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ABSTRACT

This paper reports a high accurate solution of the Blasius function f (η) in the form of a converging Taylor’s
series for a higher range of η∈ [0,9]. The method used consists of conversion of the boundary value problem
into an initial value problem and solution by differential transform method. The initial value of the second
derivative of the Blasius function is determined from the final value of first derivative of another function.
The final value of first derivative of the latter function is determined by the Taylor’s series expansions
with center at η = 15. The series expansion for the Blasius function is obtained with center of expansion
at η = 4, is alternating and is accurately converging for higher values of η, with the number of used for
summation equal to 2000. The present expansion is obtained without resorting to approximations and has a
higher radius of convergence. The first 200 coefficients of the series, the second derivative of the function
at η = 0, the parameters of the asymptotic solution are reported with 21 decimal places accuracy. The level
of accuracy of the results presented is higher than any other results reported so far. This note also reports
the mathematical steps involved in the derivation of the similarity variable of Blasius problem.
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1. INTRODUCTION

Ever since the formulation and solution of the func-
tion defined by f

′′′
(η) + 1

2 f (η) f
′′
(η) = 0, with

f (0) = f ′(0) = 0, f ′(∞) = 1 and η ∈ [0,∞] by Bla-
sius (1908), more than a century ago, the func-
tion called as Blasius function has been a sub-
ject of great interest to Mathematicians and Physi-
cists (K.Toepfer and H.Blasius. (1912), Howarth
(1938), Cortell (2005), Boyd (2008), Zaimi, Bidin,
Bakar, and Hamid (2012)), to name a few. These
investigations considered analytical as well as nu-
merical methods for the solution of f (η). Though
the problem has been approximately solved using
numerical techniques, difficulties encounter when
the exact solution of the function is sought. This is
mainly due to the fact that the exact solution is a
power series without having a closed form and sin-
gularity of the function. A systematic investigation
of the simple pole of the function and convergence
behavior is reported by Boyd (1999). While a cer-
tain minimum number of terms are required to be
summed for getting the results with required accu-

Fig. 1. Boundary Layer over a Flat plate.

racy levels, the solution for η� 1 is subjected to
convergence problems. The present work explores
the potential of differential transform method for
solving non-linear initial value problems of func-
tions with singularity. In order to obtain a higher
radius of convergence of the series expansion of
functions with singularity, shifting of the center of
expansion is proposed. A new methodology con-
sisting of recursive application of differential trans-
form method for shifting the center of the expan-
sion has been demonstrated. Hence a high accurate
solution of Blasius function in the form of a con-
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verging power series with center of expansion at
η = 4 and a higher radius of convergence η ∈ [0,9]
than other results reported so far is obtained. The
important parameters of the asymptotic solution are
reported with a higher level of accuracy. This tech-
nical brief reports the method for converting the
boundary value problem into an initial value prob-
lem. The first part of this note describes a system-
atic method for deriving the similarity variable for
transforming the PDE of boundary layer equation
into the Blasius equation.

2. BOUNDARY LAYER OVER A FLAT
PLATE

Figure 1 shows a schematic diagram of boundary
layer over a flat plate. It is a zero pressure gradi-
ent flow as the potential flow velocity is a constant
and equal to the free stream velocity U∞. Thus the
governing partial differential equation of boundary
layer flow over a flat plate is written by neglecting
the pressure gradient term in the Prandtl boundary
layer equation as:

continuity :
∂u
∂x

+
∂v
∂y

(1)

x-momentum : u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 (2)

The boundary conditions are u = v =
∂2u
∂y2 = 0 at

y = 0 and
∂u
∂y

= 0 at y = ∞.

The velocity u in the boundary layer is a function
of x and y coordinates. Typical velocity profiles
as a function of y drawn for different values of x
are shown in Fig. 2(a). A dimensionless variable
η formed by combining the independent variables
x, y and the physical constants of the problem such
that variation of the non-dimensional velocity u/U∞

as a function of η is a single curve as shown in
Fig. 2(b) is called a similarity variable. Blasius
(1908) defined the similarity variable as η= y/δ us-
ing physical arguments based on momentum trans-
port. Cengel (2006) noted that finding of such a
variable, assuming it exists, is more of an art than
science, and it requires to have a good insight of the
problem. But from a mathematical point of view,
similarity variable can be visualized as a change of
variable for a possible transformation of a PDE into
an ODE. The first part of this note illustrates a sys-
tematic method for deriving the similarity variable
for flat plate boundary layer from a mathematical
point of view. A fundamental choice for combin-
ing x, y and the physical constants may be to write
η = kA(x)B(y), where k is related to the physical

(a)

(b)
Fig. 2. Boundary Layer.

constants such as ν and U∞. By noting that all
boundary conditions of the problem are based on
the values of y, a convenient choice for B(y) is taken
as the variable y itself. Thus,

η = kA(x)y with,
∂η

∂x
= kyA

′
and

∂η

∂y
= kA (3)

The equation of the dimensionless velocity as
shown in Fig. 2(b) has the form

u
U∞

= f
′
(η) or u =U∞ f

′
(η) (4)

It is possible to satisfy the continuity Eq. (1) by de-
riving the velocity components from stream func-
tion ψ(x,y) as

u =U∞ f
′
(η) =

∂ψ

∂y
⇒ ψ =

U∞ f
kA

(5)

v =−∂ψ

∂x
=−U∞

k

[
A f
′
kA
′
y− f A

′

A2

]
(6)

The other derivatives u are
∂u
∂x

=U∞ f
′′
kA
′
y,

∂u
∂y

=U∞ f
′′
kA

and

∂2u
∂y2 =U∞k2A2 f

′′′
(7)
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Putting Eq. (5-7) in Eq. (2), it is possible to write

f
′′′ − U∞A

′

νk2A3 f f
′′
= 0 (8)

The condition for the above differential equation to

represent an ODE is that,
U∞A

′

νk2A3 is a constant.

Taking
U∞A

′

νk2A3 =−p, (p is a constant)

⇒ A−3 dA
dx

=− pνk2

U∞

(On integration) ⇒ 1
A2 =

2pνk2x
U∞

⇒ A2k2 =
U∞

2pνx
(9)

Since p can have any arbitrary constant value, a
choice that turns the expression of Ak to a compact
form is p = 1/2. Thus, the final expressions for Ak
and η become

kA(x) =

√
U∞

νx
and η = y

√
U∞

νx
(10)

The resulting ODE from Eq. (8) is called the Bla-
sius equation

f
′′′
+

1
2

f f
′′
= 0; f (0)= f

′
(0)= 0 and f

′
(∞)= 1(11)

Presented in this section is a straight forward math-
ematical method for the derivation of similarity
variable, for converting a PDE into an ODE. This
method is based on mathematical concepts and
the application of physics, intuitive judgments and
experience are minimum. Existence or suitability
of a similarity variable can be judged during the
process of transformation.

The following sections consider conversion of the
above boundary value problem into an initial value
problem and subsequently solution by consider-
ing the singularity point of the function, f (η).
The potential of differential transform Zhou (1986)
method is explored to derive accurate solution of
the function with a higher radius of convergence.

3. CONVERTING BOUNDARY VALUE
PROBLEM (BVP) TO INITIAL VALUE
PROBLEM (IVP)

Blasius problem is a non-linear, third order BVP.
Solution of a non-linear BVP is complex, either in-
volving iterative techniques or system of equations

along with the use of a numerical technique. At
the same time, Initial Value Problems can be solved
easily. An important property of Blasius equation
(11) is that it is satisfied by a f (aη) also, which
is a scaled variant of f (η), where a is a scaling
constant. This property called dilational or scaled
symmetry of Blasius equation is first observed by
Toepfier[2], and this property of the function can
be applied to determine the value of f

′′
(0) from

the known condition f
′
(∞) = 1. By knowing the

value of f
′′
(0), Blasius problem can be solved as

an IVP. The derivation of an expression for f
′′
(0) is

reviewed here by considering a function g with

g
′′′
+

1
2

gg
′′
= 0, with

g(0) = g
′
(0) = 0 and g

′′
(0) = 1 (12)

By scaled symmetry, the solution of g and f are
related by the scaling relation

f (η) = ag(aη) By differentiating,

we can write f
′
(η) = a2g

′
(aη)

⇒ f
′
(∞) = a2g

′
(∞)

⇒ g
′
(∞) =

f
′
(∞)

a2 =
1
a2

⇒ a = [g
′
(∞)]−1/2

f
′′
(η) = a3g

′′
(aη)

⇒ f
′′
(0) = a3g

′′
(0) = a3 = [g

′
(∞)]−3/2 (13)

The value of g
′
(∞) is to be first determined by solv-

ing the IVP of g in Eq. (12). By finding f
′′
(0) =

[g
′
(∞)]−3/2, the Blasius problem can be solved as

an IVP.

3.1. Solution of IVP

Initial value problems can be solved either numer-
ically or analytically. Blasius IVP has been nu-
merically solved by applying Runge-Kutta method
in (K.Toepfer and H.Blasius. (1912), Howarth
(1938), Cortell (2005), Boyd (2008), Zaimi, Bidin,
Bakar, and Hamid (2012)). Taylor’s series method
has been used to analytically solve different types
of IVPs in (Ganji, Babazadeh, Noori, Pirouz, and
Janipour (2009), Asaithambi (2005)). In Taylor’s
series method, the differential equation is succes-
sively differentiated to find higher order deriva-
tives from the known values of lower order deriva-
tives. The series may be a terminating or a non-
terminating one, depending on whether the deriva-
tives vanish or not beyond a particular order deriva-
tive. A difficulty with non-terminating series is
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from its divergence behavior, when the function
contains singularities. The radius of convergence
of series expansion of a function with singulari-
ties is the distance between the center of expansion
and its closest singularity. It is possible to change
the radius of convergence by changing the center
of expansion. A systematic approach for obtaining
the Taylor’s series solution of IVPs, is first devel-
oped by Zhou (1986), called differential transform
method. A review of this method and its application
for determining the value of f ′′(0) with the help of
the solution of IVP in Eq.(12) are given in the fol-
lowing.

3.1.1. Method of differential transform

The Taylor’s expansion of a function g(η) about
η = ηi is

g(η) = g(ηi)+
∞

∑
k=1

1
k!

[
gk(η)

]
η=ηi

(η−ηi)
k

= G(0)+
∞

∑
k=1

G(k)(η−ηi)
k (14)

Where G(k) = 1
k!

[
gk(η)

]
η=ηi

for k > 0. G(k) de-

notes the coefficient of kth degree term of Tay-
lor’s series expansion of g(η and G(0) = g(ηi).
Zhou (1986) considered G(k) as a transform of
g(η) called differential transform. Since then sev-
eral useful properties of the differential transform
were studied (Arikoglu and Ozkol (2005), Bildik
and Konuralp (2011), Arikoglu and Ozkol (2008)).
These properties have been useful for the solution
of IVPs.The differential transform of a derivative
g(η) is obtained by differentiating Eq. (14)

g′(η) =
∞

∑
k=1

G(k)k(η−ηi)
k−1

taking p = k−1

=
∞

∑
p=0

G(p+1)(p+1)(η−ηi)
p

=
∞

∑
k=0

G(k+1)(k+1)(η−ηi)
k

=
∞

∑
k=0

G1(k)(η−ηi)
k (15)

where G1(k) = (k + 1)G(k + 1) is the differential
transform of the first derivative of g(η). In this
manner the differential transform of the mth deriva-
tive of g(η) is

Gm(k) = (k+1)(k+2)...(k+m)G(k+m)

⇒ G(k+m) =
k!

(k+m)!
Gm(k) (16)

This gives a recurrence relation for the successive
differential transforms of g(η).
The differential transform of the product term in the
governing Eq. (12), viz. g(η)g′′(η) is denoted as
GG2(k) and is obtained using Leibnitz rule as in
the following.

GG2(k) =
1
k!

dk

dηk

[
g(η)g′′(η)

]
Expanding nth differential of product using Leibnitz
rule,

GG2(k) =
1
k!

k

∑
i=0

(
k i
) dig(η)

dηi
dk−ig′′(η)

dηk−1

=
1
k!

k

∑
i=0

(
k
i

)
i!G(i)(k− i)!G2(k− i)

⇒ GG2(k) =
k

∑
i=0

G(i)G2(k− i) (17)

By knowing G(0) = 0, G′(0) = 0 and G′′(0) = 1,
the recurrence relations for computing the differen-
tial transform of g(η) for any value of k are sum-
marized as

G(k+1) =
G1(k)
k+1

; G1(k+1) =
G2(k)
k+1

and

G2(k+1) =− 1
2(k+1)

k

∑
i=0

G(k)G2(k− i) (18)

G(k) is computed up to the required number of
terms (k) of the series. By knowing G(k), the power
series for g(η) is obtained as in Eq. (14)

3.1.2. Determination of initial value of f
′′
(η)

Firstly, we studied the convergence property of the
series obtained for g(η) by keeping k arbitrarily
equal to 1000. It is found that the series of g(η)
expanded with ηi = 0 as the center of the expan-
sion starts to diverge for η > 3.8. So it is inferred
that the function g(η) has singularity at η < −3.8.
Due to this singularity, we have restricted the com-
putation of g(η) using this series for4η < 3.8. By
treating the value of g(η),g′(η) and g′′(η) obtained
from this series at η=4η as the initial value, a sec-
ond series is computed for4η < η < 24η. In this
manner a required number of split series have been
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computed for equal intervals of η, 4η = 1 up to a
maximum value of η, ηm = 15. The value of g′(15)
computed from the last series is taken as g′(∞) and
hence f ′′(0) = [g′(ηm = 15)]−3/2 is computed. The
result obtained from the present extended double
precision computation with 21 decimal digits ac-
curacy and using a total of 40 terms in each series
is

f ′′(0) = 0.332057336215196299183

The above value is found to be invariant for ηm > 15
and k > 40. The result matches exactly with the
value reported by Boyd (1999), which is found
numerically using Runge-Kutta method, 27 deci-
mal place accuracy computations and 50,000 grid
points. While the computational effort involved in
the present solution is much less, it confirms that
the results Boyd (1999) believes as correct is cor-
rect. However the result obtained in the present
work is more accurate than already reported values.

4. SOLUTION OF BLASIUS FUNCTION

With the result for f ′′(0) obtained above, the Bla-
sius function defined defined by f ′′′ + 1

2 f f ′′ = 0
with f (0) = f ′(0) = 0 becomes an initial value
problem and is solved by computing F(k) us-
ing the recursive relations in Eq.(18) by chang-
ing G to F and F(0) = F1(0) = 0 and F2(0) =
0.332057336215196299183. The series thus ob-
tained is the Taylor’s series expansion about η = 0
and is found to diverge for η > 5.69 due to the
singularity of f (η) at η = −5.69, Boyd (1999).
Hence the series obtained is used to compute
the values of f (4) = 2.30574641846207118020,
f ′(4) = 0.955518229810694247274 and f ′′(4) =
6.42341210916906681680E − 0002. Using these
values as initial values at η = 4, another series for
f (η) is computed with the center of expansion at
η = 4. The series is an alternating one. Computa-
tion of the function by summing finite number of
terms of the series expanded about η = 4 shows
that, accurate result is obtained in 0 ≤ η ≤ 8, for
summation with only 200 terms. But the results ob-
tained by summing 200 terms of the series is found
to give unrealistic values for η > 8. By increas-
ing the number of terms of summation to 2000, the
same series is found to give accurate results up to
η = 9. The values of the function and its deriva-
tives obtained in the present work are tabulated in
Table 1. The variation of f ′(η) and f ′′(η) thus ob-
tained are depicted in Fig. 3. The first 200 coeffi-
cients of series are given in Table 2. We expect that
the present Taylor series expansion about η = 4 is
more accurate than any other results reported in lit-
erature. At η = 9, the solution is close to asymp-
totic variation with the value of f ′(η) being nearly
constant with changes only after 7 decimal places.

Fig. 3. Variation of f ′(η) and f ′′(η) with
respect to η.

We also investigated the asymptotic parameters us-
ing successive series constructed up to η = 20 and
the asymptotic variation is obtained as

f (η) = η+B and

f ′′(η) = Q exp(−1
4

η(η+2B))

where the obtained values of B and
Q are −1.72078765752050281274 and
0.1114837549978888824 respectively. The
present value of B is found to match with a better
accuracy with the results presented in Boyd (2008)
of −1.720787657520503. However, the value of
Q obtained is different from the one reported in
Boyd (2008) of 0.233727621285063. The results
reported in this paper is after a through verification
only.

5. CONCLUSIONS

The method of differential transforms has been ap-
plied to generate the Taylor’s series expansion of
the Blasius function, f (η). The paper reports a
methodology involving recursive application of dif-
ferential transform method for shifting the center
of expansion of functions expressed in the form of
differential equations. The series for Blasius func-
tion has been expanded about η = 4, which pro-
vided a higher radius of convergence in the posi-
tive range of η. The series is alternating and the
accuracy of the evaluated function is found to de-
pend on the number of terms summed for η > 4.
The series reported is convergent for η ∈ [0,9]
when 2000 are used for summation. A 21 deci-
mal places accurate value of the second derivative
of the function at η = 0, which physically repre-
sents the shear stress on the surface of the plate
is 0.332057336215196299183 . The parameters of
the asymptotic solution is also obtained with a 21
decimal places accuracy.
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′(η), f ′′(η) obtained with Taylor’s series expansion about η = 4
η f (η) f ′(η) f ′′(η)
0 -2.90451215935441549708E-0019 2.92231574613161685905E-0019 0.332057336215196

0.2 6.64099971459704033365E-0003 6.64077920962507645673E-0002 0.331983837114628
0.4 2.65598840179947234234E-0002 0.132764160761022 0.331469844201455
0.6 5.97346374980383965769E-0002 0.198937252422219 0.330079127574296
0.8 0.106108220839041 0.264709138723117 0.327389270149252
1 0.165571725789280 0.329780031249667 0.323007116686943

1.2 0.237948717288927 0.393776104433956 0.316589191061116
1.4 0.322981573829535 0.456261764705134 0.307865391790168
1.6 0.420320765501626 0.516756784422615 0.296663461455719
1.8 0.529518037743810 0.574758143889457 0.282931017259756
2 0.650024369935289 0.629765736502386 0.266751545697278

2.2 0.781193337010573 0.681310377236027 0.248350913190371
2.4 0.922290125634541 0.728981935062575 0.228091760686684
2.6 1.072505976787830 0.772455021148565 0.206454626799426
2.8 1.230977302314310 0.811509623199109 0.184006593865361
3 1.396808230870350 0.846044443657994 0.161360319540879

3.2 1.569094960006760 0.876081455172477 0.139128055572426
3.4 1.746950093948840 0.901761221436765 0.117876246087524
3.6 1.929525169760530 0.923329665881649 9.80862787842802132048E-0002
3.8 2.116029817172070 0.941117996729313 8.01259181391971851178E-0002
4 2.305746418462070 0.955518229810694 6.42341210916906681680E-0002

4.2 2.498039662706970 0.966957073753606 5.05197474866457608118E-0002
4.4 2.692360937543090 0.975870832136478 3.89726108536295503280E-0002
4.6 2.888247990017810 0.982683500760700 2.94837720116487089967E-0002
4.8 3.085320655177480 0.987789526200787 2.18711863474432831236E-0002
5 3.283273665156310 0.991541900164393 1.59067986853181631358E-0002

5.2 3.481867611508660 0.994245535359928 1.13417889689291312873E-0002
5.4 3.680919062897510 0.996155303962753 7.92765981470613569935E-0003
5.6 3.880290677633380 0.997477768212915 5.43195767992749243316E-0003
5.8 4.079881939239700 0.998375493650191 3.64841366674732585084E-0003
6 4.279620922513850 0.998972872435860 2.40203984375727885487E-0003

6.2 4.479457297282690 0.999362541719091 1.55017069065636743797E-0003
6.4 4.679356615431430 0.999611701717676 9.80615117009763015151E-0004
6.6 4.879295811060250 0.999767870210032 6.08044264784485316850E-0004
6.8 5.079259772449010 0.999863819037038 3.69562570140311736630E-0004
7 5.279238811029110 0.999921604147950 2.20168955271134609014E-0004

7.2 5.479226847343180 0.999955717277927 1.28569807235158993429E-0004
7.4 5.679220147333840 0.999975457684898 7.35929833892270373715E-0005
7.6 5.879216465804060 0.999986655139129 4.12903111137017749811E-0005
7.8 6.079214481071950 0.999992881166101 2.27077514028069458891E-0005
8 6.279213431346080 0.999996274535301 1.22409262432531429552E-0005

8.2 6.479212886678500 0.999998087459238 6.46797861084886973152E-0006
8.4 6.679212609441440 0.999999036874844 3.34993975319999345318E-0006
8.6 6.879212471015070 0.999999524247805 1.70066798857665268096E-0006
8.8 7.079212403216730 0.999999769489751 8.46284121306853119521E-0007
9 7.279212370645330 0.999999890444161 3.92686164651959923121E-0007

562

Table 1 Tabulated values of f (η), f
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k=0 F(k)(η−4)k.

k F(k) k F(k) k F(k)
0 2.305746418462070 67 1.54501387536272496428E-0047 134 3.32266142258623029852E-0095
1 0.955518229810694 68 -5.31812426339887940710E-0049 135 -1.98310538234261656202E-0095
2 3.21170605458453340840E-0002 69 -5.55103174036789546845E-0049 136 4.91278759876207123111E-0097
3 -1.23422995541853953195E-0002 70 7.08312566937082614087E-0050 137 7.29857631119625434430E-0097
4 2.27859175576908150426E-0003 71 1.52787645522513563236E-0050 138 -8.49971735072191697622E-0098
5 4.70873734551596933229E-0005 72 -4.14304257606461522218E-0051 139 -2.08270073195395656503E-0098
6 -1.04696147203046357531E-0004 73 -2.22689450789485071198E-0052 140 5.19628448478923655496E-0099
7 1.04849728513766856216E-0005 74 1.81809909360485798211E-0052 141 3.44441060727620368746E-0100
8 3.65883591635046807686E-0006 75 -7.70672457610464815904E-0054 142 -2.33913302679774233968E-0100
9 -8.26198757173262535534E-0007 76 -6.40184069216592913088E-0054 143 7.64798370293702712169E-0102
10 -8.56871408032604090498E-0008 77 8.78278560115632077167E-0055 144 8.44177733364167930062E-0102
11 4.24206814475960916804E-0008 78 1.70679514631881930489E-0055 145 -1.05983538572098169671E-0102
12 1.24757464648407639619E-0010 79 -4.96792309934810891449E-0056 146 -2.33973464442283964453E-0103
13 -1.73812386504572966263E-0009 80 -2.18166098174541908883E-0057 147 6.24732251568732334987E-0104
14 1.32651440735246801945E-0010 81 2.13605639450487796055E-0057 148 3.50003576896367677002E-0105
15 5.77723961725846969334E-0011 82 -1.07501564878974550764E-0058 149 -2.75444920540216826285E-0105
16 -9.81264996803191772378E-0012 83 -7.36873048290769883333E-0059 150 1.11759533406814347334E-0106
17 -1.41677737579443119458E-0012 84 1.08427286052096212108E-0059 151 9.74493755794952565242E-0107
18 4.94795732662933281514E-0013 85 1.89852773644347656379E-0060 152 -1.31507152738594442086E-0107
19 1.17217679853551754637E-0014 86 -5.94498871412526580801E-0061 153 -2.61829774025888477805E-0108
20 -1.99587570380654368497E-0014 87 -2.04918333875349427543E-0062 154 7.49489815935327201785E-0109
21 1.32173139876612546061E-0015 88 2.50554860386806934685E-0062 155 3.46247610727717591164E-0110
22 6.50222871563387972142E-0016 89 -1.45989473509745392038E-0063 156 -3.23808598353568341220E-0110
23 -1.09893230989100695430E-0016 90 -8.46414930933756714068E-0064 157 1.56837815247303581412E-0111
24 -1.52737229367497166915E-0017 91 1.33329661960224071757E-0064 158 1.12264456091526251036E-0111
25 5.66376444706610288373E-0018 92 2.10162418626519246400E-0065 159 -1.62464168640150274164E-0112
26 8.23901176700155878733E-0020 93 -7.10027168819215405316E-0066 160 -2.91748745259002246431E-0113
27 -2.28577360586863227790E-0019 94 -1.80033565851515105991E-0067 161 8.97318111790271961126E-0114
28 1.74072742066617737900E-0020 95 2.93411471403056952770E-0067 162 3.29739576663407194330E-0115
29 7.35859232836632572406E-0021 96 -1.94347659185749439227E-0068 163 -3.80028614160509840123E-0115
30 -1.34125625738890900092E-0021 97 -9.70115483508269533097E-0069 164 2.13978710831118307653E-0116
31 -1.66576227379246042319E-0022 98 1.63361932786724523668E-0069 165 1.29058709364809346050E-0116
32 6.72719348653922713935E-0023 99 2.31372729996307639952E-0070 166 -1.99914874450570455454E-0117
33 4.47986953506900797484E-0025 100 -8.46393064540148693651E-0071 167 -3.23538207487299957791E-0118
34 -2.66217397630806611422E-0024 101 -1.39872542971117784716E-0072 168 1.07218295353518230320E-0118
35 2.22094716106009716605E-0025 102 3.43024735807583352017E-0072 169 2.96153117239146438211E-0120
36 8.37518589248022676550E-0026 103 -2.54762577587736166286E-0073 170 -4.45262995301557455429E-0120
37 -1.62032325216119842570E-0026 104 -1.10931882405391600733E-0073 171 2.85915374479122709354E-0121
38 -1.80417114775513806918E-0027 105 1.99498870478017624911E-0074 172 1.48037738674014021808E-0121
39 7.94497605733967138028E-0028 106 2.53129553760214968666E-0075 173 -2.45111629181960645349E-0122
40 -1.31123133608615312516E-0030 107 -1.00708268177728895733E-0075 174 -3.56871470585556566006E-0123
41 -3.08709986811484909863E-0029 108 -7.99094501758040271974E-0078 175 1.27867865023698921137E-0123
42 2.83643551339292736220E-0030 109 4.00347533206144321137E-0077 176 2.40069995010899130421E-0125
43 9.48498873147394786300E-0031 110 -3.29860210791528839734E-0078 177 -5.20816657462216582648E-0125
44 -1.96239700983573131081E-0031 111 -1.26537714511528773244E-0078 178 3.75939661400478264250E-0126
45 -1.93062640742544893606E-0032 112 2.42887538378505860767E-0079 179 1.69414107846743310407E-0126
46 9.39884978039657251875E-0033 113 2.74926501369107772531E-0080 180 -2.99531171891903060726E-0127
47 -9.44658358717036897237E-0035 114 -1.19611735377873318470E-0080 181 -3.91246681071946192982E-0128
48 -3.58235244301780394135E-0034 115 5.45848162805759581119E-0084 182 1.52211748212612817695E-0128
49 3.59998116828591784697E-0035 116 4.66444522909785624503E-0082 183 1.54740743786132968865E-0130
50 1.07319195469366880764E-0035 117 -4.22787751275740452986E-0083 184 -6.08154750822682764854E-0130
51 -2.37289361171275313764E-0036 118 -1.43960886734871669480E-0083 185 4.88007598324053527639E-0131
52 -2.04749652874355638181E-0037 119 2.94875414605123670983E-0084 186 1.93403040466493136928E-0131
53 1.11071547179463322454E-0037 120 2.96063239108923121816E-0085 187 -3.64911916541314266416E-0132
54 -2.02932330331279453972E-0039 121 -1.41812584925099760909E-0085 188 -4.25936402268573012745E-0133
55 -4.15165949145151586119E-0039 122 1.23138976698643687366E-0087 189 1.80862982435781603856E-0133
56 4.53729073624533658245E-0040 123 5.42499798635919130266E-0087 190 3.17975556085456888547E-0136
57 1.21099631862884071177E-0040 124 -5.37309525832258432683E-0088 191 -7.08915855474350595345E-0135
58 -2.86332220243352692683E-0041 125 -1.63324208515998331941E-0088 192 6.26863364229039895060E-0136
59 -2.14341684396764355044E-0042 126 3.57042744191734994042E-0089 193 2.20216391074229466648E-0136
60 1.31092098910088389845E-0042 127 3.15594254328568438522E-0090 194 -4.43296914517726799461E-0137
61 -3.45994909030007761337E-0044 128 -1.67842448710311967717E-0090 195 -4.59925337912476525914E-0138
62 -4.80456683832639116100E-0044 129 2.81616923412489590751E-0092 196 2.14527570427798719383E-0138
63 5.68461628720700586137E-0045 130 6.29823623471267266357E-0092 197 -1.39089427591724692783E-0140
64 1.36252363156128811891E-0045 131 -6.77919326752912501650E-0093 198 -8.24924536692309434289E-0140
65 -3.44793820089044350070E-0046 132 -1.84733958285133870664E-0093 199 7.98184787277333689447E-0141
66 -2.20803805096678201288E-0047 133 4.31239629098361091948E-0094
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Table 2 First 200 coefficients of the Taylor series expansion of the Blasius function given by f (η) =
∑
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