
 

 

 

 

 

 

Numerical Study of Generalized Three-Dimensional 

MHD Flow over a Porous Stretching Sheet 

M. Heydari
1
, G. B. Loghmani

1†
 and A. A. Dehghan

2 

1Department of Mathematics, Yazd University, Yazd, Iran 
2School of Mechanical Engineering, Yazd University, Yazd, Iran 

† Corresponding Author Email: loghmani@yazd.ac.ir 

(Received March 5, 2013; accepted June 9, 2013) 

ABSTRACT 

In this paper a numerical method for solving generalized three-dimensional magnetohydrodynamic (MHD) 

flow of an incompressible viscous fluid over a porous stretching sheet is proposed. This approach is based on 

Legendre pseudo-spectral method with a positive scaling factor and extrapolation. The present method solves 

the problem on the semi-infinite domain without truncating it to a finite domain. In addition, this method 

reduces the solution of the problem to solution of a system of algebraic equations. The obtained numerical 

results are compared with some well-known results to confirm the accuracy and efficiency of the proposed 

scheme. 

 

Keywords: Porous stretching sheet, Three-dimensional flow, Legendre polynomials, Pseudo-spectral 

method, Extrapolation, Scaling factor. 

NOMENCLATURE 

    constants of proportionality 

  stretching ratio 

   magnetic field strength 

    dimensionless stream functions 

  map parameter 

      Legendre polynomial of order   

   Hartman number 

          order of approximation 

  suction or injection parameter 

   suction or injection velocity 

  pressure 

 

    pressure at some reference point 

       velocity component in the   direction 

   velocity component in the   direction 

      velocity component in the   direction 

    eigenvalue 

            similarity variable 

       kinematic viscosity 

        fluid density 

        electrical conductivity 

 

 

1. INTRODUCTION 

Many of the mathematical modeling of physical 

phenomena in science and engineering often lead to 

nonlinear differential equations or partial 

differential equations. Most of these problems are 

nonlinear, therefore, some of them are solved using 

numerical solution and some are solved using a 

different analytic method, such as Runge-Kutta 

method (Mahantiand Gaur (2009)), Euler method, 

Hybrid methods, meshless methods, spectral 

methods(Civalek (2006); Civalek (2007); Snyder 

(1966);Clenshaw and Curtis (1960)), the  -

expansion method(Karmishin, Zhukov, and 

Kolosov (1990)) the  Adomain decomposition 

method(Adomian (1994)),the variational iteration 

method(He (1999); He (2000)), the homotopy 

perturbation method(He (2003); He (2004))and 

thehomotopy analysis method (Liao (2003); Xu, 

Liao, and Pop (2006)). Spectral methods are very 

powerful tools for solving many types of 

differential equations arising in various fields of 

science and engineering (Canuto, Hussaini, 

Quarteroni, and Zang (1988); Boyd (2001)). 

Exponential convergence and convenience of 

applying these methods are two effective properties 

which have encouraged many authors to use them 

for finding the approximate solution of different 

equations. The basic idea of spectral methods to 

solve differential equations is to expand the solution 

function as a finite series of very smooth basis 

functions, as given 
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in which, the best choice of      , are the 

eigenfunctions of a singular Sturm-Liouville 

problem. 

The flow of an incompressible viscous fluid over a 
stretching sheet has an important bearing on several 
technological processes, like in the extrusion of a 
polymer in a melt spinning process and metallurgy. 
This problem first discovered by Crane (1970) for 
the two-dimensional flow. Since then the problem 
has been extensively studied by taking into account 
many different physical features either separately or 
in various combinations. Gupta and Gupta (1977) 
studied the heat and mass transfer in a stretching 
surface with suction or blowing. Chen and char 
(1988) studied the effects of variable surface 
temperature and variable surface heat flux on the 
heat transfer characteristics of a linearly stretching 
sheet. Afterwards, several researchers presented 
closed form solutions for the Crane’s problem when 
suction, magnetic field, viscoelasticity of the fluid 
etc. are considered (Andersson (1992); Troy, II, 
Ermountrout, and Keener (1987); Ariel (1994)). 
Wang (Wang (1984)) considered the general three-
dimensional flow of a Newtonian fluid due to a 
stretching sheet. He also gave in (Wang (2002)) an 
exact solution for the two-dimensional flow due to a 
stretching boundary with a partial slip. Ariel (2003) 
obtained the perturbation and semi-analitical 
solution for generalized three-dimensional flow of a 
hydrodynamic fluid over a non-porous stretching 
sheet. Also a study on three-dimensional flow of a 
viscous fluid over a non-porous stretched surface 
using homotopy perturbation method is proposed by 
Ariel (2007). The magnetohydrodynamic (MHD) 
three-dimensional viscous flow over a porous 
stretching surface has been reported by Hayat and 
Javed (2007). 

In this study, a combination of pseudo-spectral 
collocation method with a positive scaling factor 
and extrapolation is uesd to solve the generalized 
three-dimensional MHD flow over a porous 
stretching sheet subjected to a uniform suction and 
injection. The main point of the present analysis lies 
in the fact that the present method solves the 
problem on the semi-infinite domain without 
truncating it to a finite domain. The results are 
compared with those in the literature (Wang (1984); 
Ariel (2003); Ariel (2007); Hayat and Javed (2007)) 
that includes suction/injection and an applied 
magnetic field. 

The paper is organized in the following pattern. In 
Section 2, the mathematical formulation is 
presented. Some necessary definitions and 
mathematical preliminaries of the Legendre 
polynomials are introduced in Section 3. In Section 
4, the proposed method is applied to solve 
generalized three-dimensional MHD flow over a 
porous stretching sheet. Results and comparisons 
with existing methods in the literature are presented 
in Section 5. In Section 6, some methods to choose 
the map parameter   are introduced and finally 
conclusions are drawn in Section 7. 

2. PROBLEM STATEMENT AND 

MATHEMATICAL 

FORMULATION 

Consider the steady, laminar flow of an 
incompressible viscous fluid induced by the 
stretching of a porous surface in the plane    . 
Let     and   be the velocity components along 
    and   directions, respectively. The fluid is 
electrically conducting and it flows in the presence 
of an applied uniform magnetic field   . The fluid 
injection or suction takes place through the porous 
surface with velocity     where      
corresponds to the suction velocity and      
holds for injection velocity. The velocity        at 
any point of the porous stretching sheet is given by   

                                        (1) 

where  and   are the constants of proportionality 
with dimensional of    .By using the similarity 
transforms (Hayat and Javed2007) 

                         

                                                 (2) 

where   is the coefficient of kinematic viscosity and 

   
 

 
                                                                        (3) 

is the similarty variable, the Navier-Stokes 
equations reduce to the following set of ODE’s: 

                                    (4) 

                                   (5) 

Here,    
   

 

  
 is the Hartman number,   is the  

fluid density and   is theelectrical conductivity. The 
boundary conditions for the problem are:   

                                                   

                                                                                        (6) 

                                                     (7) 

where 

  
  

   
                                                                 (8) 

and prime denotes the derivative with respect to  . 
The pressure   can be recovered by 

           
 

 
                                        (9) 

where    is the pressure at some reference point 
(the origin in the present problem). 
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3. SOME PRELIMINARIES  

3.1 Properties of Legendre 

polynomials 

Orthogonal polynomials are widely used in many 
areas such as mathematical physics, engineering 
and computer science (El-Mikkawy and Cheon 
(2005); Maleknejad and Kajani (2003)). One of the 
most common polynomials is a set of Legendre 
polynomials           

  which are orthogonal on 
the interval        with respect to the weight 
function       , (Datta and B.M.Mohan 1995). 
In mathematics, Legendre polynomials are 
eigenfunctions of singular Sturm-Liouville problem  

 

  
       

 

  
                                 (10) 

where the eigenvalue   equals       . These 
polynomials satisfy therecurrence relation (Datta 
andB.M.Mohan (1995)) 

                                    

                                                                         (11) 

with 

                                                              (12) 

The orthogonality of these polynomials is expressed 
by the relation 

  
 

  
             

 

    
                              (13) 

Square integrable function     in       , may be 
expressed in terms ofLegendre polynomials as 

        
                                                        (14) 

where the coefficients    are given by 

   
    

 
  
 

  
                                 (15) 

3.1 Theorem 

Canuto, Hussaini, Quarteroni, and Zang (1988) Let 
              (Sobolev space),       
   
           be the best approximation polynomial 

of     in   -norm. Then   

                       
  

                     (16) 

where   is a positive constant, which depends on 
the selected norm and is independent of      and 
 .Let        

 denote the Legendre-Gauss-Lobatto 
nodes (LGL nodes). These grids         
            are the zeros of   
         . Canuto et al. (1988) introduced the 
following approximation of the function    , 

         
                                                       (17) 

where    are the Legendre coefficients which are 
determined by the following formulations 

    
 

  
   
                                    (18) 

with 

   
 

              
                                  (19) 

and 

    

 

    
                  

 

 
                                 

                     (20) 

As it is well-known in Legendre pseudo-spectral 
method, derivatives of thefunctions      at the 
collocation points are presented as   

  

  
        

                                                      (21) 

   

   
        

      
   
                                            (22) 

In the above equations   is the Legendre 
differentiation matrix and     is the number of 
collocation points (nodes) and          . The 
entries of the differentiation matrix   are given by 
Canuto et al. (1988) 

    

 
 
 

 
  

      

 
                                    

      

 
                        

                                      
 

     

      

      
                     

   

                                                                             (23) 

 

3.2 Mappings 

A common and effective method for solving a 
differential equation with unbounded domain is to 
use a suitable mapping that transforms a problem 
with infinite domain to a problem with finite 
domain (Boyd (2001); Shen and Wang (2009)). 

We consider a family of mappings as follows:  

          
                                            (24) 

 

such that 
 
  

  
                                           (25) 

                                                  (26) 

Here, the parameter   is a positive scaling factor 
that is called mapping parameter. Without loss of 
generality, we further assume that the mapping is 
explicitly invertible, and denote its inverse mapping 
by   

             
                                               (27) 

There are several typical mappings that relate 

infinite and finite domains to each other, but 

algebraic, logarithmic, and exponential mapping 
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functions are more practical. Typical examples of 

such functions are: 
• The algebraic mapping   

  
   

   
          

   

   
                                         (28) 

• The logarithmic mapping   

        
 

 
             

 

 
   

   

   
                (29) 

• The exponential mapping   

  
 

 
               

       
 

 
                                                 (30) 

where          and          with    
       . 

Boyd (2001, 1982) offered guidelines for 

optimizing the map parameter   for rational 

Chebyshev functions, which is useful for the 

presented method in this paper, too. For the map 

parameter  we have the following results (Boyd 

2001, 1982):  

 

 In general, there is no way to avoid a 

small amount of trial and error in 

choosing   when solving problems on an 

infinite domain 

 The optimum value of   varies with the 

number of collocation points   

  A little experimentation is usually 

sufficient to determine a suitable value of 

  because near the optimum value of  , 

the accuracy is insensitive to the precise 

value of   

 The parameter   is a scaling/stretching 

factor which can be used to fine tune the 

spacing of collocation points  

The mappings in Eqs. (28) to (30) are especially 

convenient because they yield simple expressions 

for derivatives. For a general mapping          
with                           , the first and 

second derivatives of      can be expressed in 

terms of   as follows: 

  

  
  

       

  
 
    

  
                                             (31) 

   

   
  

       

  
 
     

   
   

        

   
  

       

  
 
    

  
       

                                                                            (32) 

In a special case for the logarithmic mapping (29), 

the Eqs. (31) and (32) can be writen as follows:  

 
  

  
 

 

 
    

   

 
 
 
 
  

  
                                       (33) 

   

   
 

 

  
    

   

 
 
 

 

 
   

   
 

 
 

  
 
   

 
     

   

 
 
 
 
  

  
                                  (34) 

4. THE METHOD OF SOLUTION 

The present work deals with application of 

Legendre pseudo-spectral collocation method and 

extrapolation for solving generalized three-

dimensional magnetohydrodynamic (MHD) flow of 

an incompressible viscous fluid over a porous 

stretching sheet. This method solves the problem on 

the semi-infinite domain without truncating it to a 

finite domain. If semi-infinite domain        
truncation to a domain        is employed, then 

one must choose   . If the rate of decay of     for 

large values of   is known or can be expected 

apriori, then    may be choosen so that       
 where   is some user-chosen tolerance. But then 

one is still faced with choosing the grid spacing   

so that the error in solving the differential equation 

on interval        is small. If   is small, the error 

in solving the problem may be very much less than 

 , in that case one has made a bad choice of    

because the domain truncation error is dominant, 

and it would have been better to choose a larger   . 

In this paper, the logarithmic mapping (29) for 

converting semi-infinite domain        into the 

computational domain        is used.  

We define  

 

   
   

 
       

   

 
                              (35) 

Ariel (2003) applied the above transforms for 

solving generalized three-dimensional flow of a 

hydrodynamic fluid over a non-porous stretching 

sheet by using Ackroyd’s series method (Ackroyd 

1978). Here, we apply Eq. (35) for solving 

generalized  three-dimensional magnetohy-

drodynamic fluid over a porous stretching sheet. By 

using Eq. (35), Eqs. (4) to (7) transform to : 

 

                                                                (36) 

        
 

 
                              (37) 

                                               (38) 

subjected to the boundary conditions 

                                      (39) 

                                                        (40) 

By using Eqs. (33) and (34), Eqs. (36) to (40) are 

converted to the differential equations with 

boundary conditions on interval        as follows:  

 
 

 
    

   

 
 
 
 
  

  
                                      (41) 

 

  
    

   

 
 
 
 
 
   

   
 

 

  
 
   

 
     

   

 
 
 
 
  

  
  

 
 

 
    

   

 
 
 
 
  

  
  

 

 
            

                                                                            (42) 

 

  
    

   

 
 
 
 
 
   

   
 

 

  
 
   

 
     

   

 
 
 
 
  

  
 

 
  

 
    

   

 
 
 
 
  

  
                         (43) 

and 

                            (44) 

                                                           (45) 

Now, Legendre pseudo-spectral method is utilized 

to solve the above problem as follows. This method 

involves using the Legendre-Gauss-Lobatto points 

to discrete interval       . Let the unknown 

functions           and      be approximated by 

a truncated series of Legendre polynomials as 

              
                                      (46) 
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                                     (47) 

              
                                    (48) 

 
where        and     are the Legendre coefficients 

which are determined by the formulations   

 
    

 

  
   
                                     (49) 

    
 

  
   
                                    (50) 

    
 

  
   
                                    (51) 

By employing derivatives formulations (21) and 

(22), Eqs. (41) to (45) are transformed to the 

following expressions  

 
 

 
    

    

 
 
 
    

                         (52) 

 

  
    

    
 

 
 

 

 

  

 

   

   
           

 
 

  
 
    

 
     

    
 

 
 

   

 

   

         

 
 

 
    

    
 

 
 

   

 

   

                  

 
 

 
                                       (53) 

 

 

  
    

    
 

 
 

 

 

  

 

   

   
           

 

 
 

  
 
    

 
     

    
 

 
 

   

 

   

         

 

 
 

 
    

    
 

 
 

   

 

   

                  

                                                  (54) 

where            and 

                                    (55) 

                                                         (56) 

For finding approximate solutions          and 

    , we need to calculate values 

          
              

    and           
 . However, 

the Eqs. (52) to (54) give a system with      

equations and      unknowns. To construct the 

remaining one equation we can use extrapolation 

method. Extrapolating is defined as estimating a 

point outside a known data set. Here, we consider   

datapoints  

                                          

generated by the unknown function     . So, we 

can interpolate      by the Lagrange form of the 

interpolation polynomial as follows: 

          
                                               (57) 

where 

           
       

    

     
                    (58) 

are Lagrange polynomials. By collocating Eq. (57) 

in point  , we obtain 

 

           
                                       (59) 

Equations (52) to (54) together with Eq. (59) give a 

              system of nonlinear 

equations, which can be solved for 

          
              

   and           
 , using 

Newton’s iterative method (Ortega and Rheinboldt 

1970; Kelley 1995). After evaluating          and 

    , the original functions           and      
are obtained by using Eqs. (46) to (48) and (29) as 

follows:   

              
               

 

 
       (60) 

              
               

 

 
      (61) 

              
               

 

 
      (62) 

4.1 Remark 

The values of        and        can be obtained 

from Eqs. (60) to (62) and (35) as follows: 

 

       
 

  
   
       

                        (63) 

       
 

  
   
       

                        (64) 

We note that                
      

 
. 

5.  RESULTS AND DISCUSSION  

In this section the numerical and graphical results 

obtained by employing pseudo-spectral collocation 

method are presented for the problem under 

consideration. This section describes the influence 

of some interesting parameters on the velocity 

components       and      . In particular, 

attention has been focused to the variations of the 

MHD non-dimensional parameter  , uniform 

injection (suction) parameter   and stretching ratio 

parameter  . The current results are compared with 

the previously published results by (Ariel 2003; 

Ariel 2007; Wang 1984 ; Hayat and Javed 2007).  

Tables 1 and 2 provide a comparative results of 

presented method (     and    ) with exact 

solution (given by Ariel (2003)), Wang method 

(Wang 1984), HPM (Ariel 2007) and HAM (Hayat 

and Javed 2007) versus different values of 

stretching ratio  . It is found that the obtained 

solution from pseudo-spectral collocation method 

has a good agreement with the presented exact 

solutions in (Ariel 2003).  

Table 3 displays the numerical results for         
and         for different values of   and  . This 

table shows that the magnitude of shear stresses 

increases for large value of  . Moreover, Table 3 

indicates that the behavior of   and   on the 

magnitude of shear stresses is the same.  

Figures. 1 to 6 have been made in order to see the 

effects of the MHD parameter   and 
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suction/injection parameter   on the on the velocity 

profiles       and      .  
Figures. 1 and 2 are made to see the effect of the 

suction and injection velocity   on the velocity 

profiles       and      , respectively. It is found 

from them that the value of       and       
decreases by increasing the value of   for the 

suction case     . However by increasing the 

value of   for the injection case      , the value 

of       and       increases.   

Figures. 3 to 6 are sketched in order to see the 

effects of MHD parameter   on the velocity 

profiles       and      . These figures show that 

      and       decreases by increasing   for both 

case of suction and injection. From Figs. 1 to 6, it is 

seen a good agreement between the results obtained 

by Hayat et al. (2007)and presented method. 

 

 

Table 1  Illustrating the variation of shear stress         with   when               , using 

exact solution (Ariel 2007), the first order of perturbation solution in   (Wang 1984),, HPM (Ariel 

2007) , HAM with         (Hayat and Javed 2007) and present method. 

 

  Exact(Ariel 2007) Wang(1988) HPM (Ariel 2007) HAM (Hayat and Javed 2007) Present method 

            

                                                         

                                                         

                                                         

                                                         

                                                         

                                                         

                                                         

                                                         

                                                         

                                                         

 
Table 2  Illustrating the variation of shear stress         with   when               , using 

exact solution (Ariel 2007), the first order of perturbation solution in   (Wang 1984),, HPM (Ariel 

2007) , HAM with         (Hayat and Javed 2007) and present method. 
 

  Exact(Ariel 2007) Wang(1988) HPM (Ariel 2007) HAM (Hayat and Javed 2007) Present method 
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Table 3   Illustrating the variation of shear stresses         and         with   and   using HAM with 

       (Hayat and Javed 2007) and present method when               . 

 
  

 
  

        
 

        
 

HAM (Hayat and Javed 

2007) 
Present method HAM (Hayat and Javed 

2007) 
Present method 

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

 

 

Fig.  1. Variation of similarity function    with 

the increase in suction or injection 

parameter . 

 

Fig.  2. Variation of similarity function    with 

the increase in suction or injection parameter 

 . 
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Fig.  3. Variation of similarity function    with 

the increase in magnetic field parameter   

when   . 
 

 
Fig.  4. Variation of similarity function    with 

the increase in magnetic field parameter   

when    . 

6. THE CHOICE OF THE MAP 

PARAMETER   

In general, there is not a simple method to choose 

the map parameter   for different problems, but 

we need to choose the map parameter   such that 

it adjusts the width of the basis functions to the 

width of the solution. There are some methods for 

making this choice as outlined in (Boyd 2001, 

1982,1994,1987), but the trial-and-error method 

is inevitable. Here, we introduce two strategies 

for finding a suitable map parameter  .    

 
Fig.  5. Variation of similarity function    with 

the increase in magnetic field parameter   

when    . 

 

Fig.  6. Variation of similarity function    with 

the increase in magnetic field parameter   

when    . 
 The first strategy is to simply solve the 

problem and look at the spectral 

coefficients, plotted as absolute values 

on a log-linear plot, for several 

different values of  . Obviously, if the 

magnitudes of the coefficients are 

rapidly decreasing, the spectral series is 

accurate (Boyd 2001, 1982).   

 The second strategy is to plot the 

residual error versus   for a fixed  . 

This curve has a " -shape" for reasons 

explained in more detail in (Boyd 

2001,1982, 1987). 

 

For the system of differential Eqs (4) and (5), the 

residual errors are defined as follows: 

 

                               
                             
                                 
                         
                             
                        

 
Figures. 7 and 8 show the logarithmic of absolute 

values of Legendre coefficients as computed for 

several scaling factor  . The optimum   for 

               and       is about 

   . Note that the curves for small   are well 

below those of the solid circles for    . 

Because           
 

 
        for all real , 

it follows that the error in truncating a spectral 

series is bounded by the sum of the absolute 

values of all the neglected coefficients (Boyd 

2001). 

Figures. 9 and 10 show the sensitivity of the 

Legendre basis to the choice of the map 

parameter  . For a given truncation , there is an 

optimum   which increases with increasing 

truncation. So, we observe that the choice of the 

map parameter   is not very critical. 
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Fig.  7. The coefficients     versus   for five 

different values of   . The solid circles show 

the best choice for     , which is    . 

 

Fig.8. The coefficients     versus   for five 

different values of   . The solid circles show 

the best choice for     , which is    . 

 

Fig.  9. Comparison of the residual errors for 

     with different choices of the parameter   

and the number of grid points   when 

          and      . 

 
Fig.  10. Comparison of the residual errors 

for     with different choices of the 

parameter   and the number of grid points   

when           and      . 

7. CONCLUSIONS 

In this paper, a simple and accurate numerical 

algorithm based on Legendre pseudo-spectral 

method with a positive scaling factor and 

extrapolation for solving the system of nonlinear 

ordinary differential equations derived from 

similarity transform for the generalized three-

dimensional MHD flow over a porous stretching 

sheet is developed. This method reduces the 

solution of governing equations to the solution of 

a system of algebraic equations. The results are 

presented graphically and tabularly and the effect 

of the various pertinent parameters is discussed. 

An excellent agreement is seen between the 

results obtained by Wang, Ariel(2003), 

Ariel(2007), Hayat and presented method. The 

obtained results indicate that the method is a 

useful tool for the solution of nonlinear problems 

in fluid mechanics. 
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