . There are  180m  and

 180n  grid spacing in the X  and Y  directions

respectively as shown in Fig. 2.  

 Fig. 2. Explicit finite difference system grid. 

It is assumed that X , Y  are content mesh size 

along X  and Y  directions respectively and taken 

as follows,  100056.0  XX and

 35019.0  YY  with the smaller time-step,

005.0 . 

Let CTWU  and,,  denote the values of 

CTWU and,, are the end of a time-step 

respectively. Using the explicit finite difference 

approximation, the following appropriate set of 

finite difference equations are obtained as; 
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Here the subscript i  and j  designates the grid 

points with X  and Y  coordinates respectively and 

the superscript n  represents a value of time, 

  n  where .....,....2,1,0n . The velocity 

 U , temperature    and concentration  
distributions at all interior nodal points have been 

computed by successive applications of the above 

finite difference equations. The numerical values of 

the local shear stresses, local Nusselt number and 

local Sherwood number are evaluated by Five-point 

approximate formula for the derivatives and then the 

average shear stress, Nusselt number and Sherwood 

number are calculated by the use of the Simpson’s 
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3

1
 integration formula. The stability conditions of 

the methods are 
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. Our solution is 

valid for the above mentioned conditions. When the 

value of  , X  and Y  approach to zero then 

the problem will be converged. That’s mean the 

results of the explicit finite difference method 

approach the true solutions. 

5. NUMERICAL SOLUTIONS

To investigate the physical situation of the problem, 

the numerical values and graphs of velocity  U ,

temperature    and concentration  
distributions as well as shear stress, Nusselt number 

and Sherwood number  within the boundary layer 

have been computed for different values of Dufour 

number  uD , Visco-elastic Parameter   ,

Magnetic parameter  M ,  Prandtl number  rP ,

Schmidt number  cS  and Soret number  rS  with

the help of a computer programming language 

Compaq Visual Fortran 6.6a and Tecplot 7. These 

computed numerical results have been shown 

graphically. To obtain the steady-state solutions, the 

computation has been carried out up to 80 . It is 

observed that the numerical values of  and,U  

however, show little changes after 40 . Hence at 

40  for all variables are steady-state solutions.  

The importance of cooling problem in nuclear 

engineering in connection with the cooling of 

reactors, the value of the Grashof number for heat 

transfer is taken to be positive  0rG  and the

present study has considered 00.1rG . Since the 

most important fluids are atmospheric air and 

water, so that the results are limited to 71.0rP  

(Prandtl number for air at C20 ),  00.1rP  

(Prandtl number for or salt water)) and 00.7rP  

(Prandtl number for water at C20 ). Here the 

investigation are assumed for both lighter and 

heavier fluid particles, hence the values of 

Schmidt number  cS  are taken 60.0 , 78.0  and

00.1  (in particular, 60.0  for water vapor that 

represents a diffusing chemical species of most 

common interest in air, 78.0  for ammonia and 

00.1 for carbon dioxide) which represent the 

specific condition of the flow. However the 

values of other parameters are chosen arbitrarily 

and also the modified Grashof number 00.1mG  

for mass transfer are considered as a fixed value. 

To observe the physical situation of the problem, 

the solutions have been illustrated in Figs. 3 to 33. 

The velocity profiles have been displayed for 

various values of Dufour number  uD , Magnetic

parameter  M  , Prandtl number  rP , Schmidt

number  cS  and Soret number  rS  respectively

in Figs. 3 to 7. These results show that the velocity 

increases with the increase Dufour number, Soret 

number and decreases with the increase Prandtl 

number, Schmidt number, Magnetic parameter 

respectively.  

 

Fig. 3. Velocity profile for different values of 

Dufour number, uD . 

Fig. 4. Velocity profile for different values of 

Magnetic parameter, M . 

Fig. 5. Velocity profile for different values of 

Prandtl number, rP .
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Fig. 6. Velocity profile for different values of 

Schmidt number, cS ..

 

 

 

Fig. 7. Velocity profile for different values of 

Schmidt number, rS .

The temperature distributions have been illustrated 

for various values of Dufour number  uD  and

Prandtl number  rP  respectively in Figs. 8 and 9.

These results show that the temperature 

distributions increase with the increase Dufour 

number and decrease for the increase Prandtl 

number respectively. The concentration profiles 

have been shown for various values of Schimdt 

number  cS  and Soret number  rS  respectively

in Figs. 10 and 11. These results show that the 

concentation distributions increase with the increase 

Soret number and decrease for the increase Schmidt 

number respectively.  

 

Fig. 8. Temperature profile for different values of 

Dufour number, uD . 

 

Fig. 9. Temperature profile for different values of 

Prandtl number, rP .

 

Fig. 10. Concentration profile for different values 

Schmidt number, cS .
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Fig. 11. Concentration profile for different values 

Soret number, rS .

Figures. 12 to 14 show the average shear stress, 

Nusselt number and Sherwood number for various 

values of Dufour number  uD . The average shear

stress, Nusselt number and Sherwood number 

increase with the increase of Dufour number. The 

average shear stress, Nusselt number and Sherwood 

number have been displayed for various values of 

Magnetic parameter  M  in Figs. 15 to 17, Prandtl

number  rP  in Figs. 18-20, Schmidt number  cS

in Figs. 21 to 23 and Soret number  rS  in Figs. 24

to 26 respectively. The average shear stress, Nusselt 

number and Sherwood number deccrease with the 

increase of Magnetic parameter, Prandtl number, 

Schmidt number and decrease with the increase of 

Soret number. 

Local shear stress decreases with the increase of 

Visco-elastic parameter. The local shear stress and 

Nusselt number have been illustrated for various 

values of Dufour Number  uD  in Figs. 27 and 28.

Local shear stress and Nusselt number increase with 

the increase of Dufour Number. In Fig. 29 displays 

the local shear stress for various values of Magnetic 

parameter  M . The local shear stress decreases

with the increase of Magnetic parameter. Figs. 30 

and 31 show the local shear stress and Nusselt 

number for various values of Prandtl number  rP .

The local shear stress and Nusselt number decrease 

with the increase of Prandtl number. Local 

Sherwood number has been displayed in Fig. 32 for 

various values of Schmidt number  cS  and in Fig.

33 for various values of Soret number  rS . The

local Sherwood number decreases with the increase 

of Schmidt number and increases with increases of 

Soret number. 

 

Fig. 12. Average shear stress for different values of 

Dufour number, uD . 

Fig. 13. Average Nusselt number for different 

values of Dufour number, uD . 

 

 

Fig. 14. Average Sherwood number for different 

values of Dufour number, uD . 
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Fig. 15. Average Shear stress for different values of 

Magnetic parameter, M . 

 

Fig. 16. Average Nusselt number for different 

values of Magnetic parameter, M . 

Fig. 17. Average Sherwood number for different 

values of Magnetic parameter, M . 

Fig. 18. Average Shear stress for different values of 

Prandtl number, rP . 

 

Fig. 19. Average Nusselt number for different 

values of Prandtl number, rP . 

  

Fig. 20. Average Sherwood number for different 

values of Prandtl number, rP . 
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Fig. 21. Average Shear stress for different values of 

Schmidt number, cS .

 

Fig. 22. Average Nusselt number for different 

values of Schmidt number, cS .

 

Fig. 23. Average Sherwood number for different 

values of Schmidt number, cS . 

Fig. 24. Average Shear stress for different values of 

Soret number, rS . 

 

Fig. 25. Average Nusselt number for different 

values of Soret number, rS . 

 

 

Fig. 26. Average Sherwood number for different 

values of Soret number, rS . 
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Fig. 27. Local shear stress for different values of 

Dufour number, uD . 

 

Fig. 28. Local Nusselt number for different values 

of Dufour number, uD . 

Fig. 29. Local shear stress for different values of 

Magnetic parameter, M . 

Fig. 30. Local shear stress for different values of 

Prandtl number, Pr .

Fig. 31. Local Nusselt number for different values 

of Prandtl number, rP .

Fig. 32. Local Sherwood number for different 

values of Schmidt number, cS . 

Finally, a qualitative comparison of the present 

steady-state results with the published results 

(Gbadeyan et al. (2011)) is presented in Table. 1. 

The accuracy of the present results is qualitatively 

good in case of all the flow parameters 
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. 

Fig. 33. Local Sherwood number for different 

values of Soret number, rS . 

6. CONCLUSION

In this study, the finite difference solution of 

unsteady diffusion-thermo and thermal-diffusion 

effects on MHD Visco-elastic fluid flow over a 

vertical plate is investigeted. Important findings of 
this investigation are given below; 

1. The velocity profiles increase with the increase

of Dufour number and Soret number and reverse 

effect with the increase of Magnetic parameter, 

Prandtl number and Schmidt number. 

2. The temperature distributions increase with the

increase of Dufour number and reverse effect with 

the increse of Prandtl number. 

3. The concentration profiles decrease with the

increase of Schmidt number reverse effects with the 

increse of Soret number. 

It is expected that the findings of this investigation 

may be useful for study of movement oil or gas and 

water through the reservoir of an oil or gas field, in 

the migration of underground water or oil as well as 

in the filtration and water purification processes, the 

findings may be useful for study of movement of oil 

or gas and water through the reservoir of an oil or 

gas field. These results may also be useful for 

plasma studies as well as in power engineering, 

geothermal energy extractions, geophysics and 

astrophysics.

Table 1 Qualitative comparison of the present results with the previous results 
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