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Abstract 

The time periodic electroosmotic flow of Newtonian fluids through a semicircular microchannel is studied under the 

Debye–Hückel approximation. Analytical series of solutions are found, and they consist of a time-dependent 

oscillating part and a time-dependent generating or transient part. Some new physical phenomena are found. The 

electroosmotic flow driven by an alternating electric field is not periodic in time, but quasi-periodic. There is a phase 

shift between voltage and flow, which is only dependent on the frequency of external electric field. 

 

Keywords: Electroosmotic flow, Newtonian fluid,Integral transform,Time periodic flow algorithm. 

 
1. INTRODUCTION 

When an electric field is applied in a channel, the walls 

are charged.The migration of the ions in excess induces 

the motion of the bulk solution due to the viscous drag. 

This phenomenon provides an attractive means for 

manipulating liquids in microdevices, and it has been 

widely used in different microdevices for various 

applications, such as microfractionation (Effenhauser 

1995; Raymondet. al. 1996), electrophoresis 

(Harrisonet. al. 1992), and microspray generation 

system (Ramsey and Ramsey 1997). 

 

Time periodic electroosmotic flow is also known as AC 

electroosmosis, and it is driven by an alternating 

electric field. It is very important for biotechnology and 

separation science. Recently, various studies analyzed 

the time periodic electroosmotic flow theory and 

modeling in different geometries. Dutta and 

Beskok(2001) were among the early researchers who 

analytically investigated the time periodic 

electroosmotic flow between two parallel plates, 

illustrating interesting similarities or dissimilarities with 

the Stokes second problem. Based on the method 

proposed by Dutta and Beskok (2001), manyresearchers 

studied time periodic electroosmotic flows through 

microchannels, and some new results are given. General 

solutions are developed by Xuan and Li (2005) for 

direct current and alternating current electroosmotic 

flows in microfluidic channels with arbitrary cross-

sectional geometry and arbitrary distribution of wall 

charge. Jian and his colleagues investigated the flow 

behavior of time periodic electro-osmosis in a 

cylindrical microannulus (Jian et. al. 2010; Baoet. al. 

2013).Recently, Bandopadhyay and Chakraborty (2013) 

addressed the implications of finite sizes of the ionic 

species on electroosmotic transport through in narrow 

confinements in the case of a counterion-only solution, 

and pointed out that the electroosmotic mobility is 

dependent on both the size of the channel and the size 

of the ions. 

 

Unfortunately, due to the incorrect critical assumption 

of the form of velocity distribution, the results given in 

these researches are not correct, and some very 

important physical phenomena have not been found 

theoretically. In their researches, these authors believed 

that the velocity profile will be oscillatory, and they 

assumed that the frequency of the oscillation is same as 

that of the externally applied electric fields. It is true 

that the electroosmotic flows should really be generated 

by the applied time periodic electric fields, and the 

flows may be time periodic. But, as we know, there is a 

phase difference between phase voltage and phase 

current, the flow in the microchannel needs some time 

to start. In other words, there is a phase difference 

between the the applied electric fields and 

electroosmotic flows. On another hand, on the basis of 

the aforementioned "assumption", the obtained 

analytical solutions of velocities are represented as 

complex functions, which is unreasonable in physics.  

In fact, the phase shift between the applied electric field 

and the flow response has been proved by Nayak 

(2013), as well as some other researchers (Luo 2004). 
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The steady/unsteady electroosmotic flow in an infinitely 

extended cylindrical channel with diameters ranging 

from 10 to 100nm has been investigated by Nayak 

(2013), and a degree of phase shift between the velocity 

field and the applied electric field is found numerically. 

Using the backwards-Euler time stepping numerical 

method. Luo (2004) clarified the relationship between 

the changes in the axial-flow velocity and the intensity 

of the applied electric field. Erickson and Li (2003) 

developed the analytical solution for AC electroosmotic 

flow through a rectangular microchannel for the case of 

a sinusoidal applied electric field.  

 

The aim of the present paper is to providean analytical 

solutions for the time periodic electro-osmotic flow of 

Newtonian fluids through a semicircular microchannel. 

By the analytical solutions, we can easily understand 

the hidden physics or chemistry during the whole 

process. 

2. FORMULATION OF THE 

PROBLEM 

The motion of ionized, incompressible Newtonian fluid 

with electroosmotic body forces is governed by the 

following Navier-Stokes equation: 
 

𝜌
𝐷𝑽

𝐷𝑡
= −∇𝑃 + 𝜇∇2𝑽 + 𝜌𝑒𝑬  (1) 

 

wherePis the pressure, 𝜌 is the fluid density, 𝜇 is the 

dynamic viscosity, 𝑽is a divergence-free velocity field, 

i.e., ∇ ∙ 𝑽 = 0subject to the nonslipboundary conditions 

onthe walls, 𝑬 = 𝑓(𝑡)is the externally applied electric 

field, and𝜌𝑒 is theelectric chargedensity, which can be 

expressed by apotential distribution Ψ 
 

𝛻2Ψ = −
𝜌𝑒

𝜺
,  (2) 

and 

𝜌𝑒 = 2𝑛0𝑧𝜈𝑠𝑖𝑛ℎ (
𝑧𝜈𝑒𝛹

𝑘𝑏𝑇
). (3) 

 

Here 𝑛0 is the bulk electrolyte concentration of a binary 

electrolyte dissociating into cations and anions of 

valence 𝑧𝜈, 𝑒is an electron charge, 𝑘𝑏is the Boltzmann 

constant, and 𝑇is the absolute temperature. 

 

Considering the Debye-Hückel approximation under the 

cylindrical coordinate system (𝑟, 𝜃, 𝑧) , equation (2)is 

linearized to 
 

1

r

∂

∂r
(r

∂Ψ

∂r
) +

1

r2

∂Ψ

∂φ2 = κ2Ψ  (4) 

 

where 𝜅2 = 2𝑛0𝑧𝜈
2𝑒2𝑛0/𝜀𝑘𝑏𝑇 is the Debye-Hückel 

parameter and 1/𝑘  is the Debye length. 

 

Because of the effect of electric field, the fluid in the 

capillary will flow along the axial direction. Neglecting 

the pressure gradient along the axis, the Cauchy 

momentum equation in cylindrical coordinate system 

with AC electric field can be expressed as 
 

𝜌
𝜕𝑢

𝜕𝑡
= 𝜇 [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
) +

1

𝑟2

𝜕2𝑢

𝜕𝜑
] + 𝜌𝑒𝐸0 𝑐𝑜𝑠(𝜔𝑡), (5) 

 
where𝑢 = 𝑢(𝑟, 𝜑, 𝑡)is the axial velocity, tis time, and 

𝐸(𝑡) = 𝜌𝑒𝐸0cos (𝜔𝑡) is the AC electric field 

withE0being the magnitude and ωbeing the frequency 

of the unsteady external electric field E. 

 
Fig. 1. The section of semicircular channel with 

different constant zeta potentials on the boundaries. 

 

A semicircular microchannel is considered, as shown in 

Fig.1. 

 

The radius of semicircular microchannelis 𝑅. The zeta 

potentials on the boundaries are assumed to vary. The 

potential is zero on the flat wall and 𝛹0  potential on the 

curved wall. 

 

The following dimensionless variables are introduced 
 

𝑟∗ =
𝑟

𝑅
 ,𝛹∗ =

𝛹

𝛹0
, 𝑢∗(𝑟, 𝜑) =

𝑢

𝑈𝑒𝑜
, 𝑈𝑒𝑜 = −

εΨ0E0

𝜇
 

 

For the dimensionless variables, we ignore the “*” 

notation for convenience. Then the governing equation 

for potential distribution 
 

1

r

∂

∂r
(r

∂u

∂r
) +

1

r2

∂2u

∂φ
= 𝐾2𝛹  (6) 

 

𝛹 = 0,   𝜑 = 0 ,  (7) 
 

𝛹 = 0,   𝜑 = 𝜋 ,  (8) 
 

𝛹 = 1,   𝑟 = 1 , (9) 
 

and the equations for flow are 
 

∂u

∂t
= [

1

r

∂

∂r
(r

∂u

∂r
) +

1

r2

∂2u

∂φ
] + 𝐾2𝛹cos (ωt)  (10) 

 

𝑢(𝑟, 𝜑, 𝑡) = 0,  𝜑 = 0 ,  (11) 
 

𝑢(𝑟, 𝜑, 𝑡) = 0,  𝜑 = 𝜋 ,  (12) 
 

𝑢(𝑟, 𝜑, 𝑡) = 0,  𝑟 = 1 ,  (13) 
 

𝑢(𝑟, 𝜑, 𝑡) = 0 ,  𝑡 = 0 .  (14) 

3. ANALYTICAL SOLUTIONS  

We now consider the solution of the governing 

equations (6) and (10). Here it is not convenient to use 

the classical method of separation of variables because 

of the nonhomogeneities of the mast governing 

equation (10). It is for this reason that we consider the 

integral-transform technique, and this method provides 

a systematic, efficient, and straightforward approach for 

the solution of both homogeneous and 

nonhomogeneous, steady-state, and time dependent 

initial and boundary-value problems. 

 

Introducing the following integral transform (Ozisik 
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1993) of the function 𝑇(𝑟, 𝜑, 𝑡) with respect to the 

𝜑variable, 

𝑇(𝑟, 𝑛, 𝑡) = ∫ sin (𝑛𝜑)𝑇(𝑟, 𝜑, 𝑡)𝑑𝜑
𝜋

0
 , (15) 

 

andits inversion 
 

𝑇(𝑟, 𝜑, 𝑡) = ∑
2

𝜋
sin (𝑛𝜑)∞

𝑛=1 𝑇(𝑟, 𝑛, 𝑡). (16) 
 

Here 𝑛are positive integers, and are the positive 

roots of sin 𝑛𝜋 = 0. 

 

The integral-transform pair in the 𝑟variable for the 

function 𝑇(𝑟, 𝑛, 𝑡)is defined as 
 

𝑇̃(𝜆𝜈,𝑚, 𝑛, 𝑡) = ∫ 𝑟𝐽𝜈(𝜆𝜈,𝑚𝑟)𝑇(𝑟, 𝑛, 𝑡)𝑑𝑟
1

0
  (17) 

 

𝑇(𝑟, 𝑛, 𝑡) = ∑
2𝐽𝜈(𝜆𝜈,𝑚𝑟)

𝐽𝜈
′ 2

(𝜆𝜈,𝑚𝑟)

∞
𝑚=1 𝑇̃(𝜆𝜈,𝑚, 𝑛, 𝑡)  (18) 

 

where𝜆𝜈,𝑚are the positive roots of 𝐽𝜈(𝜆𝜈,𝑚𝑟) = 0, and 

 𝐽𝜈(𝑥) is Bessel function of the first kind.  

 

Applying the above integral transform (15) and (16) to 

(6)-(13) yields 
 

𝜕2𝛹

𝜕𝑟2 +
1

𝑟

𝜕𝛹

𝜕𝑟
−

𝑛2

𝑟2 𝛹 = 𝐾2𝛹 , (19) 
 

Ψ(𝑟, 𝑛) =
1−(−1)2

𝑛
, = 1 , (20) 

and 
 

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑛2

𝑟2 𝑢 + 𝐾2𝛹cos (ωt)  (21) 

𝑢(𝑟, 𝑛, 𝑡) = 0,  𝑟 = 1 ,  (22) 
 

𝑢(𝑟, 𝑛, 𝑡) = 0 ,  𝑡 = 0 .                   (23) 

 

From (19) and (20) and with the help of (16), it is easy 

to get the solution for (6) in the following series form  
 

𝛹(𝑟, 𝜑) = ∑
2[1−(−1)2]

𝑛𝜋𝐼𝑛(𝐾)
∞
𝑛=1 𝐼𝑛(𝐾𝑟)sin (𝑛𝜑)     (24) 

 

Applying integral transform (17) with respect to 𝑟 to 

equation (21) results in 
 

𝑑𝑢̃

𝑑𝑡
= −𝜆𝑛,𝑚

2 𝑢̃ + 𝐾2cos (ω𝑡)              (25) 

 

𝑢̃(𝜆𝑛,𝑚, 𝑛, 𝑡) = 0for𝑡 = 0            (26) 

 

This is an ordinary differential equation with initial 

condition, and its solution is 
 

𝑢̃ = 𝐾2𝛹̃ [sin(ωt + Φ𝑛,𝑚) −
𝜆𝑛,𝑚

2

𝜆𝑛,𝑚
2 +𝜔2

𝑒−𝜆𝑛,𝑚
2 𝑡]         (27) 

 

where Φ𝑛,𝑚 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝜔/𝜆𝑛,𝑚
2 ) < 𝜋/2  is a phase 

difference or phase shift, and 𝛹̃(𝜆𝑛,𝑚, 𝑛) can be 

obtained from (2) with the help of the forementioned 

integral transforms (15) and (17). Then, substituting for 

𝛹̃ into equation (27) yields the distribution of velocity 

in the capillary,  

𝑢(𝑟, 𝜑, 𝑡) = 

∑ ∑
8𝑠𝑖𝑛[(2𝑛 − 1)𝜑]𝐽2𝑛−1(𝜆2𝑛−1,𝑚𝑟)𝐾2

𝜋𝜆2𝑛−1,𝑚(2𝑛 − 1)(𝜆2𝑛−1,𝑚
2 + 𝐾2)𝐽2𝑛−1

′ (𝜆2𝑛−1,𝑚)

∞

𝑚=1

∞

𝑛=1

 

× [
𝜆2𝑛−1,𝑚

2

𝜆2𝑛−1,𝑚
2 +𝜔2

𝑒−𝜆2𝑛−1,𝑚
2 𝑡 − sin (ωt + Φ2𝑛−1,𝑚)]       (28) 

 

4. RESULTS AND DISCUSSION  

From the expression (28), we find that the velocity field 

of electroosmotic flow in the capillary generated by the 

external applied electric field is not time periodic in 

time. In particular, the distribution of velocity 

𝑢(𝑟, 𝜑, 𝑡)can be written as the sum of a time-dependent 

oscillating part 𝑢1(𝑟, 𝜑, 𝑡) and a time-dependent 

generating part  𝑢2(𝑟, 𝜑, 𝑡),  

𝑢(𝑟, 𝜑, 𝑡) = 𝑢1(𝑟, 𝜑, 𝑡) + 𝑢2(𝑟, 𝜑, 𝑡),                       (29) 

where 

𝑢1(𝑟, 𝜑, 𝑡) = 

− ∑ ∑
8𝑠𝑖𝑛[(2𝑛−1)𝜑]𝐽2𝑛−1(𝜆2𝑛−1,𝑚𝑟)𝐾2

𝜋𝜆2𝑛−1,𝑚(2𝑛−1)(𝜆2𝑛−1,𝑚
2 +𝐾2)𝐽2𝑛−1

′ (𝜆2𝑛−1,𝑚)
∞
𝑚=1

∞
𝑛=1            

       (30) 

sin (ωt + Φ2𝑛−1,𝑚) 

and 
 

𝑢2(𝑟, 𝜑, 𝑡) = 

∑ ∑
8𝑠𝑖𝑛[(2𝑛−1)𝜑]𝐽2𝑛−1(𝜆2𝑛−1,𝑚𝑟)𝐾2

𝜋𝜆2𝑛−1,𝑚(2𝑛−1)(𝜆2𝑛−1,𝑚
2 +𝐾2)𝐽2𝑛−1

′ (𝜆2𝑛−1,𝑚)
∞
𝑚=1

∞
𝑛=1                

               
𝜆2𝑛−1,𝑚

2

𝜆2𝑛−1,𝑚
2 +𝜔2 𝑒−𝜆2𝑛−1,𝑚

2 𝑡                                   (31)

 

  
Fig. 2. Effect of K on the distribution of 

velocityprofile at given time t = 1:(a) K = 5, maximum 

velocity is 0.34634; (b) K = 10, maximumvelocity is 

0.47936; (c) K = 20, maximumvelocity is 0.5302; (d) K 

= 50, maximumvelocity is 0.5465. 

 

Fig. 3. The evolution of the velocity distribution in  

the tube for given 𝝎 = 𝟐𝟎 and 

 𝑲 = 𝟏𝟎: (a) t= 𝟏;  (b) 𝒕 = 𝟖; 

  (c) 𝒕 = 𝟏𝟔; (d) 𝒕 = 𝟐𝟒. 
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In fact, the minimum of 𝜆2𝑛−1,𝑚is the first positive root 

of 𝐽1(𝜆𝑚) = 0 , i.e., 𝜆 = 𝑚𝑖𝑛{𝜆2𝑛−1,𝑚} ≅ 3.8317 , and 

𝑒−𝑎2𝑡 =  4.20456 × 10−7𝑡.  It can be seen that the 

generating part of the solution (28) will tend to zero in a 

very short time. In this sense, the generating part can also 

be called a transient part. In other words, the 

electroosmotic flow generated by the AC electric field is 

quasi-periodic. The generating part of the solution is very 

important, since it explains both the characteristics of 

electroosmotic flow and the practical applications due to 

rapid development of the Biochiptechnology(Wong, Chen, 

Wang, and Ho 2004). 

 

In particular, when ω → 0, 𝐸(𝑡) = 𝐸0𝐻(𝑡) and 

 

𝑢(𝑟, 𝜑, 𝑡) = ∑ ∑ [𝑒−𝜆𝑚
2 𝑡 − 1]

∞

𝑚=1

∞

𝑛=1

 

×
8𝑠𝑖𝑛[(2𝑛−1)𝜑]𝐽2𝑛−1(𝜆2𝑛−1,𝑚𝑟)𝐾2

𝜋𝜆2𝑛−1,𝑚(2𝑛−1)(𝜆2𝑛−1,𝑚
2 +𝐾2)𝐽2𝑛−1

′ (𝜆2𝑛−1,𝑚)
  (32) 

 

Based on the aforementioned analysis of the generating 

part, the system of flow reaches a steady state 

instantaneously and finally we obtain 

 

𝑢(𝑟, 𝜑, 𝑡) = ∑
4𝑠𝑖𝑛[(2𝑛−1)𝜑]

(2𝑛−1)𝜋
∞
𝑛=1 [𝑟2𝑛−1 −

𝐼2𝑛−1(𝐾𝑟)

𝐼2𝑛−1(𝐾)
] (33) 

 

Furthermore, let 𝜑 = 𝜙 + 𝜋/2,  

 

𝑢(𝑟, 𝜙, 𝑡) = ∑
(−1)𝑛+14𝑠𝑖𝑛[(2𝑛 − 1)𝜙]

(2𝑛 − 1)𝜋

∞

𝑛=1

 

× [𝑟2𝑛−1 −
𝐼2𝑛−1(𝐾𝑟)

𝐼2𝑛−1(𝐾)
]                (34) 

 

 

This is exactly the results given by Wang et al(Wang, Liu, 

and Chang 2008), which is on the basis of steady flow 

caused solely by electroosmosis. 

 

The effects of K on the distribution of velocity inthe semi-

capillary are shown in Fig.2. As K is increased, the 

velocity contours cease to be convex and the maximum 

velocity diffuses toward the boundary of the semi-

capillary. Fig.3 presents the evolution of the velocity 

distribution in the tube for 𝜔 = 20and𝐾 = 10. As time 

elapses, it can be seen that the external AC electric filed 

causes the velocity of the fluid in the tube to oscillate. The 

maximum of velocity occurs in the center of the tube. 

1. SUMMARY AND CONCLUSION 

It has not been an accurate task to find the analytic 

solutions for time periodic electroosmotic flow (AC 

electroosmotic). In present research, we point out and 

correct the errors in the published research articles in this 

field, and we obtained an analytical solution for time-

periodic electroosmotic flow in a semicircular 

microchannel. The velocity field of the electroosmosis 

flow consists of two parts, a time-dependent oscillating 

part and a time-dependent generating or transient part. 

The transient part tends to zero very fast as time 

increases.The electroosmosis flow driven by an 

alternating electric field is not periodic in time, but 

quasiperiodic.There is a phase shift between voltage and 

flow, which is only dependent on the frequency of 

external electric field, and it is less than /2. 
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