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ABSTRACT 

Effects of radiative heat transfer on an MHD fully developed mixed convective flow of a viscous 

incompressible electrically conducting fluid through a vertical channel with asymmetric heating of walls in 

the presence of a uniform transverse magnetic field has been studied. An exact solution of the governing 

equations has been obtained in closed form. It is observed that the velocity field is greatly influenced by the 

radiative heat transfer as well as bouyancy forces. The induced magnetic field decreases  near the cool wall 

and it increases near the hot wall of the channel with an increase in radiation parameter. Further, an increase 

in radiation parameter leads to a decrease in the fluid temperature in the channel. A limiting consideration of 

the solutions of the governing equations of the flow are analyzed for 1Ra . 

 

Keywords: MHD mixed convective flow, Grashof number, radiation parameter, Prandtl number and 

asymmetric heating.  

NOMENCLATURE 

Greek symbols 
         non-dimensional pressure gradient   dimensionless temperature 

         coefficient of thermal expansion   fluid density 

e        magnetic permeability 
0  fluid density at  entrance of  channel 

        kinematic viscosity     conductivity of fluid 

        wave  length 
0 1, 

 

shear stresses at cool  and hot walls 

        non-dimensional width of the channel   

xB    induced magnetic field component along x -

direction 

Pr  Prandtl number  

 

xb    non-dimensional induced magnetic field 

component 
rq  radiative heat flux 

B    the magnetic field vector 
Tr  temperature difference ratio 

p
e    planck function Ra  radiation parameter 

g    acceleration due to gravity T  fluid  temperature 

Gr    Grashof number 
0T  temperature at entrance of  channel 

0 1,Gr Gr    Critical Grashof numbers 
1T  temperature of hot wall 

0
K    absorption coefficient 

2T  temperature of cool wall 

k    thermal conductivity u  velocity component in x -direction 
2M    magnetic parameter 

1u  non-dimensional fluid velocity 

p    fluid pressure  ,x y  cartesian co-ordinates 
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1. INTRODUCTION 

Heat transfer in free and force convection in vertical 

channels occurs in any industrial processes and 

natural phenomena. Most of the interest in this 

subject is due to its applications, for instance, in the 

design of cooling systems or electronic devices, 

chemical processing equipment, microelectronic 

cooling and in the field of solar energy collections.  

Since some fluids can also emit and absorb thermal 

radiation, it is of interest to study the effects of 

magnetic field on the temperature distribution and 

heat transfer when the fluid is not only an electrical 

conductor but also when it is capable of emitting 

and absorbing radiation. Hence, heat transfer by 

thermal radiation is becoming of greater importance 

in space applications and higher operating 

temperatures. Ozisik(1989) has mentioned in an 

excellent review article that heat transfer by 

simultaneous radiation and convection has 

applications in numerous technological problems, 

including combustion, furnace design, the design of 

high-temperature gas-cooled nuclear reactors, 

nuclear-reactor safety, fluidized-bed heat exchagers, 

fire spreads, advanced enegy conservation devices 

such as open-cycle coal and natural-gas-fired MHD, 

solar ponds,solar collectors, natural convection in 

cavities and many others. On the other hand, it is 

worth mentionaing that heat transfer by 

simultaneous radiation and convection is very 

important in the context of space technology and 

processes involving high temperature. An excellent 

description of the fundamentals of thermal radiation 

has been presented in the book by Modest (2003). 

For a comprehensive treatment of the radiation 

transfer and the interractions with convection the 

interested reader can consult also the books by 

Sprrow and Cess 1970; Ozisik 1973 ; Siegel and 

Howell 1992).  (Aung 1972; Aung et al.1972; Aung 

and Worku 1986; Barletta 2002 ; Boulama and  

Galanis 2004) deal with the evaluation of the 

temperature and velocity profiles for the vertical  

parallel-flow fully develoved regime. As is well 

known, heat exchangers technology involves 

convective flows in vertical channels. In most  

cases, these flows imply conditions of uniform 

heating of a channel, which can be modelled either 

by uniform wall temperature or uniform heat flux 

thermal boundary conditions. Many process in new 

engineering areas occur at high temperatures and 

knowledge of radiative heat transfer becomes very 

important for the design of the pertinent equipment. 

Nuclear power plants, gas turbines and various 

propulsion devices for aircraft, missiles satellites 

and space vehicles are examples of such 

engineering areas. Cogley et al.(1968) have studied 

the differential approximation for radiative heat 

transfer in a non-grey gas near equilibrium. The 

hydrodyamic fully developed laminar convective 

flow through a vertical channel in the optically thin 

limit has been studied by Greif et al. (1971) 

whereas Gupta and Gupta (1974) have studied the 

same problem in the presence of a transverse 

magnetic field. The effects of radiative heat transfer 

on MHD flows in vertical channel have been 

studied a number of researches. Datta  and Jana  

 

(1976) have discussed the effect of wall 

conductances on hydromagnetic convection of a 

radiating gas in a vertical channel. Ogulu and Motsa 

(2005) have studied the radiative heat transfer to 

magnetohydrodynamic Couette flow with variable 

wall temperature. Effect of radiation on unsteady 

free convection flow bounded by an oscillating 

plate with variable wall temperature have been 

described by Pathak et al.(2006). Sharma et al. 

(2007) have discussed the radiation effect on 

temperature distribution in three-dimensional 

Couette flow with suction / injection. The radiation 

effect on MHD free convection flow of a gas past a 

semi-infinite vertical plate have been studied by 

Takhar et al. (1996). The effects of wall 

conductance on MHD fully developed flow with 

asymmetric heating of the walls has been studied by 

Guria et al. (2007). Ghosh and Nandi (2000) have 

discussed magnetohydrodynamic fully developed 

combined convection flow between vertical plates 

heated asymmetrically. MHD fully developed 

mixed convection flow with asymmetric heating of 

the walls have been described by Ghosh et al. 

(2002). Pantokratoras (2006) has presented his 

results for a steady free convection flow between 

vertical parallel plates by considering different 

conditions on the wall temperature. The thermal 

radiation effect on fully developed mixed 

convection flow in a vertical channel have been 

examined by Grosan and Pop (2007). Suneetha et 

al. (2011) have presented the radiation and mass 

transfer effects on MHD free convective dissipative 

fluid in the presence of heat source/sink.  Effects of 

thermal radiation on hydromagnetic flow due to a 

porous rotating disk with Hall effect have been 

studied by Anjali Devi  and Uma Devi (2012).   

Baoku et al.  (2012) have analyzed the influence of 

thermal radiation on a transient MHD Couette flow 

through a porous medium.   

In the present paper, we study the effects of 

radiative heat transfer on MHD fully developed 

mixed convective flow in a vertical channel with 

the asymmetric heating of  walls in the presence of 

a transverse magnetic field. We assume that the 

radiative heat flux follows a relation in  an optically 

thin limit for a non-gray gas near equilibrium.  The 

closed form solutions for velocity, temperature, 

shear stresses, rate of heat transfer and critical 

Grashof number are presented. Flow and heat 

transfer results for a range of values of the pertinent 

parameters have been reported. It is observed that 

the velocity field is greatly influenced by the 

radiative heat transfer as well as bouyancy forces. 

The induced magnetic field decreases near the cool 

wall and it increases near the hot wall of the vertical 

channel with an increase in radiation parameter. 

Further, an increase in radiation parameter leads to  

decrease the fluid temperature  in the channel.  

2.   FORMULATION OF THE PROBLEM 

AND ITS SOLUTION 

Consider a steady MHD fully developed mixed 

convective flow of a viscous incompressible 

electrically conducting fluid confined between 
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vertical walls. The channel walls are at a distance 

d  apart. Choose a Cartesian co-ordinates system 

with x -axis in the upward direction along the cool 

wall in the direction of flow and the axis of y  is 

perpendicular to it. The wall at 0y   has a uniform 

temperature 2T  while the wall at y d  is 

subjected to a uniform temperature 1T , where 

1 2>T T . A uniform magnetic field of strength 0B  is 

imposed perpendicular to the channel walls. The 

flow is due to buoyancy force, difference in 

temperature and in the presence of pressure 

gradient. Since the channel walls are infinitely long 

along the x -direction, all physical quantities, are 

functions of y  only. The velocity components are 

( , )u v  relative to the Cartesian frame of reference. 

  

 
 

Fig. 1. Geometry of the problem 

 

The Boussinesq approximation is assumed to hold 

and for the evaluation of the gravitational body 

force, the density is assumed to depend on the 

temperature according to the equation of state  

0 0[1 ( )],T T                                        (1) 

where T  is the fluid temperature,   the fluid 

density,   the coefficient of thermal expansion and 

0T  and 0  being the temperature and the density at 

the entrance of the channel. 

The solenoidal equation = 0B   gives yB   

constant 0= B everywhere in the flow where 

0( , ,0)xB B B . The flow being fully developed the 

relations = 0v , = 0
v

y




 and = 0

p

y




 apply here, 

where p  is the fluid pressure. Therefore, the 

continuity equation gives = 0
u

x




 and hence 

= ( )u u y . Using the Boussinesq approximation (1), 

the momentum equation along x - axis and the 

magnetic induction equation are  
2

0 0 02
( ) = ,x

e

d u dB d p
B g T T

dy dy d x
                (2) 

2

02
= 0,x

e

d B du
B

dy dy
                                    (3) 

and the energy equation is  

2

2
0 = ,rd T q

k
dy y





                                         (4) 

where   is the kinematic viscosity, e  the 

magnetic permeability,   the conductivity of the 

fluid, g  the acceleration due to gravity, k  the 

thermal conductivity and rq  the radiative heat flux. 

It has been shown by Cogley et al.(1968) that in the 

optically thin limit for a non-gray gas near 

equilibrium, the following relation holds  

0
00

0

= 4( ) ,r hq e
T T K d

y T


 

  
  

  
                    (5) 

where 
0

K  is the absorption coefficient,   is the 

wave length, pe  is the Planck's function and 

subscript '0  indicates that all quantities have been 

evaluated at the temperature 0T  which is the 

temperature at entrance of the channel. 

On the use of (5), the Eq.(4) becomes  
2

02
0 = 4 ( ),

d T
k I T T

dy
                                   (6) 

 where  

00
0

= he
I K d

T


 

  
 
 

  

In asymmetric heating of the walls, the velocity, 

magnetic and temperature boundary conditions are 

respectively,  

20, = and = 0 at 0,xu T T B y   

10, and = 0 at = ,xu T T B y d                (7) 

assuming the walls are electrically non-conducting. 

      Introducing the non-dimensional variables  

0
1

0 1 0

, , , ,x
x

e

y ud B T T
u b

d B T T
 

 


   


        (8) 

 Eqs. (2), (3) and (6) become  
2

21

2
0,xd u db

M Gr
d d

 
 

                            (9) 

2

1

2
= 0,xd b d u

d d 
                                          (10) 

2

2
= 0,

d
Ra

d





                                          (11) 

 where 

1

2

0 0

0

=M B d



 

 
 
 

 is the Hartmann 

number, 
3

2 1

2

( )
=

g T T d
Gr






 the Grashof number 

and 
24

=
Id

Ra
k

 the radiation parameter and 

3

2

d p

x




 
  

 
 the non-dimensional pressure 

gradient. 

      The boundary conditions given by (7) become  

1 0, and = 0 at 0T xu r b     

1 = 0, =1 and = 0 at =1,xu b                 (12) 

 where 2 0

1 0

=T

T T
r

T T




 is the temperature difference 

ratio. 

Solution of  Eqs. (9) to (11) subject to the boundary 
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conditions (12) are  

 

2

2

sinh sinh (1 )
,

sinh sinh

( ) =

sinh sinh (1 )
, = ,

sinh sinh

T

T

Ra Ra
r Ra M

Ra Ra

M M
r Ra M

M M

 

 

 

 
 




 
 


      

                                                  (13) 

2

2

2

1

2

sinh sinh (1 )
1

sinh sinh

sinh sinh (1 )
[

sinh sinh

sinh sinh (1 )
,

sinh sinh
( ) =

sinh sinh (1 )
1

sinh sinh

2

T

T

M M
c

M M M

Gr M M
r

Ra M M M

Ra Ra
r Ra M

Ra Ra
u

M M
c

M M M

Gr

  

 

 



  

  
    

  

 
  

  

  
   
  

  
    

  



  2

sinh
[( cosh )

sinh sinh

cosh cosh (1 ) , = ,

T

T

M
r M

M M M

M r M Ra M



  
















 


    

                                                                          (14) 

1 2

2

2

1 2

cosh cosh (1 )

sinh sinh

cosh cosh (1 )

sinh sinh

cosh cosh (1 )
,

sinh sinh

( ) =
cosh co

sinh

T

T

x

M M
c c c

M M M M M

Gr M M
r

Ra M M M M M

Ra Ra
r Ra M

Ra Ra Ra Ra

b
M

c c c
M M M

  
 

 

 


 

 

  
      

  

  
  

  

  
   
  

 
     

 

 

  2

2

sh (1 )

sinh

cosh
( cosh )

2 sinh sinh

sinh sinh (1 )

1
cosh cosh (1 ) , =

T

T

T

M

M M

Gr M
r M

M M M M

M r M
M

M r M Ra M
M






 

 














   
  


  

  



    

                                                                             (15) 

where  

 
2

2 2

1

2

2 3 2

(1 ) 1 cosh 1 cosh
,

2 sinh2 sinh

=

(1 )
(1 cosh )( sinh ), = ,

2 4 sinh

T

T

Gr r M Ra
Ra M

M M MRa M Ra Ra

c

Gr r
M M M Ra M

M M M





    
    

  


 
   



                                                                (16) 

2

2

2

2

2 2

sinh
1

2(1 cosh )

(1 )1 sinh 1 cosh 1 cosh
,

= 2 1 cosh sinh sinh

(1 )sinh
1 (sinh ), = .

2(1 cosh ) 4 sinh

T

T

M M

M M

Gr r M M M Ra
Ra M

c Ra M M M M Ra Ra

Gr rM M
M M Ra M

M M M M





  
  

 
         

    


   
    

  

                                                                (17) 

and   is given by (19).   

It is seen from the expressions (13)-(15) that the 

velocity field and induced magnetic field depend on 

the Grashof number Gr , whereas the temperature 

distribution is independent of Gr . In the absence of 

radiation ( = 0Ra ), the velocity distribution and the 

induced magnetic field coincide with Guria et 

al.(2007) in the case of without wall conductance. 

3.   EXPRESSION FOR PRESSURE 

GRADIENT 

It is noticed from the Eqs. (14) and (15) that the 

parameter   is still to be evaluated. Using the rate 

of mass flow  
1

1
0

=1,u d                                                 (18) 

we have, on the substitution of the value of 1u , 

which is obtained from Eq. (14) as  

   
2

3

2

2

2

2

2

2 (cosh 1)

sinh 2(1 cosh )

(1 ) sinh

sinh 2(1 cosh )

1 cosh 1 cosh
,

= sinh sinh

2 (cosh 1)

sinh 2(1 cosh )
= .

1 sinh
1 (1 ) ,

4 sinh

T

T

M M

M M M

Gr r M M

Ra M M M M
Ra M

M Ra

M M Ra Ra

M M

M M M
Ra M

M M
Gr r

M M



 


 
 
 

  


     
  


 


 


    
 

(19) 

                                       

4.   RESULTS AND DISCUSSION 

To study the effects of radiative heat transfer and 

the magnetic field on the MHD fully developed 

flow with asymmetric heating of the walls, the 

dimensionless velocity 1u , the induced magnetic 

filed xb  and temperature distribution   are 

depicted graphically against   for several values of 

radiation parameter Ra , magnetic parameter 2M , 

bounyancy parameter Gr  and temperature 

difference ratio Tr  in Figs.2 to 13. Figures.2 and 3 

depicts the effects of the radiative heat transfer and 

magnetic field on the velocity field. It is seen from 

Fig.2 that the fluid velocity 1u  increases in the 

range 0 0.38   while it decreases in the range 

0.38 < 0.86   and again it increases in the range 

0.86 < 1   with an increase in radiation parameter 

Ra . It is manifested that there is a closeness of the 

curves near the hot wall. Fig.3 reveals that the fluid 

velocity 1u  increases in the range 0 0.42   

while it decreases in the range 0.42 < 1   with an 

increase in magnetic parameter 2M .  It means that 

the Lorentz force imposed by a transverse magnetic 

field to an electrically conducting fluid, which 

slows down the fluid motion near the hot wall and 

enhances the fluid motion near cool wall.  It is also 

manifested that there is a closeness of the curves 

near the hot wall. It is noticed from Fig.4 that the 

fluid velocity 1u  decreases in the region 

0 0.53   and it increases in the region 

0.53 < 1   with increase in Grashof number Gr . 

Fig.5 shows that with an increase in Tr , the fluid 

velocity 1u  increases in the region 0 0.53   

and it decreases in the region 0.53 < 1  . It is 



R. Patra et al. / JAFM, Vol. 7, No. 3, pp. 503-512, 2014.  

 

507 

 

observed from Fig.6 that the induced magnetic field 

xb  decreases at any point near the cool wall and it 

increases near the hot wall with an increase in Ra . 

Fig.7 shows that the induced magnetic field 

xb decreases with an increase in 2M . It is seen 

from Fig.8 that the induced magnetic field xb  

increases  with an increase in Gr . Fig.9 reveals that 

the induced magnetic field xb  decreases  with an 

increase in Tr . The temperature profiles have been 

drawn for different values of Ra  and Tr  in Figs.10 

and 11. It is seen from Figs.10 and 11 that the fluid 

temperature   decreases with an increase in 

radiation parameter Ra  while it increases with an 

increase in temperature difference ratio parameter 

Tr . 

 

 
Fig. 2. Variation of velocity for different Ra  

when 
2 = 5M , = 0.4Tr  and =100Gr  

 

        

 
 

Fig. 3. Variation of velocity for different 2M  

when = 4Ra , = 0.4Tr  and =100Gr  

      

  

Fig. 4. Variation of velocity for different Gr  

when 
2 = 5M , = 4Ra   and = 0.4Tr  

    

 
Fig. 5. Variation of velocity for different Tr  

when 
2 = 5M , = 4Ra  and =100Gr  

     

  

 
 

Fig. 6. Variation of induced magnetic field for 

different Ra  when 
2 = 5M , = 0.4Tr  and 

=100Gr  
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Fig. 7. Variation of induced magnetic field for 

different 2M  when = 4Ra , = 0.4Tr  and 

=100Gr  

  

 
Fig. 8. Variation of induced magnetic field for 

different Gr  when 
2 = 5M , = 4Ra  and 

=100Gr  

 

 
 

Fig. 9. Variation of induced magnetic field for 

different Tr  when 
2 = 5M , = 4Ra  and =100Gr  

Fig. 10. Variation of temperature for different 

Ra  when = 0.4Tr  

 
Fig. 11. Variation of temperature for different 

Tr  when = 4Ra  

One of the important characteristics of this problem 

is the shear stress at the walls. The non-dimensional 

shear stress at the cool wall ( = 0)  and hot wall 

( =1)  are respectively given by  

1 1

0 1
=0 =1

= and = ,x x

du du

d d
 

 
 

   
   
   

             (20) 

 where  
2

2

2

2

1

=0
2

(cosh 1)

sinh 2(1 cosh )

(1 ) 1 cosh 1 cosh
1

sinh sinh

(1 cosh ) (1 cosh )
,

sinh sinh
=

(cosh 1)
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 and  
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The values of non-dimensional shear stresses at the 

walls 0   and 1   are shown graphically 

against Tr  for different values of Ra  and 2M  in 

Figs.12 and 13. It is observed from Fig.12 that for 

fixed values of 2M  and Gr  the shear stress 
0

x  at 

the cool wall increases while the shear stress 
1

x  at 

the hot wall decreases with an increase in radiation 

parameter Ra . On the other hand, Fig.13 shows 

that the shear stress 
0

x  at the cool wall increases 

while the shear stress 
1

x  at the right wall decreases 

with increase in 2M . It is interesting to note that 

the shear stress due to the flow does not vanish at 

the walls 0   and 1   when buoyancy forces 

= 0Gr . Thus we arrive an interesting conclusion 

that there is no flow reversal in the absence of the 

buoyancy forces. 

The shear stresses at the cool and hot wall vanish if  
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Fig. 12. Shear stress for different Ra  when 

2 = 5M , = 4Ra  and = 50Gr  

 

 
Fig. 13. Shear stress for different 2M  when 

2 = 5M , = 0.4Tr  and = 50Gr  

  

 

  

 

Table 1 The values of Critical Grashof number 
3

0 10Gr   at the cool wall. 0Gr  

  

 Ra   Tr  

2M    2  4 6 0 0.2 0.4 

 5  

10  

15  

20  

 0.1821947  

 0.2102455  

 0.2385835  

 0.2671151  

 0.2327067  

 0.2710896  

 0.3102064  

 0.3498836  

 0.2946396  

 0.347127  

 0.4012581  

 0.4567396  

0.1056287 

0.1214226 

0.1373196 

0.1532741 

0.1453024 

0.1677217 

0.1903684 

 0.2131661 

0.2327067 

0.2710896 

0.3102064 

0.3498836  
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Table 2 The values of Critical Grashof number 
3

1 10Gr   at the hot wall. 

  Ra   Tr  

2M    2  4 6 0 0.2 0.4 

 5  

10  

15  

20  

 0.1197925  

 0.1361429  

 0.1524667  

 0.1687417  

 0.109435  

 0.123871  

 0.138243  

 0.152538  

 0.1033845  

 0.1167035  

 0.1299393  

 0.1430853  

0.07737131 

0.08797246 

0.09855560 

0.10910590 

0.09065144 

0.10288010 

0.11507350 

 0.1272174 

0.109435 

0.123871 

0.138243 

0.1525389  

 

The values of the critical Grashof numbers 0Gr  and 

1Gr  due to the flow at the cool wall 0   and hot 

wall 1   are entered in the Tables 1 and 2 for 

different values of magnetic parameter 2M , 

radiation parameter Ra  and the temperature 

difference ratio parameter Tr . It is seen from the 

Table 1 that the critical Grashof number 0Gr  at the 

cool wall ( = 0)  due to the flow increases with 

increase in either Ra  or Tr  or 2M . Table 2 shows 

that the the critical Grashof number 1Gr  at the hot 

wall ( =1)  due to the flow increases with an 

increase in either 2M  or Tr . On the other hand, 

with increase in the radiation parameter Ra , the 

critical Grashof number 1Gr  decreases. 

In the absence of radiative heat transfer ( = 0Ra ), 

the critical Grashof numbers 0Gr  and 1Gr  are given 

by  
4

0 2
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                                                                             (25) 

1 0 ,Gr Gr                                                                 (26) 

which are identical with the Eq. (39) of Guria et al. 

(2007). 

4.1.  Limiting Case 

Now, we discuss the case when the radiation 

parameter is 1Ra . In this case,  Eqs. (13) to (15) 

become  
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where  
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In limit 0Ra  ,  Eqs. (27) to (28) for the 

temperature, the velocity and the induced magnetic 

field yield respectively  

( ) = (1 ),Tr                                        (31) 
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    The velocity and the induced magnetic field 

given by (32) and (33) coincide with  Eqs. (14) and 

(15) of Guria et al. (2007) in the case of without 

wall conductance. 

5.   CONCLUSION 

An MHD fully developed mixed convection in a 

vertical channel in the presence of radiation have 

been studied. It is seen that the fluid velocity is 

strongly affected by the radiative heat transfer as 

well as bouyancy force. The induced magnetic field 

decreases near the cool wall and it increases near 

the hot wall of the channel with an increase in 

radiation parameter. Radiation decreases the fluid 

temperature. It is interesting to note that the shear 

stress due to the flow does not vanish at the channel 

walls when 0Gr   and hence there is no flow 

reversal in the absence of the buoyancy force. This 

model finds applications in the design of cooling 

systems, chemical processing equipments and the 

field of solar energy collections. 
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