
 

 

 

 

 

Radiation Effect on Mhd Heat and Mass Transfer Flow 

over a Shrinking Sheet with Mass Suction 

P. R. Babu
1†

, J. A. Rao
2
 and S. Sheri

3 

1
 Dept. of Mathematics, Sri Kottam Tulasi Reddy Memorial College of Engineering, Kondair(village), 

Itikyala(Mandal), Mahabubnagar(Dist), A.P., India. 
2Dept. of Mathematics, OsmaniaUniversity, Hyderabad, A.P., India. 

3 Dept. of Mathematics, Githam University, Hyd, A.P., India. 

†Corresponding Author Email: ramesh.patkar@yahoo.in 

(Received August 8, 2013; accepted December 22, 2013) 

ABSTRACT 

A numerical analysis has been carried out to study the effects radiation and heat source/sink on the steady two 

dimensional magnetohydrodynamic (MHD) boundary layer flow of heat and mass transfer past a shrinking 

sheet with wall mass suction. In the dynamic system, a uniform magnetic field acts normal to the plane of 

flow. The governing partial differential equations are transformed into self-similar equations are solved by 

employing finite difference using the quasilinearization technique. From the analysis it is found that the 

velocity inside the boundary layer increases with increase of wall mass suction and magnetic field and 

accordingly the thickness of the momentum boundary layer decreases. The temperature decreases with 

Hartmann number, Prandtl number, and heat sink parameter and the temperature increases with heat source 

parameter, radiation parameter. The concentration decreases with an increase of Hartmann number, mass 

suction parameter, Schmidt number, chemical reaction parameter. 
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1. INTRODUCTION 

The study boundary layer flow of an incompressible 

viscous fluid over a stretching sheet has many 

applications manufacturing industries and 

technological processes, such as, glass fiber 

production, wire drawing, paper production, metal 

and polymer processing industries and many others. 

Crane (1970) first considered the steady laminar 

boundary layer flow of a Newtonian fluid caused by 

a linearly stretching flat sheet and found an exact 

similarity solution in closed analytical form. Wang 

(1984) investigated the three-dimensional flow due 

to the stretching surface. 

The MHD boundary layer theory has a significant 

contribution in developing of 

magnetohydrodynamic theory. Due to the important 

effects of magnetic field on the boundary layer, the 

study of MHD flow with heat transfer is always 

interesting. In author’s knowledge, the first attempt 

to study the MHD flow over a stretching surface in 

an electrically conducting fluid was made by 

Pavlov (1974) in presence of uniform transverse 

magnetic field and he obtained an exact similarity 

solution. Furthermore, some important 

contributions in stretching sheet flow were made by 

Chakrabarti and Gupta (1979). 

Recently, the flow of incompressible fluid due to a 

shrinking sheet is gaining attention of modern day 

researchers because of its increasing application to 

many engineering problems. A steady flow over a 

shrinking sheet is not possible because the 

generated vortices are not confined within the 

boundary layer. So, to overcome this difficultly the 

flow needs a certain amount of external opposite 

force at the sheet. Wang (1990) observed the flow 

around the shrinking sheet while studying the flow 

behavior of liquid film over an unsteady stretching 

sheet. Hayat at al. (2007) reported an analytical 

solution of MHD flow of a second grade fluid over 

a shrinking sheet. Fang and Zhang (2009) obtained 

a closed form analytical solution for steady MHD 

flow over a porous shrinking sheet subject to mass 

suction. Wang’s (2008) studied the stagnation-point 

flow towards a shrinking sheet.  

The study of heat transfer in hydrodynamic 

boundary layer flow over a porous stretching sheet 

become more interesting when internal heat 

generation/absorption occurs. Effects of heat source 

or sink on the boundary layer flow over a stretching 

sheet were studied by  Bataller (2007), Layek et al. 

(2007), Chen (2009).  

Coupled heat and mass transfer finds applications in 

a variety of engineering applications, such as the 
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migration of moisture through the air contained in 

fibrous insulation and grain storage installations, 

filtration, chemical catalytic reactors and processes, 

spreading of chemical pollutants in plants and 

diffusion of medicine in blood veins. Free 

convection flow of an incompressible viscous fluid 

past an infinite or semi-infinite vertical plate has 

been studied since long because of its technological 

importance. Callahan and Marner (1976) solved the 

problem of transient free convection with mass 

transfer on an isothermal vertical plate using an 

explicit finite difference scheme. Unsteady free 

convective flow on taking into account the mass 

transfer phenomenon past an infinite vertical porous 

plate with constant suction was studied by 

Soundalgekar and Wavre (1977). Soundalgekar 

(1979) studied the effects of mass transfer and free 

convection currents on the flow past an impulsively 

started vertical plate. In these studies the 

magnetohydrodynamic phenomena is ignored. 

However in metallurgical transport systems, by 

drawing plates in an electrically conducting fluid 

subjected to a transverse magnetic field, the rate of 

cooling can be controlled and the final desired 

characteristics can be further refined.  

Magnetohydrodynamic flow has applications in 

meteorology, solar physics, cosmic fluid dynamics, 

astrophysics, geophysics and in the motion of 

earth’s core. Shanker and Kishan (1997) presented 

the effect of mass transfer on the MHD flow past an 

impulsively started infinite vertical plate. 

Elabashbeshy (1997) studied heat and mass transfer 

along a vertical plate in the presence of magnetic 

field. Gangadhar and Bhaskar Reddy (2013) 

analyzed by chemically reacting MHD boundary 

layer flow of heat and mass transfer over a moving 

vertical plate in a porous medium with suction. 

In the context of space technology and in the 

processes involving high temperatures, the effects 

of radiation are of vital importance. Recent 

developments in hypersonic flights in the paper by 

Di Clemente et al. (2013), missile re-entry, rocket 

combustion chambers, power plants for inter 

planetary flight and gas cooled nuclear reactors, 

have focused attention on thermal radiation as a 

mode of energy transfer, and emphasized the need 

for improved understanding of radiative transfer in 

these processes. The interaction of radiation with 

laminar free convection heat transfer from a vertical 

plate was investigated by Cess (1966) for an 

absorbing, emitting fluid in the optically thick 

region, using the singular perturbation technique. 

Arpaci (1968) considered a similar problem in both 

the optically thin and optically thick regions and 

used the approximate integral technique and first-

order profiles to solve the energy equation. Raptis 

(1998) analyzed the thermal radiation and free 

convection flow through a porous medium bounded 

by a vertical infinite porous plate by using a regular 

perturbation technique. Hossain and Takhar (1996) 

studied the radiation effects on mixed convection 

along a vertical plate with uniform surface 

temperature using the Keller Box finite difference 

method. In all these papers, the flow is considered 

to be steady. The unsteady flow past a moving plate 

in the presence of free convection and radiation 

were presented by Mansour (1990). Radiation and 

mass transfer effects on two-dimensional flow past 

an impulsively started isothermal vertical plate were 

analyzed by Ramachandra Prasad et al. (2007).   

The aim of the present paper is to analyze the 

steady magnetohydrodynamic (MHD) boundary 

layer flow due to an exponentially stretching sheet 

with radiation in the presence of mass transfer and 

heat source or sink. The governing boundary layer 

equations have been transformed to a two-point 

boundary value problem in similarity variables and 

the resultant problem is solved numerically using 

the finite difference using the quasilinearization 

technique. The effects of various governing 

parameters on the fluid velocity, temperature, 

concentration, and Nusselt number are shown in 

figures and analyzed in detail.  

2. MATHEMATICAL 

FORMULATION 

Consider a steady two dimensional MHD boundary 

layer flow of an electrically conducting Newtonian 

and radiating fluid past a shrinking sheet with 

internal heat generation or absorption. The sheet 

coincides with the plane y=0 and the flow is 

confined in the region y>0. The x and y axes are 

taken along and perpendicular to the sheet, 

respectively. The level of concentration of foreign 

mass is assumed to be low, so that the Soret and 

Dufour effects are negligible. Under these 

assumptions along with the Boussinesq and 

boundary layer approximations, the system of 

equations, which models the flow is given by 

Continuity equation 

0
u v

x y

 
 

 

                                              (2.1) 

Linear momentum equation
22

2

Bu u u
u v u

x y y






  
  

  

                    (2.2) 

Energy equation

0

2
1

( )
2

r

p p p

QqT T k T
u v T T

x y c c y cy  


  
    

  

    (2.3)  

Species equation  

0

2

2

2
( )

C C C
u v D k C C

x y y


  
   

  

         (2.4) 

The boundary conditions for the velocity, 

temperature and concentration fields are   

( ) , , ,w w w wu U x cx v v T T C C       

at    0y       

0, ,u T T C C
 

     as   y             (2.5) 

where u and v are the velocity components along 

the x and y axes, respectively,  c>0 is the shrinking 

constant, ( 0)
w

v   is a prescribed distribution of 

wall mass suction through the sheet,  ( / )    is 

the kinematic fluid viscosity,   is the fluid 

density, 
pc  is the specific heat, k is the fluid 

thermal conductivity, 
0B  is the applied uniform 
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magnetic field, rq  is the radiative heat flux, T  is 

the temperature, T  is the free stream temperature, 

C  is the concentration, C  is the free stream 

concentration, Tw is the temperature of the sheet, 

Cw  is the concentration of the sheet, 0Q  is the 

volumetric rate of heat generation or absorption, D  

is the coefficient of mass diffusivity. Further, k0 is 

respectively the chemical reaction rate constant.  

By using the Rosseland approximation (Brewster 

(1992)), the radiative heat flux qr is given by   
4

4 *

3 '
r

T
q

K y

 
 



                             (2.6) 

where *  is the Stefan-Boltzmann constant and 

'K - the mean absorption coefficient. It should be 

noted that by using the Rosseland approximation, 

the present analysis is limited to optically thick 

fluids. If temperature differences within the flow 

are sufficiently small, then Eq .(2.7) can be 

linearized by expanding 
4T  into the Taylor series 

aboutT , which after neglecting higher order terms 

takes the form  

4 3 4
4 3T T T T

 
 

                             (2.7) 
 

In view of Eqs. (2.6) and (2.7), Eq.(2.3) reduces to 

 

0

3 2

2

16 *
( )

3 '
p p p

QTT T k T
u v T T

x y c c K y c



  




   
         

         

                                              (2.8) 

 

The continuity Eq. (2.1) is satisfied by the Cauchy 

Riemann equations 

u
y





and v
x


 

  

                              (2.9) 

where ( , )x y  is the stream function. 

For relation of (2.9), the mass-conservation Eq.(1) 

is satisfied automatically and the Eqs. (2.2), (2.8) 

and (2.4) take the following forms 

 

0
2 2 3 2

2 3

B

y x y x yy y

      




     
  

     
 (2.10) 

              
(2.11) 

0

2
2

2
( )

C C C
D k C C

y x x y y

 


    
   
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                                            (2.12) 

  

Also the boundary conditions in (2.5) reduces to 

, , ,w w wcx v T T C C
y x

  
    

 

     

at    0y       

0, ,T T C C
y


 


  


 as   y     (2.13) 

In order to transform Eqs.(2.10) (2.11) and (2.12) 

into a set of ordinary differential equations, the 

following similarity transformations and 

dimensionless variables are introduced. 

( , ) ( )x y c xf  
,

1/2
c

y


 
 
  ,

( ) ( )
w

T T T T  
 

  

( ) ( )
w

C C C C  
 

   , 0

1/2
2B

M
c





 
 
 
 

,  

Pr
c p

k


 , Sc

D


 , 

34 *

'

T
R

K k

  ,
0Q

Q
c cp

   ,  

0
2

2 k
kr

c
                                                        (2.14) 

where ( )f  is the dimensionless stream function, θ 

the dimensionless temperature,   - the 

dimensionless concentration, η - the similarity 

variable, M - the magnetic parameter,  Pr - the 

Prandtl number,Q  - the heat source (Q>0) or sink 

(Q<0) parameter, Sc - the Schmidt number and R- 

the radiation parameter.  

In view of Eqs.(2.14), the Eqs. (2.10), (2.11) and 

(2.12) transform into  

2 2' ' 0f ff f M f                                      (2.15) 

4
1 " Pr ' Pr 0

3
R f Q  

 
    

 
                             (2.16)  

2" ' 0Scf kr                     (2.17) 

The transformed boundary conditions can be 

written as 

, ' 1, 1, 1f S f         at 0                      

' 0f       as                                        (2.18) 

Where 1/2/( ) ( 0)S v cw    is the mass suction 

parameter. 

The main physical quantities of interest are the skin 

friction coefficient ''(0)f , the local Nusselt number 

'(0)  and the Sherwood number
 

'(0)  which 

represent the wall shear stress, the heat transfer rate 

and mass transfer rate at the surface, respectively. 

Our task is to investigate how the values of '(0)  

vary with the radiation parameter R, magnetic 

parameter M and Prandtl number Pr.  

3. SOLUTION OF THE PROBLEM 

The non linear system of Eqs. (2.15) to (2.17) along 

with the boundary conditions has been solved 

numerically by finite difference method using the 

quasilinearization technique.  

The discredited version of (2.15)-(2.17) with the 

boundary conditions (2.18) are written as  
''( 1) ( ) '( 1) ( ) 2 ( 1) 2( )(2 )i i i i i iF f F F M F F     

                                                 (3.1) 

4 ''( 1) ( 1) '( 1) ( 1)1 Pr Pr 0
3

i i i iR f Q  
         
 

 (3.2) 

''( 1) ( 1) '( 1) 2 ( 1) 0i i i iScf Sckr           (3.3) 

( 1) ( 1) ( 1) ( 1), 1, 1, 1i i i if S F         at 0               

2316 * 0 ( )
23 '

QT T Tk T
T T

y x x y cc c K pyp p

  
 

 
 
 
 

        
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( 1) ( 1) ( 1)
0.

i i i
F  

  
   as *                   (3.4) 

The functions with iteration index (i) denote the i-th 

iteration level and the corresponding index (i+1) be 

the (i+1)-th level and *    is suitable distance from 

the origin selected by considering the flow behavior 

in the boundary layer region. 

We divide the interval [0, *]    into N equal 

subintervals of length 0.001    taking the non-

dimensional distance * 50     for all cases under 

investigation. Applying central finite difference 

formulae of the second and first orders derivatives 

of F as: 

21 1
''

2( )

F F Fj j j
F



  




   and 1 1
'

2( )

F Fj j
F



 



   

and similar for     and   , the above system of 

Eqs. (3.1) to (3.3) along with the boundary 

conditions (3.4) reduce to 

 

( 1) ( 1) ( 1)
,1

1 1
i i i

F a F b F c d j Nj j j jj j j
  

    
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 (3.5) 

 

( 1) ( 1) ( 1)
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1 1
i i i

p q r j Nj j jj j j
  

  
    

 
    (3.6) 

 

( 1) ( 1) ( 1)
0,1

1 1
i i i

j Nj j jj j j
     

  
    

 
   (3.7) 

 

With 
( 1) ( 1) ( 1) ( 1)

, 1, 1, 1
0 0 0 0

i i i i
f S F  

   
       an

( 1) ( 1) ( 1)
0

1 1 1
i i i

F
N N N

 
  

  
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We solve the system of algebraic (tri-diagonal 

system) Eq.(3.5) with the condition (3.8) by the 

slandered Thomas algorithm. Using the newly 

obtained results for
( 1)i

j
f


  and 

(i 1)

j
F


 the systems 

(3.6) and (3.7), the discredited temperature and 

concentration with the conditions (3.8) is them 

solved by the same thomas algorithm. 

4.  RESULTS AND DISCUSSION 

Numerical computations are performed for various 

values of the physical parameters involved in the 

equation viz. the Hartmann number (M), the mass 

suction parameter (S),  the Prandtl number (Pr), the 

radiation parameter, the heat source/sink parameter 

(Q), The Schmidt number (Sc), chemical reaction 

parameter (kr). The effects of various parameters on 

the velocity profiles are depicted in Fig. 1 and 2. 

The effects of various parameters on the 

temperature profiles are depicted in Figs. 3 to 7. 

The effects of various parameters on the 

concentration profiles are depicted in Figs. 8 to 11.   

 
Fig. 1. Velocity profiles for different values of M 
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Fig. 2. Velocity profiles for different values of S 
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Fig. 3. Temperature profiles for different values of M 
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Fig. 4. Temperature profiles for different values of S 
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Fig. 5. Temperature profiles for different values of R    

 
Fig. 6. Temperature profiles for different values of Q 
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Fig. 7. Temperature profiles for different values of Pr 
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Fig. 8. Concentration profiles for different values of M 
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Fig. 9. Concentration profiles for different values of S 

 
Fig. 10. Concentration profiles for different values of Sc  
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Fig. 11. Concentration profiles for different values of kr 
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Fig. 12. Variation of the Nusselt number for different Pr with Q
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Fig. 13. Variation of the Sherwood number for different Sc with kr 
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Table 1 Numerical values of ''(0)f  at the sheet for different values of S when M2=2, 

Comparison of the present results with that of Bhattacharyya (2011). 
 

S Bhattacharyya (2011) Present results 

2 

3 

4 

2.414300 

3.302750 

4.236099 

2.41448 

3.30281 

4.23607 

 

Figure 1 shows the dimensionless velocity profiles 

for different values in the Hartmann number (M). It 

is seen that, as expected, the velocity increases with 

an increase of Hartmann number.  Accordingly, the 

thickness of the momentum boundary layer 

decreases. This happens due to Lorentz force 

arising from the interaction of the magnetic and 

electric fields during the motion of the electrically 

conducting fluid. To reduce momentum boundary 

layer thickness the generated Lorentz force 

enhances the fluid motion in the boundary layer 

region.  The effect of the mass suction parameter on 

the velocity is illustrated in Fig.2. It is observed that 

as the mass suction parameter increases, the 

velocity decreases and it makes the momentum 

boundary layer thickness thinner. 

The effect of the Hartmann number (M) on the 

temperature is illustrated in Fig.3. It is observed that 

as the Hartmann number increases, the temperature 

increases. Fig. 4 depicts the thermal boundary-layer 

with the mass suction parameter (S). It is noticed 

that the thermal boundary layer thickness decreases 

with an increase in the suction parameter. Fig.5 

illustrates the effect of the radiation parameter (R) 

on the temperature.  It is noticed that as the 

radiation parameter increases, the temperature 

increases. Fig.6 illustrates the effect of the heat 

source or sink parameter (Q) on the temperature.  It 

is noticed that as the heat source or sink parameter 

increases, the temperature increases and the lower 

value of Q=-0.25, high temperature reached . Fig. 7 

depicts the temperature profiles with the Prandtl 

number (Pr). It is noticed that the temperature 

decreases with an increase in the Prandtl number. 

The effect of Hartmann number (M) on the 

concentration field is illustrated Fig.8.  As the 

Hartmann number increases the concentration is 

found to be decreasing. The effect of mass suction 

parameter (S) on the concentration field is 

illustrated Fig. 9. It is noticed that the concentration 

profiles decreases with an increase in the mass 

suction parameter. The effect of Schmidt number 

(Sc) on the concentration field is illustrated Fig. 10. 

It is noticed that the concentration profiles 

decreases with an increase in the Schmidt number.  

Fig. 11 depicts the concentration profiles with the 

chemical reaction parameter (kr). It is noticed that 

the concentration decreases with an increase in the 

chemical reaction parameter. 

Figure. 12 shows the variation of the heat transfer 

rate with the Prandtl number and heat source or sink 

parameter. It is observed that the heat transfer rate 

increases with an increase in the Prandtl number, 

but decreases with an increase in the heat source or 

sink parameter. Figs. 13 show the variation of the 

mass transfer rate with the Schmidt number and 

chemical reaction parameter. It is observed that the 

mass transfer rate increases with an increase in the 

Schmidt number and chemical reaction parameter. 

In Table 1, the present results are compared with 

those of Bhattacharya [26] and found that there is a 

perfect agreement. 

5. CONCLUSIONS 

In the present paper, the steady 

magnetohydrodynamic (MHD) boundary layer flow 

due to shrinking sheet with mass suction by taking 

mass transfer and radiation effects into account, are 

analyzed. The governing equations are 

approximated to a system of non-linear ordinary 

differential equations by similarity transformation. 

The self-similar equations are linearised by the 

quasilinearization technique and are then by solved 

by finite difference method. The particular solutions 

reported in this paper were validated by comparing 

with solutions existing in the previously published 

paper. The results are summarized as follows 

1. The steady reveals that due to increase of the 

magnetic field parameter and the mass suction 

parameter the momentum boundary layer thickness 

reduces and the temperature decreases. 

2. The radiation increases the temperature. 

3. The Schmidt number reduces the concentration. 
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