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ABSTRACT 

The purpose of present investigation is to analyse bouyancy-driven radiation-convection flow past a moving vertical 

plate with reference to an optically dense medium in the presence of mass concentration, using Rosseland 

approximation permeated by a magnetic field. The flow is considered to be gray in the presence of free convection, 

mass transfer and radiation. An exact solution of the governing equations is obtained by applying the Laplace 

transform method. Numerical results of velocity distributions, shear stress, temperature distribution and mass 

concentration are presented graphically to give physical insight into the flow pattern. 

Keywords: MHD flow, Free convection. Mass transfer, Radiation, Gray gas and Mass diffusion. 

NOMENCLATURE 

B magnetic field vector 2M Hartmann number 

0B magnetic flux intensity Pr Prandtl number  

pc specific heat at constant pressure 
rq radiative heat flux 

E electric  field vector q velocity field vector 

F chemical molecular diffusivity Sc Schimdt number 

ĝ acceleration due to gravity T dimensionless fluid temperature 

Gr Grashof number T   fluid  temperature 

Gm modified Grashof number 
wT  temperature at the plate 

J current density vector T
 temperature of the fluid far away from the plate 

Le  Lewis-Semenov number U uniform plate velocity 

k   spectral mean absorption coefficient u  fluid velocity along the plate 

k thermal conductivity u dimensionless fluid velocity 

1k radiation parameter  ,x y  Cartesian co-ordinates

  coefficient of thermal expansion 
e magnetic permeability 

  coefficient of thermal expansion with concentration   fluid density 

 kinematic viscosity   electrical conductivity of fluid 

  non-dimensional Species concentration   Stefan-Boltzman constant 

 species concentration   non-dimensional time 

w species concentration  at the plate
0 shear stress at the plate 

 concentration far away from the plate
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1. INTRODUCTION 

High temperature thermal radiation of an optically thick 

gray gas becomes significant to the relevance of space 

technology in such way that the foundation of space 

laboratory in the zero gravity is established by the 

concept of gray body radiation. If the temperature of 

surrounding fluid is rather high, radiation effects play 

an important role and this situation does not exist in 

space technology. In such cases one has to take into 

account the effect of thermal radiation and mass 

diffusion. It takes place in numerous industrial 

applications, e.g. polymer production, manufacturing of 

ceramics or glassware, and food processing Cussler 

(1998). For some industrial applications such as glass 

production, furnace design, propulsion systems, plasma 

physics and spacecraft re-entry aerothermodynamics 

which operate at higher temperatures and radiation 

effect can also be significant. A clear understanding of 

the nature of interaction between thermal and 

concentration buoyancies is necessary. Consolidated 

effects of heat and mass transfer problems are of 

importance in many chemical formulations and reactive 

chemicals. Therefore, considerable attention had been 

paid in recent years to study the influence of the 

participating parameters on the velocity field. More 

such engineering application can be seeing in electrical 

power generation systems when the electrical energy is 

extracted directly from a moving conducting fluid. 

 

The study of magnetohydrodynamic flow for electrically 

conducting fluid past heated surface has attracted the 

interest of many researches in view of its important 

applications in many engineering problems such as 

plasma studies, petroleum industries MHD power 

generations, cooling of nuclear reactors, the boundary 

layer control in aerodynamics and crystal growth. Until 

recently this study has been largely concerned with flow 

and heat transfer characteristics in various physical 

situations. Radiative magnetohydrodynamic flows arise 

in many areas of technology and applied physics 

including oxide melt materials processing (Shu et al. 

(2004)), astrophysical fluid dynamics (Stone and Norman 

(1992); Vishwakarma et al. (1987)), plasma flow switch 

performance (Bowers et al. (1990)),  MHD energy pumps 

operating at very high temperatures (Biberman et 

al.(1979)) and hypersonic aerodynamics (Ram and 

Pandey (1980)). Takhar et al. (1996) investigated the 

effects of radiation on the MHD free convection flow of 

radiating gas past a semi-infinite vertical plate. Raptis 

and Masslas (1998) studied unsteady 

magnetohydrodynamics convection in a gray, absorbing-

emitting but non-scattering fluid regime using the 

Rosseland radiation model. A similar study was 

communicated by Raptis and Perdikis(2000). Azzam 

(2002) considered thermal radiation flux influence on 

hydromagnetic mixed convective steady optically-thick 

laminar boundary layer flow also using Rosseland 

approximation. Helliwell and Mosa (1979) reported on 

thermal radiation effects in buoyancy-driven 

hydromagnetic flow in a horizontal channel flow with an 

axial temperature gradient in the presence of Joule and 

Viscous heating. Yasar and Moses (1992) developed a 

one dimensional adaptive-grid finite-differencing 

computer code for thermal radiation 

magnetohydrodynamic simulation of fusion plasmas. 

Excellent studies of thermal radiation-convection 

magnetohydrodynamics include Duwairi and Damseh 

(2004), Raptis et al. (2004) who considered axisymmetric 

flow and Duwairi and Duwairi (2005) who studied 

thermal radiation heat transfer effects on the 

hydrodynamic Rayleigh flow of a gray viscous fluid. 

Aboeldahab and Azzam(2005) have described the effects 

of magnetic field on hydromagnetic mixed free forced 

heat and mass convection of a gray, optically-thick, 

electrically conducting viscous fluid along a semi-infinite 

inclined plane for high temperature and concentration 

using the Rosseland approximation. Ghosh and Pop 

(2007) and Jana and Ghosh (2011) have studied thermal 

radiation of an optically-thick gray gas in the presence of 

indirect natural convection showing that the pressure rise 

region leads to slightly increase in the velocity with an 

increase of radiation parameter. Patra et.al (2012) 

considered transient approach to radiation heat transfer 

free convection flow with ramped wall temperature. 

Rajput and  Kumar (2012) examined the radiation effects 

on MHD flow past an impulsively started vertical plate 

with variable heat and mass transfer. Ahmed and Kalita 

(2013) presented an analytical and numerical study for 

MHD radiating flow over an infinite vertical surface 

bounded by a porous medium in presence of chemical 

reaction. Al-Odat and Al-Azab (2007) have examined the 

influence of chemical reaction on transient MHD free 

convection over a moving vertical plate.  Mbeledogu  and 

Ogulu (2007) have presented the heat and mass transfer 

of an unsteady MHD natural convection flow of a 

rotating fluid past a vertical porous plate in the presence 

of radiative heat transfer. The MHD transient free 

convection and chemically reactive flow pasta porous 

vertical plate with radiation and temperature gradient 

dependent heat source in slip flow regime have been 

studied by Rao et al. (2013).  Reddy et al. (2012) have 

investigated the heat and mass transfer effects on 

unsteady MHD free convection flow past a vertical 

permeable moving plate with radiation. 
 

The aim of present investigation is to analyze the 

influence of a magnetic field on buoyancy-driven 

radiation-convection flow of an optically dense medium 

with mass concentration, using the Rosseland 

approximation. The orientation of the present problem 

leads to a gray body radiation resulting from space 

application to generate X-ray photon in a vacuum. 

Since the Sun is exposed to a vacuum, X-ray photon is 

liberated from the Sun with reference to gray body 

radiation. Gray body radiation in the presence of a 

magnetic field is subjected to a non-catalytic system in 

such a way that the homogeneous reaction is confined 

with equal concentration of ions and electrons. The 

homogeneous reaction takes place in an equilibrium 

condition with regard to the rate of heat and mass 

transfer. A strong magnetic field provides for effective 

thermal insulation of hot plasma. In this situation, the 

rate of temperature distribution and mass concentration 

at wall become important to a study of gray body 

radiation in the presence of a thin radiation layer at the 

wall. The mode of present investigation is to study the 
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unsteady magnetohydrodynamic flow of viscous 

incompressible electrically conducting fluid occupying 

a semi-infinite region of space bounded by an infinite-

vertical moving plate. The flow is considered a gray 

gas, optically thick, absorbing-emitting but non-

scattering in the presence of free convection, mass 

transfer and radiation. Such a study has to the authors’ 

knowledge not appeared in the scientific literature. An 

exact solution of the governing equations is obtained in 

a closed form by employing Laplace transform 

technique. The effects of the magnetic parameter 

(Hartmann number, 2M ), free convection parameter 

(Grashof number i.e. Gr ), modified Grashof number 

with concentration ( Gm ), mass concentration ( ), 

time ( T ) and the radiation parameter (
1k ) on velocity 

distribution and shear stresses at the plate are presented 

graphically. An excellent agreement with the relation of 

heat and mass transfer is established in such a way that 

the ratio of concentration and temperature field is 

dependent on the radiation parameter if their rates are 

equal. On the other hand, the concentration and 

temperature field will be similar to the absence of 

radiation parameter 
1k and its ratio is known as the 

Lewis-Semenov number.  The novelty of this study is to 

determine the Lewis-Semenov number in the absence of 

radiation parameter.           

2. FORMULATION of THE PROBLEM and its 

SOLUTION 

Consider an unsteady magnetohydrodynamic flow of a 

viscous incompressible electrically conducting fluid 

occupying a semi-infinite region of space bounded by 

an infinite vertical moving plate. It is considered that 

the velocity of the fluid far away from the plate is zero. 

The flow is considered in an opticlly thick gray gas 

with the decisive importance to free convection, mass 

transfer and radiation. We choose the co-ordinate 

system in such a way that the x - axis is taken along 

the plate and the y -axis is normal to it. A uniform 

magnetic field is applied parallel to y -axis (see Fig.1). 

It is considered that all the fluid properties are constant 

except the influence of the density variation on the body 

force term. The radiative heat flux in the x -direction is 

considered negligible in comparison to the y - 

direction.  
 

Under Boussinesq approximation, the MHD  equation 

of motion becomes  

  21 1
=

q
q q p q J B

t


 


       

    

ˆ ˆ( ) ( ).g T T g   

 
                 

             
(1) 

The equation of continuity becomes 

0.q                                                        (2) 

The Ohm's law for a moving conductor  

= ( ).J E q B                                          (3) 

The Maxwell’s equations are 

,eB J   

,
B

E
t


  


                                                      (4) 

0B  (Solenoidal relation) 

0J  (Conservation of electric charge)  
 

 

Fig. 1. Geometry of the problem 
 

The following equation is in agreement with the 

fundamental eqautions of magnetohydrodynamics (1)- 

(4)    

2

2
= ( )

u u
g T T

t y
  

  
  

 
  

      
2

0( ),
B

g u


  





                                             (5) 

The equation of energy transfer is  

2

2

1
= r

p p

T k T q

t c y c y 

   


   
                                         (6) 

The equation of mass transfer is  

2

2
= ,F

t y

   

 
                                                             (7) 

where B , E , q , J , e  are respectively, the 

magnetic field vector, the electric field vector, the fluid 

velocity vector, the current density vector  and the 

magnetic permeability.  u , t ,  , ĝ ,  ,  
,  , 

, T  , T
 , k , pc ,  ,  , 0B , F and rq are 

respectively,  the velocity component along the plate, 

the time, the kinematic viscosity, the gravitational 

acceleration, the coefficient of thermal expansion, the 

coefficient of thermal expansion with concentration, the 

species contration, the concentration far away from the 

plate, the temperature of the fluid , the temperature of 

the fluid far away from the plate, the thermal 

conductivity, the specific heat at constant pressure, the 

fluid density, the electrical conductivity, the magnetic 

flux intensity, the chemical molecular diffusivity and 

radiative heat flux. 
 

In general, the electri current flowing in the fluid gives 

rise to an induced magnetic field, which will distort  the 

applied magnetic field. Since the magnetic Reynolds 

number is very small for partially ionized fluid, the 

induced magnetic field produced by the motion of an 

electric field is applied , the polarization voltage is 

negligible i.e. the electric field vector E  is absent (see 
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Maryer, (1958)). This corresponds to the case where no 

energy is being added or extracted from the fluid by 

electrical means. The magnetic effects are confined to 

retarding the flow and dissipating energy of motion into 

heat. Since radiation layer is thin, the concentration and 

temperature flied depend on the radiation parameter.    

The initial and the boundary conditions for velocity and 

temperature distribution are  

= 0, = , = for all 0 and 0,u T T y t  
         

= , = , = at = 0 for > 0,w wu U T T y t        

0, , as for > 0,u T T y t  
             (8) 

where 
wT   is the temperature at the plate , 

w  the 

species concentration  at the plate  and U  the velocity 

of the plate. 
 

The radiative heat flux is addressed using the approach 

outlined by Isachenko et al. (1969). The Rosseland 

diffusion flux approximation is therefore used leading 

to a Fourier-type gradient function, viz:  
44

,
3

r

T
q

k y

 




 


                                                     (9) 

where k  is the spectral mean absorption coefficient of 

the medium  and     the Stefan-Boltzman constant. 

 

It is assumed that the temperature differences within the 

flow are sufficiently small such that 4T   may be 

regarded as a linear function of the temperature. It can 

be established by expanding 4T  in a Taylor series about 

T
  and neglecting higher order terms. Therefore, 4T   

can be expressed in the following form 

4 3 4= 4 3 .T T T T 
                                                       (10) 

Introducing dimensionless quantities  
2

1

0

= , = , = ,
y U tU u

y u
U


 


  

= , = ,
w w

T T
T

T T

 


 
 

 

    
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3 3

( ) ( )
= , =w wg T T g

Gr Gm
U U

    

 
    

  

2
2 0

2
=

B
M

U




 = , = ,

pc
Pr Sc

k F
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                        (11) 

where 2, , , , Pr,Gr Gm M Sc  are respectively 

concentration, Grashof number, modified Grashof 

number,  Hartmann number,  the Prandtl number and 

Schimdt number. 
 

Using Eqs.(9) and (10), the energy Eq.(6) can be 

written  in a dimensionless form subject to Eq.(11) such 

as   

 
2

1 2
1 Pr = 0,

T T
k

y 

 
 

 
                                           (12) 

where 
3

1

16

3

'T
k

k k

 




  is the radiation parameter. 

Using Eq.(11),  Eqs.(5) and (7) transform into a 

dimensionless form as  

2
2

2
= ,

u u
M u T Gr Gm

y




 
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 
                              (13) 

2

2
= 0,Sc

y

 



 


 
                                                      (14) 

The corresponding initial and boundary conditions for 

u  and   are  

0, 0, 0 for all 0 and 0,u T y       

1, 1, 1 at 0 for > 0,u T y       

0, 0, 0 as for > 0.u T y              (15) 

Solutions for the velocity distribution, temperature 

distribution, mass concentration can be obtained by 

employing he Laplace transform technique subject to 

the Eqs.(12), (13) and (14) become  

2 2

1
( , ) = 1

2

Gr Gm
u y

M M


 
  

 
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3
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M
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2
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( , ) erfc
2

y
T y






 
   

 
                                              (17) 

( , ) erfc ,
2

y Sc
y 



 
   

 
                                            (18) 

where 

   
22 2

1 , , , erfc
2
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F x z M e M z 
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 3 , , erfc
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x
F x


 


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   
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2 2

1

Pr
, ,

1 1 1

M M
C D

Sc k



  
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and erfc (.) is the complementary error function. 

Solution (16) exists for 1Pr 1 k  . 
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From the physical point of view, it is necessary to know 

the shear stress at the moving plate. The non-

dimensional shear stress at the plate 0y   is  

0

=0y

u

y
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 
  

 
 

2 2
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where 

    2 2 2

1 , , erfG z M M z M z     

                  
 21 M z

e




 
  

 2 , ,G z    
2

erf zz z e 
 



   

 3 ,G


 


                                                         (21) 

Differentiating Eqs.(17) and (18) with respect to y , the 

following condition is satified 

1

Pr
.

1
Sc

k



                                                                (22) 

It is evident from the condition (22) that the ratio of the 

concentration and temperature field is dependent on the 

radiation parameter 
1k . This situation reveals that the 

enthalpy and molecular diffusion are closely connected 

and are interdependent of a chemical reaction is 

involved in this process. In a non-catalytic system the 

enthalpy can not be taken into account so that the 

chemical reaction in not involved in this precess of heat 

and mass tranfers. It is important to note that in the 

absence of the radiation parameter 1k , the 

concentartion and temperature fileld are similar if 

Pr Sc  or 
Pr

1
Sc

  . The ratio is known as the Lewis-

Semenov number and is denoted by .Le  

3.  RESULTS and DISCUSSION 

To determine the physical insight into the MHD flow 

pattern the velocity distributions, shear stress, 

temperature distribution and concentration are depicted 

graphically in Figs.2-15 for several values of 2M , Gr ,

mG , 1k , cS
 

and  . In Fig.2 we have presented the 

influence of Hartmann number ( 2M ) on the velocity 

distribution. With increasing magnetic field strength 0B , 

2M  is increased and this serves to decelerate the flow 

along the plate. In accordance with this we observe in 

Fig.2 that u profile values are strongly reduced with 

increasing 2M .We also note that as 2M rises, the profile 

decay to zero progressively for shorter distance from the 

plate surface. The strong inhibiting effect of magnetic 

field is therefore evident. Fig.3 reveals that with an 

increase of radiation parameter 
1k the fluid velocity ( u ) 

slightly increases in accordance with Stefan-Boltzman 

constant. Larger (
1k ) values correspond to an increased 

dominance of thermal radiation over conduction. As such 

thermal radiation supplements the thermal diffusion and 

increases the overall thermal diffusivity of the regime 

since the local radiant diffusion flux model adds radiation 

conductivity to the conventional thermal conductivity. As 

a result the fluid temperature and velocity in the fluid 

regime flow are increased. It is evident from Fig.4 that an 

increase in free convection parameter i.e. Grashof 

number ( Gr ) is found to increase velocity values. Free 

convection currents as stimulated with the buoyancy term 

to accelerate the flow along the plate. Fig.5 shows that an 

increase in modified Grashof number with concentration 

( Gm ) the flow velocity ( u ) leads to increase with 

reference to buoyancy force in concentration field. It seems 

to understand that the concentration plays an important role 

to stabilize the flow situation. It is noticed from Fig.6 that 

the flow velocity ( u ) leads to decrease with an increase in 

Schmidt number ( Sc ). In a non-catalytic system, the 

effects of concentration on velocity field give rise to fall 

the flow situation for effective molecular diffusion. Fig.7 

demonstrates the flow velocity ( u ) increases with the 

increase in time ( ) and the profiles decay to zero for 

shorter distance from the plate surface. 
 

Fig.8 demonstrates that the frictional shearing stress (

0 ) at the plate decreases with increase in radiation 

parameter 1k . Since viscosity initiates thermal radiation 

there arise a destabilizing influence on shear stress at 

the plate. It is seen from Fig.9 that the shear stress 

increases with increase in Grashof number ( Gr ). This 

situation reveals that the buoyancy force accelerates the 

flow particle with stronger magnetic field leads to 

increase the shear stress. Fig.10 shows that the 

frictional shear stress ( 0 ) decreases with increase in 

modified Grashof number with concentration ( Gm ). In 

the presence of a strong magnetic field, molecular 

diffusion retarded the frictional shearing stress with a 

decisive importance to a buoyancy effect with 

concentration. It is noticed from Fig.11 that the 

influence of Schmidt number ( Sc ) leads to rise the 

frictional shear stress. Since concentration plays a 

significant role on Schmidt number if reveals that the 

reduction of viscosity communicates the effect of 

Schmidt number under the influence of a strong 

magnetic field to increase the frictional shear stress. 
 

Fig.12 reveals that the temperature field ( T ) increases 

with increase in radiation parameter ( 1k ).  In an optically 

dense medium using Rosseland approximation, the effect 

of magnetic field lies in its behavior of a thin radiation 

layer near the plate in such a way that a magnetic field 

generates thermal radiation due to the presence of 

viscosity to boost up temperature field on increasing 

radiation parameter. Fig.13 shows that with the increase 

in Prandtl number ( Pr ) the temperature field ( T ) 

decreases near the plate. Fig.14 shows that the 

temperature field ( T ) and mass concentration ( ) 

increase with increase in time ( ). Since the temperature 
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field and the molecular diffusion depend on radiation 

parameter, they are gradually increase with increase in 

time and the effect of magnetic field become 

predominant. Fig.15 demonstrates that the mass 

concentration ( ) decreases with increase in Schmidt 

number. In this context, the effect of magnetic field 

determines the behavior of mass concentration on 

velocity field, shear stress and temperature field. 

 

Fig. 2. Velocity profiles for 2
M  when 

 
1

= 0.2k , = 1.4Sc , = 1.5Pr , = 5Gr , 5Gm   

 and = 0.5  

  
Fig. 4. Velocity profiles for Gr  when 

 
2

= 5M , 
1

= 0.2k , = 1.4Sc , = 1.5Pr ,  5Gm    

and = 0.5  

 
Fig. 6. Velocity profiles for Sc  when 

 
2

= 5M , 
1

= 0.2k , = 1.5Pr , = 5Gr , 5Gm    

and = 0.5  

  

Fig. 3. Velocity profiles for 
1

k  when 

 
2

= 5M ,  = 1.4Sc , = 1.5Pr , = 5Gr , 5Gm   

 and = 0.5  

 

Fig. 5. Velocity profiles for Gm  when 

 
2

= 5M , 
1

= 0.2k , = 1.4Sc , = 1.5Pr , = 5Gr  

and = 0.5  

 

Fig.7. Velocity profiles for   when  
2

= 5M , 
1

= 0.2k , = 1.4Sc , = 1.5Pr , = 5Gr  

and 5Gm   



S. K. Ghosh et al. / JAFM, Vol. 8, No. 1, pp. 65-73, 2015.  

 

71 

 

 
Fig. 8. Shear stress 

0


 
for 

1
k  when  

2
= 5M ,  = 1.4Sc , = 1.75Pr , 5Gr   

and 5Gm   

 
Fig. 10. Shear stress 

0
  for Gm  when 

2
= 5M , 

1
= 0.2k , = 1.4Sc , = 1.5Pr  

and 5Gr   

 
Fig. 12. Temperature profiles for 

1
k   

when = 1.5Pr  and = 0.5  

 
Fig. 9. Shear stress 

0
  for Gr  when 

2
= 5M , 

1
= 0.2k , = 1.4Sc , = 1.5Pr   

and 5Gm   

 
Fig. 11. Shear stress 

0
  for Sc  when 

2
= 5M , 

1
= 0.2k , = 1.5Pr , 5Gr    

and 5Gm   

 
Fig. 13. Temperature profiles for Pr  when 

 
1

= 0.2k  and = 0.5  
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Fig. 14. Temperature and concentrattion profiles for 

time  when = 1.5Pr , = 1.4Sc  and 
1

= 0.2k  

 

 

Fig. 15. Concentrattion profiles for Sc   

when = 0.5  

4. CONCLUSION 

A mathematical analysis has been presented of the 

transient free convection-radiation magneto 

hydrodynamic viscous flow along an infinite vertical 

plate under a transverse magnetic field in presence of 

mass transfer. A flux model has been employed to 

simulate thermal radiation effects, valid for optically-

thick gases. The dimensionless momentum, energy and 

 

 mass conservations equations have been solved using 

the Laplace transform. The study has shown that the 

flow is accelerated with a decrease in Hartmann 

number. The velocity as well as the concentration 

decreases with an increase in the Schmidt number. 

Temperature of the gas is shown to be enhanced both 

with the elapse of time and increasing conduction-

radiation i.e. greater thermal radiation heat transfer 

contribution. 
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