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ABSTRACT 

Finite-element based CFD solvers like the family of Discontinuous Galerkin (DG) solvers suffer severely 

from inaccurate boundary reconstruction. In this matter, developing an accurate and flexible strategy is highly 

demanded to provide high-order curved boundary representation in DG simulations. In this paper, a general 

framework is introduced to design the curved elements in discontinuous Galerkin finite-element (DGFEM) 

simulations. The aim is to connect the boundary to the surrounding mesh by defining an appropriate set of 

basis functions which deliver the curvature information inside the mesh region adjacent to the boundary. This 

information is then used in flux integral calculations. The proposed framework is applied in Lagragian and 

Hermitian boundary representations. The efficiency of the method is analyzed for compressible inviscid flow 

test cases using the discontinuous Galerkin scheme. It is illustrated that using the curved-side elements in the 

present approach, is adequate to reduce the artificial entropy generation near the boundaries. This leads to the 

simulations with the desired order of accuracy. The results show a well consistency in h/p-refinement which 

advocates the use of the proposed approach in high-order CFD simulations. 
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NOMENCLATURE 

c       degree of freedom 

CD    drag coefficient 

CL     lift coefficient 

Cp     pressure coefficient 

et       total internal energy 

Ek      ratio of errors 

F      inviscid flux 

f,g    flux components 

H      refers to Hermitian curved elements 

h       numerical convective flux 

ht       total enthalpy 

J       matrix containing the metrics 

|J|     volumetric Jacobian 

|| J


    surface Jacobian 

L       refers to Lagrangian curved elements 

ls       Lobatto basis functions 

M      mass matrix 

Mi      inner wall Mach number of supersonic  

          vortex 

M    free-stream Mach number 

N       shape functions for the curved-side 

np      Number of DOFs for solution  

          reconstruction  

nb,nt        number of DOF for curve representation 

P         pressure 

q         convergence rate 

Q        conservative variable 

R         nonlinear residual 

Ri        inner radius in supersonic vortex  

           problem 

r


        position vector in Cartesian coordinates 

br


       position vector at the curved boundary 

S         entropy error generation 

s


        set of geometric degrees of freedom 

t          time 

u,v      Cartesian velocity components 

Ui           inner wall velocity of the supersonic  

           vortex 

V        velocity magnitude 

x,y      Cartesian (physical) coordinates 

Xk       ratio of mesh sizes 

x, y   metric along the first reference 

           coordinate 

x, y  metric along the second reference 

     α        angle of attack 

          ratio of specific heats 
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ne         Number of elements 

        first reference (local) coordinates 

,    basis function 

       Hermite basis functions  

        density 

i       exact density at the inner wall  

e       exact density in supersonic vortex problem 

t      time step 

        entropy 

       second reference (local) coordinates 

       element face in the mapped space 

       discrete element in the mapped space 

      discrete element in the physical space 

    element face in the physical space 

  
 

1. INTRODUCTION 

The main goal of employing the high-order 

discretization methods is to capture a wide range of 

details by a minimized mesh density (Hirsh 1975, 

Ekaterinaris 2005, Ollivier-Gooch et al. 2009). 

However, inaccurate boundary representation ruins 

drastically the desired order of the numerical 

accuracy expected from the high-order methods 

(Var der Vedgt and Van der Ven 2002). 

Several attempts have been made for high-order 

surface reconstruction by considering curvature 

information of the immersed bodies. Various non-

physical solutions have been observed in inviscid 

flows even in high-order discretizations mainly due 

to low-order boundary representation. Bassi and 

Rebay (1997) declared the necessity of the curved 

representation in high-order discontinuous Galerkin 

(DG) methods. They reported non-physical vortex 

generation over the circular cylinder in inviscid 

flow with linear boundary segmentation. They 

showed considerable improvement in the accuracy 

of the simulations using Lagrangian curved-side 

elements on the body surface. Following this issue, 

many researches have been conducted on efficient 

and accurate boundary representation schemes to 

overcome the mentioned drawbacks and their major 

attention is the inviscid flow (Euler) test cases. 

Wang & Liu (2006) introduced simplified curved 

elements for the Spectral Volume (SV) methods. 

Moreover, the effect of curvature with entropy-

based boundary condition was studied recently by 

Kannan and Wang (2011). Fidkowski and Darmofal 

(2007) developed a cell cutting procedure for a non-

conforming mesh. In order to find curved boundary 

coordinates, cubic intersection problems should be 

solved. Karimian and Ardakani (2011) studied the 

ability of immersed boundary method on Cartesian 

grid for 2D compressible inviscid flows for 

stationary and moving objects.   

In addition, Vymazal et al (2011) studied the effect 

of curved elements for residual distribution schemes 

by portioning each element into linear sub-elements 

to reuse the original simple form using standard 

sub- or iso-parametric transformation. They showed 

that the expected order of accuracy would be 

achieved only with accurate approximation of the 

geometry by the curved elements. Sevilla et al. 

(2008) used NURBS (Non-Uniform Rational B-

Splines) to generate the curved boundary for the 

finite element flow simulations. In addition, Gao et 

al. (2010) introduced the Bezier mapping technique 

for the C1 continuous curved boundaries for high-

order Lifting Collocation Penalty (LCP) methods 

(Wang and Gao 2009). 

In Recent years, a group of researchers makes effort 

to investigate the effect of artificial entropy 

generation due to boundary reconstruction. In this 

matter, smooth inviscid flows are chosen to 

eliminate the physical source of entropy generation 

like viscosity and shock wave in order to focus on 

the effect of boundary representation on the 

accuracy of the fluid flow simulations. 

At a first glance, constructing curved elements is 

related to a specific surface generation technique. It 

takes some intermediate steps to provide necessary 

information from the initial data. Moreover, the 

CFD researchers are usually confined to the 

features provided by the geometry modeling and 

grid generation tools. In this matter, designing a 

generalized definition of the curved elements to 

conveniently exploit the geometric information in 

high-order CFD simulations seems to be highly 

demanded. 

Constructing traditional types of curved elements 

such as those used by Bassi and Rebay (1997) 

requires inverting a system of equation based on 

information about available node coordinates. In 

this matter, curved boundary representation as well 

as analytical surface function should be directly 

considered in the CFD code. In many situations, 

this may not possible since prevalent grid 

generation schemes do not directly handle the 

curvature reconstruction. This reduces the 

flexibility of a solver for accurate simulations. 

The aim of this paper is to streamline the procedure 

by introducing a tensor product of low-order and 

high-order polynomials representing the curved 

elements. In fact, there is no need to define an 

integrated 2D curved element space as in the case 

of traditional strategies. In other words, the tensor 

production fulfills the requirements of generating 

the 2D curved space by distributing the curvature 

data provided by the high-order polynomials. 

Therefore, the curved boundaries can be 

reconstructed separately by any surface generation 

techniques and the effect of curvature can be 

implemented conveniently in domain discretization 

section of the CFD codes. This procedure brings a 

flexibility to define a framework for exploiting a 

wide range of reconstruction techniques in recent 

CFD methods like the discontinuous Galerkin 

schemes. 

A general framework for constructing curved-side 

elements is introduced for CFD applications. The 

main idea is to use directly the surface 

reconstruction techniques, e.g. Lagrangian and 

Hermitian methods, to provide curvature 

information for the geometric transformation inside 

the computational domain. This is realized by 
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blending the high-order polynomials as the 

curvature constructor with the linear basis functions 

as the data distributor in the computational field. 

The consequence is the generation of P1Pk curved 

elements where k is associated with the order of the 

boundary approximation. 

The paper is organized as follows. In Section 2, a 

brief description of the DG discretization method is 

presented. The procedure of constructing the 

curved-side elements is explained in Section 3. 

Finally, the efficiency of the proposed boundary 

representation is examined in Section 4. 

2. DISCONTINUOUS GALERKIN 

The two-dimensional Euler equations in 

conservative form are written as: 

0)( 



QF

t

Q                                                    (1) 

where Q  is the set of conservative variables and  

),( gfF   is flux vector. The conservative field 

variables and the Cartesian flux components are: 
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‎The total enthalpy per unit mass of the perfect gas is 

defined as /2/2 PVeht  where the velocity 

magnitude of flow field calculated by 22 vuV 

‎The static pressure of the working fluid is then 

obtained by   2/1 2VeP t    where 
indicates the ratio of the specific heats of the fluid‎. 

DG discretization on each element in weak 

statement form is expressed by: 

 





0)( dQFhdSd

t

Q
jjj  (3) 

where 
j is the weight function related to the j-th 

equation of the weak solution in the Galerkin 

approach. The second term in Eq. (3) represents the 

numerical face flux balance for each element 

),(  QQhh where Q  are the trace of the 

conservative variables on both side of a common 

face of the two adjacent elements. Therefore, 

appropriate numerical flux function is needed to 

compute the convective flux passing through the 

faces of the element. In this work, the Roe (1981) 

numerical flux function is employed. In order to 

solve the system of DG equations in a general 

framework, the Eq. (3) is mapped onto the space of 
reference element as follows: 

| | | |

( ) | | 0

j j

j

Q
J d h J d

t

F Q J d

   

 


  



   

                             (4) 

where  is the reference space for quadrilateral 

elements, || J  is the volumetric Jacobian and |
~

| J

is the surface Jacobian between the real and 

reference geometric spaces on each integration 

point. The conservative variables are then simulated 

using the finite element approach as follows: 

i

n

i

m

i

m
p

cQ 



1

                                                      (5) 

where m

ic is the i-th DOF related to m-th component 

in vector of conservative field variables. In 

addition, 
pn is related to the shape functions used in 

DG simulation. The polynomial set 
j can be 

regarded as nodal or hierarchical polynomial basis 

functions. It is worth mentioning that in the 

Galerkin approach the set of basis functions, }{ , 

and the weight functions, }{ , are taken to be 

equal. 

In this work, hierarchical edge and bubble functions 

developed by Solin (2004) are used. Table 1 

presents the hierarchical basis functions including 

linear element, edge and bubble (Lobatto bases) 

functions. 

Table 1 Hierarchical Lobatto shape functions up 

to fourth-order accuracy. 

Function Type Formula 

Linear element     11
4

1  
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sl
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The overall semi-discretized relation of Euler 

equations using explicit discontinuous Galerkin 

method leads to the following formula: 

)(1 QRM
dt

dQ                                                        (6) 

where R is the numerical residual including interior 

and convective flux terms and M is the mass 

matrix related to each element. The employed time 

discretization is the stable TVD Runge–Kutta 

scheme developed for discontinuous Galerkin 

method by Cockburn and Shu (1998): 
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                                                                               (7) 

The boundary fluxes required for the solid wall are 

computed with ghost-state approach described by 

Bassi and Rebay (1997). The numerical integration 

procedure is performed by Gaussian quadrature 

rule. The required number of quadrature points is 
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chosen to integrate exactly on the reference 

quadrilateral elements of the order p2  where p

denotes the solution accuracy (Bassi and Rebay 

1997). In the case of linear, quadratic, and cubic 

shape functions, the volume integrals are evaluated 

using four, nine, and sixteen points and the 

boundary integrals are evaluated using two, three, 

and four points, respectively. 

3. CURVED ELEMENTS 

Many high-order finite-element-based methods are 

involved in calculating the flux integrals. In a 

computational domain with a general mesh and 

curved boundaries, a geometrical transformation is 

required to map all the discrete elements into a 

unique reference element. Therefore, a systematic 

procedure is required to construct an appropriate 

reference element based on the mesh point and the 

curvature data. In general CFD solvers, this 
procedure should be accomplished in a way that 

brings an acceptable order of accuracy in flow 

simulations, and also does not append a 

considerable complexity to the code infrastructure. 

A common procedure to reconstruct the boundary 

curvature in CFD simulations has the following 

steps: 

1. Discretizing the computational domain by a 

desirable mesh generation technique. 

2. Reconstructing the curved boundary with local 

interpolating polynomials, e.g. Lagrange, 

Hermite, NURBS and etc. 

3. Constructing the curved-side elements based 

on available geometric data. 

4. Obtaining the geometric transformation and 

the normal vectors to the curved boundary to 

be used in the flux integral calculations. 

Nowadays, the family of traditional Lagrangian 

curved elements is widely used in high-order DG 

and FV simulations. However, the procedure of 

accuracy adaptation requires additional correction 

step to the master element which increases the level 

of complexity in underlying source code (Li 2006). 

On the other hand, there are several situations 

where the exact geometry is not available and the 

curvature definition should be carried out e.g. by 

approximating the metric in the spline 

reconstruction (Esfahanian et al. 2011) or by 

defining the control nodes in the Bezier 

reconstruction process (Gao et al. 2010). 

3.1 General Framework 

In high-order boundary representation, the 

boundary nodes should be connected together by 

local defined curvatures. In finite-element based 

methods, the set of boundary-adjacent curved-side 

elements should be define to connect the curved 

boundary, generated by surface capturing 

techniques, to the whole system of mesh points.  

In this paper, a three-step procedure for considering 

the curved boundary in high-order DGFEM solvers 

is presented as follows: 

1. Define the curvature: Detect the mesh points 

on the linear segmented (low-order) boundary. 

Generate the local curvature between each pair 

of boundary nodes using a conventional 

surface generation technique. This generates 

the first reference coordinate, ]1,1[ . 

2. Define the connecting region: Defining the 

high-order basis functions, representing the 

curvature, from the boundary to the linear 

surrounding mesh. This introduces the second 

reference coordinate, ]1,1[ . 

3. Define the curved-side elements: Generate the 

2D space for the boundary-adjacent curved-

side elements. This is achieved by distributing 

the surface and volume quadrature points 

according the 2D geometric transformation for 

the flux integral calculations. 

 

 

Fig. 1. Connecting the curved boundary to the 

linear mesh in the proposed general framework.  

Figure 1 demonstrates how the connecting region, 

including the curved-side elements, connects the 

curved boundary to the surrounding linear mesh. 

The whole procedure of constructing the curved-

side elements is also depicted in Fig. 2. 

 

 

Fig. 2. Constructing the connecting space by the 

curved-side elements in a three-step procedure.  
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Table 2 one-dimensional interpolation 

polynomials for curved boundary reconstruction 

1D 

geometric 

basis 

functions 

Formulation 

Linear 

bases, P=1 
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Hermite, 

P=3 

32

4

32

3

3

2

3

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

3

2

1

4

1

4

3

2

1

















 

In a geometry description of a curved boundary in 

2D domains, a unidirectional interpolation is 

defined between each boundary segments as 

follows: 

b

j

n

j

jb sr
b 




1

)()(                                               (7) 

where   is the local direction along with the 

boundary (Fig. 2(a)) which is exploited as the first 

reference coordinate the procedure of constructing 

the curved-side elements. The set of the geometry 

information, including the boundary points, 
br


as 

well as the metrics 
,br


construct the set of 

geometric degrees of freedom at the curved 

boundary denoted by }{ bs


. It is worth mentioning 

that, reconstruction the curvature is the first step 

among the procedure of considering the curved 

geometry in the flow simulations. 

The formulation of the unidirectional polynomials 

is presented in Table 2 for Lagrangian and 

Hermitian types. The linear polynomials are 

considered for the nodes which coincide with the 

curved boundary (
2,1 for quadrilateral elements).  

In addition, Fig. 3 shows the distribution of the 1D 

polynomials for different basis functions 

constructing the first reference coordinate at the 

curved boundary. 

 

 

Fig. 3. Distribution of 1D geometric basis 

functions in the reference frame, (a) Lagrange, 

P=2, (b) Lagrange, P=3, (c) Hermite, P=3. 

The second step is to connect the curved geometry, 

defined by Eq. (7), to the surrounding mesh points 

(Fig. 2(b)). In this matter, the interval between to 

spaces (curved boundary and linear mesh) can be 

filled by introducing the intermediate space of the 

curved-side elements (Fig. 2(c)). Since all the mesh 

segments, except the boundary ones, consist of 

straight lines, a proper linear distribution of the 

geometric data can properly convey the information 

from the curved boundary to the mesh points. 

Having this idea, any surface generation techniques 

can be directly join to this procedure and a variety 

of curved-side elements are produced. The 

introduced frame work can be cast by the following 

relation: 

j

n

j

j sNr
t 




1

),(),(                                         (8) 

where }{s


 is the set of total geometric DOFs. 

Moreover, the geometrical two-dimensional shape 

functions have the following formula: 

)()(),(   kjN                                      (9) 

where 
k  is the unidirectional interpolation 

polynomials and 
0l

 ,
1l

  are the linear 

Lobatto shape functions defined at 1,1 . In this 

case, the high-order curvature reconstruction is 

imposed at the curved boundary while the linear 

property is preserved on the surrounding mesh 

points. 

3.2 Obtaining the Geometric DOFs 

After constructing the curved-side element, the 

required geometric DOFs should be provided 

according to each type of boundary representation. 

In Lagragian based curved elements, the extra 

nodes are required. These are obtained by locating 

them between each boundary interval using the 

analytical geometry profile. Therefore, having the 

geometry function, the extra DOFs are calculated at 

the interval  ba xxx , as follows: 
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where f is the analytical profile. For the Hermitian 

type with quadrilateral elements, the local metrics at 

boundary nodes are required which can be obtained 

as follows: 
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where s in the arc length of the interval and 

 /s is obtained by averaging the discrete form, 

 /s at each boundary nodes belonged to the 

interval. The metrics can be obtained by the 

analytic profile or can be approximated using finite-

difference methods (Esfahanian et al. 2011). The 

list of the required DOFs for quadrilateral curved-

side elements are presented in Table 3. 

Table 3 Required geometric DOFs for 

element types of curved-side elements. 

Curved 

element 
Required DOFs 

Lagrangian 
P1P2L, 
P1P3L 

At corners: 4,...,1, jrj


 

Extra nodes: 

)2,1(,4,  mmkrk


 

Hermitian 

P1P3H 

At corners: 4,...,1, jrj


 

metrics at corners: 

 





 21 ,
rr


 

4. NUMERICAL TESTS 

In this section, two compressible smooth flow test 

cases are considered to examine the efficiency of 

the proposed approach. 

4.1 Supersonic Vortex Flow 

The shock-free supersonic vortex flow test case is 

considered as an isentropic flow in a circular 

channel. The geometry of the channel consists of 

two concentric circular arcs which R1 = 2.0 and R2 

= 3.0 and the inner inlet Mach number is Min = 2.0. 

Figure 4 demonstrates the mesh layout (h-

refinement). The number of mesh points is double 

in each direction at each step. Figure 5(a) and 5(b) 

show the L1 error of the solution for different mesh 

sizes. It can be seen from this figure that using 

curved-side elements is crucial to achieve the 

desired rate of convergence by increasing the 

number of mesh points in the h-refinement process 

(Nejat 2007). The convergence rate, q, is the 

average value of the slope defined by: 
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where 
1/  kkk xxX is the ratio of mesh sizes, 

and 
1,1,1

/



kkk EEE  is the ratio of L1 norm of 

the error in density defined in each k-th level of 

mesh refinement as follows:   

 

  














dE

E
n

EL

i

e

e

i

i

n

i i

e


1

1
:

111                                           

(13) 

where e is the exact solution obtained by the 

following formula (Aftosmis et al. 1994): 
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According to Fig. 5, reducing the numerical error in 

DG is tightly related to the accuracy of boundary 

representation. This issue is more illustrative for 

higher accuracy, e.g. the cubic (fourth-order) 

solution. 

 

Fig. 4. Mesh refinement for supersonic vortex 

flow. 

4.2 Subsonic Flow around 2D Airfoils 

Subsonic flows around 2D airfoils are considered to 

testify the efficiency of the proposed approach in 

more general cases. The outer boundary is placed 

20 chords far from the airfoil. A structured grid 

with quadrilateral elements (O-type grid with 1400 

elements: 2070 ) is considered. 

For the symmetric NACA 0012 airfoil, the free-

stream Mach number is M=0.63 and the angle of 

attack is 2.0o. For the non-symmetric NACA 4412, 

the free-stream Mach number is M=0.2 and the 

angle of attack is 8.0o. 
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Figure 6 shows the mesh layout near the leading 

and trailing edges of the NACA 0012. Figure 7 and 

8 demonstrates the effect of using curved-side 

elements in reducing the generated entropy error 

around the leading edge and trailing edge of the 

NACA 0012 airfoil for linear (second-order) and 

cubic (fourth-order) solutions.  It can be seen from 

these figures that increasing the order of boundary 

representation reduces noticeably the entropy error 

especially for cubic (fourth-order) solution. 

 

(a) Linear solution (P1) 

 

(b) Cubic solution (P3) 

Fig. 5. Error Analysis for supersonic vortex flow 

 

Fig. 6. Mesh layout around NACA 0012 

Table 4 compares the norm of the entropy error, 

drag coefficient CD, and lift coefficient CL around 

the NACA 0012 airfoil for the family of P1PK 

elements. It can be concluded that the ability to 

reduce the error is more achieved by P1P3H 

element since the C1 condition (continuity of the 

slope at the boundary nodes) is preserved by 

applying the Hermitian surface reconstruction. This 

issue is better illustrated in Fig. 9 by demonstrating 

the distribution of the entropy error     /S

where the entropy is defined as  /P . In this 

figure, the entropy generation over NACA 0012 is 

compared for P1P2L, P1P3L, and P1P3H elements. 

According to this figure, P1P3H has better 

performance in reducing the entropy generation. 

 
 

Fig. 7. Entropy Error over NACA 0012 with 

different curved elements for the linear solution  

 

Fig. 8. Entropy Error over NACA 0012 with 

different curved elements for the cubic solution 

Figure 10 compares the pressure field around the 

leading edge of the NACA 0012 airfoil for low-

order linear segmentation and the locally curved 

segmentation using P1P3H elements. It is clear that 

using high-order surface reconstruction yields to 

high quality results especially for the cubic (fourth-

order) solution.  
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Figure 11 compares the distribution of the pressure 

coefficient CP around the NACA 0012 airfoil for 

different curved elements. The results show a well 

consistency with the previous works of DG solution 

of Krivodonova-Berger (2006) and the spectral 

difference solution of Liang et al. (2009). 

Table 4 Effect of curved elements in DG 

simulation for NACA 0012 with 1400 elements, 

20 chords farfield. (FVM: The finite volume 

results of Nejat 2007 with 1245 cells, 25 chords 

farfield) 

Entropy L1 Error 

Cases Linear Quadratic Cubic 

P1P1 0.0274595 0.0209295 0.0286842 

P1P2L 0.0120888 0.0102421 0.0113728 

P1P3L 0.0119507 0.0088419 0.0036157 

P1P3H 0.0110249 0.0078582 0.0014382 

Drag coefficient (CD) 

Cases Linear Quadratic Cubic 

P1P1 0.0018324 0.0006625 0.0006572 

P1P2L 0.0010574 0.0004067 0.0003744 

P1P3L 0.0010521 0.0003813 0.0003726 

P1P3H 0.0010243 0.0003807 0.0003691 

FVM 0.00097664 0.00184889 0.00072576 

Lift coefficient (CL) 

Cases Linear Quadratic Cubic 

P1P1 0.309728 0.316488 0.316926 

P1P2L 0.317204 0.321948 0.322372 

P1P3L 0.317254 0.321996 0.322701 

P1P3H 0.317639 0.322613 0.322715 

FVM 0.322318 0.317393 0.322223 

 
Fig. 9. Comparison of the entropy error 

generation over the surface of the NACA 0012 

for different curved elements in the cubic 

solution 

 

Fig. 10. Pressure contours over the NACA 0012 

near leading edge for the linear segmentation 

and cubic curved-side elements in boundary 

representation  

 
Fig. 11 Pressure coefficient distribution over the 

NACA 0012 for different boundary 

representations. 

Figure 12 shows the mesh layout for the non-

symmetric NACA 4412. Figure 13 demonstrates 

pressure contours over the airfoil for quadratic 

(third-order) solution. Figure 14 compares the 

solution with linear P1P1 and P1P3H curved 

element in the leading edge of the airfoil. It can be 

seen from this figure that the proposed curved 

element can properly simulation the inviscid flow 

over the NACA 4412. Figure 15 compares the 

distribution of the pressure coefficient CP around 

the NACA 4412 airfoil with the work of Mason 

(2006). The result shows a well agreement with the 

mentioned work which emphasizes on the ability of 

the presented model for accurate boundary 

representation in a more general case. 

 

Fig. 12. Mesh layout around NACA 4412 
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Fig. 13. Pressure contours over the NACA 4412 (
o8,2.0  M ) 

 

Fig. 14. Pressure contours over the NACA 4412 

near leading edge for linear and cubic boundary 

representations 

 
Fig. 15. Pressure coefficient distribution over the 

NACA 4412 with cubic P1P3H elements 

5.   CONCLUSIONS AND 

OUTLOOKS 

A general framework to consider the curved 

boundary representation in compressible flow 

simulations is introduced using quadrilateral 

curved-side elements. A three-step procedure is 

developed for constructing the curved elements and 

providing the required geometrical data for the flux 

integral calculations in the reference space. The 

discontinuous Galerkin (DG) method is used to 

discretize the governing equations. The ability to 

reduce the entropy generation is studied for the 

family of P1PK elements including Lagragian 

(P1P2L and P1P3L) and Hermitian (P1P3H) types. 

It is illustrated that P1P3H, which exploits the C1 

property, leads to the lower level of error generation 

near the curved boundary. The formulations are 

presented in a way that any other surface generation 

techniques can be directly used. In our future work, 

we will concentrate on extending the proposed 

approach to three-dimensional case with hexahedral 

and tetrahedral elements.  
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