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ABSTRACT 

The effects of Hall currents and radiation on MHD flow of a viscous incompressible electrically conducting 

fluid past a moving vertical plate with variable temperature in the presence of a uniform transverse magnetic 

field have been studied. The governing equations are solved analytically using the Laplace transform 

technique. Effects of the physical parameters on the velocity (both primary and secondary) profiles and 

temperature distribution are shown graphically and the results are discussed.  

 

Keywords: Hall Currents, MHD flow, Radiation, Heated vertical plate, Prandtl Number and Grashof 

Number.  

NOMENCLATURE 

 

 

Greek symbols 

 

       coefficient of thermal expansion 
0  reference fluid density 

       kinematic viscosity   conductivity of fluid 

       wave  length 
e  electron frequency  

      non-dimensional length of the plate   non-dimensional time 

, ,x y zB B B  magnetic field components m  Hall parameter 

B  magnetic field vector 2M  magnetic parameter 

pc  specific heat at constant pressure p  fluid pressure 

,x yE E  electric field components Pr  Prandtl number  

E  electric  field vector 
rq  radiative heat flux 

p
e  planck’s function q  velocity field vector 

F  complex fluid velocity defined by (26) R  radiation parameter 

g  acceleration due to gravity T  fluid  temperature 

Gr  Grashof number 
wT  plate temperature 

1i    complex quantity T
 free stream temperature 

j  current density vector 
0U  uniform plate velocity 

, ,x y zj j j  current density components ,u v  fluid velocity components 

K
 absorption coefficient 

1 1,u v  dimensionless velocity components 

k  thermal conductivity  ,x y  cartesian co-ordinates 
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            dimensionless fluid temperature 
e  electron collision time 

  fluid density ,x y   shear stresses at the plate 

1. INTRODUCTION 

The problems of magnetohydrodynamic flow and 

heat transfer have drawn attention of many 

researchers due to the significant effects of 

magnetic field on the boundary layer flow control 

and on the performance of many systems using 

electrically conducting fluid. In addition, this type 

of fluid flow finds application in MHD power 

generation, MHD pumps, flow meters and 

accelerators, plasma studies, nuclear reactors using 

liquid metal coolants and geothermal energy 

extraction. In general, Hall effect devices produce a 

very low signal level and thus require amplification. 

While suitable for laboratory instruments, the 

vacuum tube amplifiers available in the first half of 

the 20th century were too expensive, power 

consuming, and unreliable for everyday 

applications. It was only with the development of 

the low cost integrated circuit that the Hall effect 

sensor became suitable for mass applications. These 

are readily available from a number of different 

manufacturers, and may be used in various sensors 

such as rotating speed sensors (bicycle wheels, 

gear-teeth, automotive speedometers, and electronic 

ignition systems), fluid flow sensors, current 

sensors, and pressure sensors. Moreover, the most 

common application of thermal radiation is a 

microwave. The thermal radiation effects, on free 

convection flow are important in context of space 

technology and in certain applications involving, 

heat storage in aquifiers and gasification of oil. In 

the case of gasification large temperature gradients 

exists in the neighborhood of combustion, due to 

radiation. These type of problems are also extended 

in the case of magnetohydrodynamics and if the 

strength of magnetic field is strong, then the effect 

of Hall currents cannot be neglected. 

The combined effects of Hall currents and radiation 

on the magnetohydrodynamic flows continue to 

attract the attention of engineering science and 

applied mathematics researchers owing to extensive 

applications of such flows in the context of ionized 

aerodynamics (Soundalgekar and Takhar (1977)), 

nuclear energy systems control (Soundalgekar et al. 

(1981)), improved designs in aerospace MHD 

energy systems (Ram and Takhar (1994)), 

manufacture of advanced aerospace materials etc 

(Takhar and Nath (1998)). Both analytical and 

computational solutions have been presented to a 

wide spectrum of problems. Helliwell and Mosa 

(1979) reported on thermal radiation effects in 

buoyancy-driven hydromagnetic flow in a 

horizontal channel flow with an axial temperature 

gradient in the presence of Joule and viscous 

heating. The Hall current and surface temperature 

oscillations effects on natural convection 

magnetohydrodynamic heat-generating flow were 

considered by Takhar and Ram (1991). Alagoa et 

al. (1998) studied magnetohydrodynamic optically-

transparent free-convection flow, with radiative 

heat transfer in porous media with time-dependent 

suction using an asymptotic approximation, 

showing that thermal radiation exerts a significant 

effect on the flow dynamics. The 

magnetohydrodynamic free convection heat and 

mass transfer of a heat generating fluid past an 

impulsively started infinite vertical porous plate 

with Hall current and radiation absorption was 

studied by Kinyanjui (2001). Aboeldahab and 

Elbarbary (2001) have presented the effects of Hall 

currents on magnetohydrodynamic free convection 

flow past a semi-infinite vertical plate with mass 

transfer. Cookey et al. (2003) investigated the 

influence of viscous dissipation and radiation on 

unsteady MHD free convection flow past an infinite 

heated vertical plate in a porous media with time 

dependent suction. Aboeldahab and El Aziz (2005) 

have studied the viscous dissipation and Joule 

heating effects on MHD free convection from a 

vertical plate with power-law variation in surface 

temperature in the presence of Hall and ion-slip 

currents. The thermal radiation interaction with 

unsteady MHD flow past a vertical porous plate 

immersed in a porous medium was investigated by 

Samad and Rahman (2006). Chaudhary and Jain 

(2007) studied the behaviours of unsteady 

hydromagnetic flow of a visco-elastic fluid from a 

radiative vertical porous plate. The effects of 

thermal radiation and Hall currents on 

magnetohydrodynamic free-convective flow and 

mass transfer over a stretching sheet with variable 

viscosity in the presence of heat 

generation/absorption were investigated by Shit and 

Haldar (2010). Israel-Cookey (2010) studied the 

MHD oscillatory Couette flow of a radiating 

viscous fluid in a porous medium with periodic wall 

temperature. The effects of thermal radiation, Hall 

currents, Soret and Dufour on MHD flow by mixed 

convection over a vertical surface in a porous 

medium where described by Shateyi (2010). 

Aurangzaib and Sharidan Shafie (2011) studied the 

effects of Soret and Dufour on unsteady MHD flow 

by mixed convection over a vertical surface in a 

porous medium with internal heat generation, 

chemical reaction and Hall current. Singh and 

Pathak (2012) discussed the effects of rotation and 

Hall current on mixed convection MHD flow 

through a porous medium in a vertical channel in 

the presence of thermal radiation. Jain and Singh 

(2012) have observed Hall and thermal radiative 

effects on an unsteady rotating free convection slip 

flow. Recently, Chaudhary et al. (2013) have 

presented the effects of Hall current and thermal 

radiation on an unsteady free convection slip flow 

along a vertical plate embedded in a porous medium 

with constant heat and mass flux. Seth et al. (2013) 

have examined the effects of thermal radiation and 

rotation on unsteady hydromagnetic free convection 

flow past an impulsively moving vertical plate with 

ramped temperature in a porous medium. The 

unsteady MHD radiative and chemically reactive 

free convection flow near a moving vertical plate in 

porous medium has been presented by Reddy et al. 
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(2013). Choudhury and Hazarika (2013) have 

studied the effects of variable viscosity and thermal 

conductivity on MHD oscillatory free convective 

flow past a vertical plate in slip flow regime with 

variable suction and periodic plate temperature. 

In the present paper, we study the effects of Hall 

currents and radiation on MHD flow of a viscous 

incompressible electrically conducting fluid past a 

moving vertical plate with variable temperature in 

the presence of a uniform transverse magnetic filed. 

The governing equations are solved by the Laplace 

transform technique to obtain the analytical results 

for velocity, temperature, rate of heat transfer and 

shear stresses. The effects of physical parameters on 

the velocity, temperature and rate of heat transfer 

and shear stresses are analyzed in detail. 

2. FORMULATION OF THE 

PROBLEM AND ITS SOLUTION 

Consider the viscous incompressible electrically 

conducting fluid past a moving vertical plate with 

variable plate temperature. Choose a Cartesian co-

ordinates system with x - axis along the plate in the 

direction of the flow, the y -axis is normal to the 

plate and the z -axis perpendicular to xy -plane 

[see Fig.1.] Initially, at time 0t  , both the plate 

and the fluid are assumed to be at the same 

temperature T
 and stationary. At time > 0t , the 

plate at = 0z  starts moving in its own plane with a 

uniform velocity 
0U  and is heated with temperature 

 
0

w

t
T T T

t
   . A uniform magnetic field of 

strength 
0B  is imposed perpendicular to the plate. It 

is also assumed that the radiative heat flux in the x

-direction is negligible as compared to that in the z
- direction. As the plates are infinitely long, the 

velocity and temperature fields are functions of z  

and t  only. The equation of continuity then gives 

= 0w  everywhere in the fluid where = ( , , )q u v w . 

   

 
 

Fig. 1. Geometry of the problem 
 

The Boussinesq approximation is assumed to hold 

and for the evaluation of the gravitational body 

force, the density is assumed to be dependent on the 

temperature according to the equation of state  

 0= 1 ( ) ,T T                                       (1) 

where T is the fluid temperature,  the fluid 

density,  the coefficient of thermal expansion and 

0 the reference fluid density. 

Using Boussinesq approximation, the momentum 

equations of motion along x  and y -directions are  

2

0

2

1
= ( ) ,y

u p u B
g T T j

t x z
 

 


  
    

            
(2) 

2

0

2

1
= ,x

v p v B
j

t y z


 

  
  

  
                          (3) 

where   and p  are respectively  the kinematic 

viscosity and the modified fluid pressure. 

Neglecting ion-slip and thermoelectric effects, the 

generalised Ohm's law for partially ionized gas is 

(see Cowling (1957))  

0

( ) = ( ),e ej j B E q B
B

 
                          (4) 

 where B , E , q , j ,  , 
e  and 

e  are 

respectively, the magnetic field vector, the electric 

field vector, the fluid velocity vector, the current 

density vector, the conductivity of the fluid, the 

cyclotron frequency and the electron collision time. 

We shall assume that the magnetic Reynolds 

number for the flow is small so that the induced 

magnetic field can be neglected. This assumption is 

justified since the magnetic Reynolds number is 

generally very small for partially ionized gases 

(Shereliff (1965)). The solenoidal relation . = 0B  

for the magnetic field gives 
0= =zB B  constant 

everywhere in the fluid where 0(0,0, )B B . The 

equation of the conservation of the charge = 0j   

gives =zj constant. This constant is zero since 

= 0zj  at the plate which is electrically non-

conducting. Thus = 0zj  everywhere in the flow. 

Since the induced magnetic field is neglected, the 

Maxwell's equation =
B

E
t


 


 becomes 

= 0E  which gives = 0xE

z




 and = 0

yE

z




. 

This implies that =xE  constant and  =yE  constant 

everywhere in the flow. 

In view of the above assumption, Eq.(4) gives  

0= ( ),x y xj mj E vB                                   
(5) 

0= ( ),y x yj mj E uB                                    
(6) 

where = e em    is the Hall parameter. Solving for 

xj  and 
yj , we get  

0 02
= [( ) ( )],

1
x x yj E vB m E uB

m


  


             (7) 

0 02
= [ ( ) ( )].

1
y x yj m E vB E uB

m


  


             (8) 

On the use of Eqs. (7) and (8), Eqs. (2) and (3) 

become  
2

2

1
= ( )

u p u
g T T

t x z
 




  
   

  
 

0
0 02

[ ( ) ( )],
(1 )

x y

B
m E vB E uB

m




   


            (9) 
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2

2

1
=

v p v

t y z




  
 

  
 

0
0 02

[( ) ( )].
(1 )

x y

B
E vB m E uB

m




   


           (10) 

The energy equation is  
2

2
= ,r

p

T T q
c k

t y y


  


  
                                (11) 

where k  is the thermal conductivity, pc  the 

specific heat at constant pressure and 
rq  the 

radiative heat flux. The heat due to viscous 

dissipation is neglected for small velocities in the 

energy Eq.(11). 

The initial and the boundary conditions for velocity 

and temperature distribution are  

= 0, = 0, = for all and 0,u v T T z t   

 0

0

= , = 0, = w

t
u U v T T T T

t
                  

(12) 
at = 0 for > 0,z t                                     

0, 0, as for > 0.u v T T z t     

It has been shown by Cogley et al. (1968) that in 

the optically thin limit for a non-gray gas near 

equilibrium, the following relation holds  

0
= 4( ) ,

pr

w
w

eq
T T K d

y T



 




 
  

  
                 (13) 

 where K
 is the absorption coefficient,   is the 

wave length, pe  is the Planck's function and 

subscript 'w  indicates that all quantities have been 

evaluated at the temperature T
 which is the 

temperature of the plate at time 0t  . Thus our 

study is limited to small difference of plate 

temperature to the fluid temperature. 

On the use of the Eq.(13),  the Eq. (11) becomes  

 
2

2
= 4 ,p

T T
c k T T I

t y
 

 
 

 
                       (14) 

 where  

0
= .

p

w
w

e
I K d

T



 
  

 
 

                                 (15) 

On the use of  infinity conditions, Eqs (9) and (10) 

yield  

01
( ) = 0,x y

p B
mE E

x



 


  


                      (16) 

01
( ) = 0.x y

p B
E mE

y



 


  


                       (17) 

On the use of (16) and (17), Eqs.(9) and (10) 

become  

2 2

0

2
= ( ) ( ),

u u B
g T T mv u

t z


 




 
   

 
       (18) 

2 2

0

2
= ( ).

v u B
v mu

t z






 
 

 
                          (19) 

Introducing non-dimensionless variables  

0
1 1

0 0 0

= , = , = , = , = ,
w

zU t u v T T
u v

U U U T T


  









(20) 

 equations (18), (19) and (14) become  

2
21 1

1 12
= ( ) ,

u u
M u mv Gr

 

 
  

 
               (21) 

2
21 1

1 12
= ( ),

v v
M v mu

 

 
 

 
                          (22) 

2

2
= ,Pr R

 


 

 


 
                                     (23) 

where 

2
2 0

2

0

=
B

M
U

 


 is the magnetic parameter, 

24
=

I h
R

k
 the radiation parameter, 

3

0

( )
= wg T T

Gr
U

 
 the Grashof number and 

=
pc

Pr
k


 the Prandtl number. 

The corresponding initial and boundary conditions 

for 
1u  and   are  

1 1= 0, = 0, = 0 for all and 0,u v      

1 1=1, = 0, = at = 0 for > 0,u v           (24) 

1 10, 0, 0 as 0 for > 0.u v        

Combining Eqs. (21) and (22), we have  

2 2

2 2

(1 )
= ,

1

F F M im
Gr

m


 

  
 

  
                    (25) 

 where  

1 1= , = 1.F u iv i                                    (26) 

The corresponding initial and boundary conditions 

for F  and   are  

= 0, = 0 for all and 0,F      

=1, = a = 0 for > 0,F t                    (27) 

0, 0 as 0 for > 0.F       

Taking Laplace transformation and on using initial 

conditions for ( , )F    and ( , )   , Eqs.(25) and 

(23) become  

2 2

2 2

(1 )
= ,

1

d F M im
s F Gr

d m




 
   

 
              (28) 

2

2
( ) = 0,

d
sPr R

d





                                  (29) 

 where  

0
( , ) = ( , ) sF s F e d   




  

0
and ( , ) = ( , ) .ss e d     




                       (30) 

The corresponding boundary conditions for F  and 

  are  
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2

1 1
(0, ) = , (0, ) = ,F s s

s s
  

0, 0 a 0.F s                               (31) 

The solution of Eqs.(29) and (28) subject to the 

boundary conditions (31) are easily obtained and 

are given by  

 

2

2

1
for 1

( , ) =

1
for = 1,

s Pr R

s R

e Pr
s

s

e Pr
s





 

 

 










                 (32)  

 
2

1 1

2 2

( )

1 2 2

( )1

2

2
1

2

2
2 2

2 2

1

1 1

( , ) =
( )

for 1
( )

1
for = 1

s r

Pr s a

Pr s a

s r

s r s R

G G
e

s b s bs

G e
b s bs

GF s e
b s b

G
e Pr

b s b

G G
e e Pr

s s s









 



 

 

 

 

   

 
  

 


 
  
  






 



     

(33) 

where =
R

a
Pr

, =1
1

Gr
G

Pr
, =2 2

Gr
G

r R

 and 

2 (1 )2 =
21

M i m
r

m




. 

The inverse transforms of  Eqs.(32) and (33) give 

the temperature and the velocity field distributions 

as  

 

( , )

1
erfc

2 2 2

erfc for 1
2 2

1
erfc

2 2 2

erfc for = 1 ,
2 2

a Pr

a Pr

a

a

Pr Pr
e a

a

Pr Pr
e a Pr

a

e a
a

e a Pr
a









  

 
 



 
 



 
 



 
 









    
            


   
          

    



    
    

   
    
      

   

(34) 

1 1 1

2

1 1 1

2

1

1

1

( , ) =

1
1 erfc

2 2 2

1
1 erfc

2 2 2

1
erfc

2 2 2

1
erfc

2 2 2

r

r

a Pr

a Pr

F

G G G
e r

b b b r

G G G
e r

b b b r

G Pr Pr
e a

b ba

G Pr Pr
e a

b ba

G e









 

  




  




 
 



 
 







   
      

  

   
       

  

   
         

   

   
         

   


2 2

2

2 2

( )1

2

( )

2
2

erfc ( )
2 2
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 where erfc (.)  is the complementary error 

function. 

3. RESULTS AND DISCUSSION 

We have presented the non-dimensional velocity 

components and temperature distribution for several 

values of magnetic parameter 2M , radiation 

parameter R , Hall parameter m , Prandtl number 

Pr , Grashof number Gr  and time   in Figs.2 to 

10. Figures.2 to 7 represent the primary velocity 
1u  

and secondary velocity 
1v  against   for several 

values of 2M , R , m , Pr , Gr  and  . It is seen 

from Fig.2 that the primary velocity 
1u  decreases 

where as the magnitude of the secondary velocity 

1v  increases with an increase in magnetic 

parameter 2M . The application of the transverse 

magnetic field plays the role of a resistive type 

force (Lorentz force) similar to drag force (that acts 

in the opposite direction of the fluid motion) which 

tends to resist the flow thereby reducing its 

velocity. The effect of radiation parameter on the 

velocity field is shown in Fig.3. It is observed that 

both the primary velocity 
1u  and the magnitude of 

the secondary velocity 
1v  decrease with an increase 

in radiation parameter R . This means that there is a 

fall in velocity in the presence of radiation. It is 

seen from Fig.4 that both the primary velocity 
1u  

and the magnitude of the secondary velocity 
1v  

increase with an increase in Hall parameter m . 
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Fig.5 illustrates that both the primary velocity 
1u  

and  the magnitude of the secondary velocity 
1v  

decrease with an increase in Prandtl number Pr . 

Physically, this is true because the increase in the 

Prandtl number is due to increase in the viscosity of 

the fluid which makes the fluid thick and hence 

causes a decrease in the velocity of the fluid. It is 

observed from Fig.6 that an increase in Gr  leads to 

rise in the both values of the primary velocity 
1u  

and the magnitude of the secondary velocity 
1v . An 

increase in Grashof number leads to an increase in 

velocity, this is because, increase in Grashof 

number means more heating and less density. It is 

seen from Fig.7 that the both the primary velocity 

1u  and the magnitude of the secondary velocity 
1v  

increase with an increase in time  . It is seen from 

Fig.8 that the temperature   decreases with an 

increase in radiation parameter R . This result 

qualitatively agrees with expectations, since the 

effect of radiation is to decrease the rate of energy 

transport to the fluid, thereby decreasing the 

temperature of the fluid. Fig.9 shows that the 

temperature   decreases with an increase in 

Prandtl number Pr . This implies that an increase in 

Prandtl number leads to fall the thermal boundary 

layer flow. This is because fluids with large Pr  

have low thermal diffusivity which causes low heat 

penetration resulting in reduced thermal boundary 

layer. Fig.10 reveals that the temperature   

increases with an increase in time  . The trend 

shows that the temperature increases with 

increasing time.  

  

Fig. 2. Velocity profiles for 
2

M  when = 4R , 

         = 0.5m , = 0.71Pr , = 5Gr  and = 0.5  

Fig. 3. Velocity profiles for R  when 2
= 5M , 

= 5Gr , = 0.71Pr , = 0.5m  and = 0.5  

Fig. 4. Velocity profiles for m  when 2
= 5M , 

= 4R , = 5Gr , = 0.71Pr  and = 0.5  

Fig. 5. Velocity profiles for Pr  when 2
= 5M , 

= 4R , = 5Gr , = 0.5m  and = 0.5  
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Fig. 6. Velocity profiles for Gr  when 2
= 5M , 

= 4R , = 0.71Pr , = 0.5m  and = 0.5  

Fig. 7. Velocity profiles for   when 2
= 5M , 

= 4R , = 5Gr , = 0.5m  and = 0.71Pr  

 
Fig. 8. Temperature profiles for R  when 

= 0.71Pr  and = 0.5  

 
Fig. 9. Temperature profiles for Pr  when = 4R  

and = 0.2  

Fig. 10. Temperature profiles for   when 

= 0.71Pr  and = 4R  

The rate of heat transfer at the moving plate = 0  

is given by  

 

 
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1
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2

for 1

=

1
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2
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  

   
 





(36) 

Numerical results of the rate of heat transfer 

=0





 
 

 
 at the moving plate = 0  against the 

radiation parameter R  are presented in the Table 1 

for several values of radiation parameter R , 

Prandtl number Pr  and time  . Table 1 shows that 

for the fixed value of radiation parameter R , the 
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rate of heat transfer 

=0





 
 

 
 increases with an 

increase in either Prandtl number Pr  or time  . 

This may be explained by the fact that frictional 

forces become dominant with increasing values of 

Pr  and hence yield greater heat transfer rates. 

Further, it is seen that for fixed values of Pr  and 

, the rate of heat transfer 

=0





 
 

 
 increases with 

an increase in radiation parameter R . 

 

From the physical point of view, it is necessary to 

know the shear stress at the moving plate. The non-

dimensional shear stress at the plate = 0  is  

Table 1 Rate of heat transfer 

=0





 
 

 
 at the plate = 0  

   Pr       

 R    0.71   2   3  7   0.2   0.4   0.6  0.8 

 2 

4 

6 

8 

 0.78575  

 0.99997  

 1.16851  

 1.31126  

0.93166  

0.91905  

0.96373  

1.02273  

1.14519 

1.05290 

1.03091 

1.04219 

1.87743  

1.70618  

1.58148  

1.49154  

 0.29814  

 0.33859  

 0.37827  

 0.41138  

0.60353  

0.75278  

0.87221  

0.97210  

0.98504 
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Numerical results of the shear stresses 
x  due to 

the primary flow and y  due to the secondary flow 

at the plate = 0  are presented in Figs.11 to 14 

against Hall parameter m  for several values of 

magnetic parameter 2M , radiation parameter R , 

Prandtl number Pr  and time  . Fig.11 illustrates 

that the absolute value of the shear stress 
x  

increases whereas the absolute value of the shear 

stress y  decreases with an increase in magnetic 

parameter 2M  for the fixed value of Hall 

parameter m . It is also seen that the absolute value 

of the shear stress 
x  decreases while the absolute 

value of the shear stress y  increases with an 

increase in Hall parameter for fixed value of the 

magnetic parameter 2M . These results are in 

agrement with the fact that the primary velocity 

decreases and the secondary increases with an 

increase in Hall parameter m . It is seen from 

Fig.12 that the absolute value of the shear stress 
x  

increases whereas the absolute value of the shear 

stress y  decreases with an increase in radiation 

parameter R . Fig.13 reveals that the absolute value 

of the shear stress 
x  decreases while the result is 

reversed for the shear stress y  with an increase in 

Prandtl number Pr . Further, it is revealed from 

Fig.14 that the absolute value of the shear stress 
x  

decreases while the absolute value of the shear 

stress y  increases with an increase in time   for 

the fixed value of Hall parameter m . 

 

Fig. 11. Shear stresses x
  and y

  for  
2

M  when 

= 4R , = 0.71Pr , = 5Gr  and = 0.5  
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Fig. 12. Shear stresses 
x

  and y
  for  R  when 

2
= 5M , = 0.71Pr , = 5Gr  and = 0.5  

 

Fig. 13. Shear stresses x
  and y

  for Pr  when 

2
= 5M , = 4R , = 5Gr  and = 0.5  

 

Fig. 14. Shear stresses x
  and y

  for   when 

2
= 5M , = 4R , = 5Gr  and = 0.71Pr  

4.    CONCLUSION 

The effects of Hall current and radiation on MHD 

flow of a viscous incompressible electrically 

conducting fluid past a moving vertical plate with 

variable plate temperature in the presence of a 

uniform transverse magnetic field have been 

investigated. It is found that the Hall parameter m

accelerates the primary velocity 
1u  as well as the 

magnitude of the secondary velocity 
1v . An 

increase in radiation parameter R  leads to fall in 

the primary velocity 
1u  as well as the magnitude of 

the secondary velocity 
1v . Both the primary 

velocity 
1u  and the magnitude of the secondary 

velocity 
1v  increase when time   is progressed. 

Further, the absolute value of the shear stress 
x  

due to the primary flow at the moving plate = 0  

decreases whereas the absolute value of the shear 

stress y  due to the secondary flow at the moving 

plate = 0  increases with an increase in Hall 

parameter m . The rate of heat transfer 

=0





 
 

 
 

increases with an increase in either Prandtl number 

Pr  or radiation parameter R  or time  . 
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