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ABSTRACT 

This paper derives a solution for the settling velocity of isolated coplanar aggregates of n identical spherical 

particles in creeping motion based on the Wall Shear-Pressure Gradient-Expansion model (WPE) previously 

derived by the author. The solution is reached by developing geometry-equilibrium mathematical constructs 

to decide on the dimensions of the free ambient expansions surrounding the aggregates to compute the entire 

velocity profile. A rational to decide on the orientation and stability of rotation is also proposed.  The results 

compare well with the outcome of available theory and some relevant data sets. 

 

Keywords: Doublet; Triplet; Settling velocity; Wall shear; Expansion; Non spherical particles; Spherical 
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NOMENCLATURE 

 

1. INTRODUCTION 

The need for a rational approach to address 

problems in low Reynolds hydrodynamics has 

arisen throughout centuries in science and 

engineering.  Particularly, the problem of settling 

particles, affect our daily lives directly through, 

climate, potable water, waste water treatment, food 

processing, biotechnology, etc. Although, a glimpse 

to our daily lives highlights the importance of 

reaching a good understanding of settling 

phenomena the developments have been rather 

slow. Settling phenomena has been research widely 

in sedimentation, chemistry, colloidal science, 

biotechnology and hydrodynamics amongst other 

fields with a rather modest improvement.   The 

highest end of our understanding is known as 

Stokes’ law after the novel work of Gabriel Stokes 

(1851).  Stokes’ law does not need to be introduced; 

it is widely known and its derivation is readily 

available. Stokes’ law has been since, the corner 

stone of further research, to reach, 75 years later, a 

solution for the doublet by Stimson and Jeffery 

(1926). An “exact” solution for the triplet has not 

been reached.   

e tributary ratio  

emax maximum tributary ratio  

en maximum tributary ratio for a sphere in 

 an aggregate having n units  

Gs specific gravity of solid 

Gf specific gravity of fluid 

n number of spherical solid units in an aggregate 

g acceleration due to gravity 

Pf potential pressure gradient 

r radius of a sphere 

rs radius of a solid sphere 

R Radius of a spherical expansion 

Rn Radius of a spherical expansion for a sphere 

 in an aggregate having n units 

u velocity 

Vs settling velocity of a sphere 

Vsn settling velocity of an aggregate of n units 

 

φ mass expansion rate per unit velocity  

 gradient 

ρf density of the fluid 

ρs density of the solids 

μ viscosity 

ξ spherical expansion 

ξmax maximum spherical expansion 

ξn maximum spherical expansion for a  

 sphere in an aggregate having n units 

ζn ratio of the velocity of an aggregate 

 having n units with respect to the singlet 

τw wall shear 
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As noted in Johnson C. P. et al (1996), the trend of 

previous research to derive the estimation of the 

settling velocity of aggregates, has been the 

assumption that Stokes’ law is applicable. The 

relationships are then accomplished by inclusion of 

a fractal or equivalent dimension with additional 

terms to account for the influence of porosity, 

permeability, density and mass. Despite of these 

research efforts substantial deviations with respect 

to the experimental results are not uncommon.   

The fundamental assumption behind the derivations 

in this work differs from the majority of previous 

research. This paper does not follow, Stokes’ law; it 

follows the Wall shear – Pressure gradient – 

Expansion Model (WPE) proposed in Mendez, Y. 

(2011, 2012 and 2014).  The reader can refer to 

Johnson C. P. et al (1996) for further discussion and 

research references for the application of Stoke’s 

law based relationships to derive the settling 

velocity of aggregates. 

This paper is not concerned with the processes 

promoting the formation of aggregates and is only 

related to the fluid mechanisms controlling the 

velocity of aggregates of solid spheres in creeping 

motion.   

2. DATA SETS AND CORRELATIONS 

This paper proposes a solution for the settling 

velocity of coplanar isolated aggregates of solid 

spheres of equal size and density in a liquid 

Newtonian fluid with viscosity less than 0.01 Pa-s 

and velocity gradient, defined as wall shear τw 

divided by  in the order of 160 s-1. Isolated 

aggregates, in this work, refer to aggregates bonded 

together by a surface force only, as in DLVO 

theory, and their corresponding expansion.  The 

expansion limit is at some distance away from any 

solid surface or neighboring expansion so that the 

surrounding fluid is quiescent.  Ela W. P. et al. 

(1999) points out the coalescence and the fractal 

approach as the preferred available methods for 

modeling the settling behavior of aggregates and 

some of their limitations; and highlights the lack of 

experimental systems for testing of different 

configurations.  In addition to the difficulties 

pointed out by Ela, W. P., the “manufacturing” of 

spherical aggregates with precise configurations is 

still a challenging task and the difficulty of biased 

interpretations where “ambient noise”, Mendez, Y. 

(2012), has not been removed pose additional 

challenges in the design of experiments and their 

interpretation. While a number of relevant data sets 

referenced in Johnson C. P. et al (1996) are 

available, an accurate characterization of the 

geometry of individual aggregates was not made on 

those references and as such impossible to evaluate 

under this model.   In general, it appears that in 

majority, the problems associated with experimental 

settings suggest that the observed behavior for a 

given particle size exceed the actual velocity under 

ideal conditions.  Other issues, however, related to 

poor characterization of the systems, such as the 

actual particle size, the exact spherical geometry 

and the angle and space between particles may have 

resulted in observed velocities that are less than the 

ideal portrayed in our models.   The latter issues are 

expected to be rather scarce.  Although, we choose 

to exercise caution in the comparison with 

experimental data, a velocity estimation of the type 

“less than observed” is considered a better estimate 

than “more than observed”.  Some of the most 

reliable data sets, Bart, E (1959) and Eveson et al. 

(1959) for doublets of identical spheres, have been 

examined previously by Happel and Brenner (1983) 

which in general indicate that a doublet Falling 

Normal to their Line of Centres (FN) settles 42% 

faster than the single sphere and 54% faster for 

doublets Falling Parallel to their Line of Centres 

(FP) with some scatter.   Although, it is not 

attempted to model the dynamics of individual 

particles settling along identical neighboring 

particles, referred to as Unbound Aggregates (UA) 

(which appears fairly feasible), experimental results 

of this nature will be used to assess the relative 

magnitude of the forces controlling the motion and 

whether the observations support our model or not.  

Reliable data sets for triplets with rigorous 

definitions of dimensions and configuration are 

unavailable.  For reference, we consider 

measurements of settling velocity for triplets by 

Ela, W. P. (1999) which were completed in a 

continuous flow water column and normalized to 

20oC.  The experimental conditions include 

dynamics that appear difficult for interpretation of 

the settling velocity and will not be examined in 

detail.  

3. BRIEF ABOUT THE WPE 

For spheres, velocity profile within a spherical 

ambient expansion is written as: 
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where Pf is the potential pressure gradient, μ is the 

viscosity, u is velocity, r is radius and R is radius of 

the expansion. 

From r = the radius of the solid sphere rs and r = R. 

The settling velocity Vs computed at the wall of the 

solid sphere is computed as: 
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where emax is the tributary ratio defined as the ratio 

of the volume of the ambient expansion to the 

volume of the solid sphere and computed as: 

 

f

fs

P

g
e

 
max

                                           (3) 

where ρs is density of the solid sphere, ρf is density 

of the fluid and g is acceleration due to gravity. 

From the volumetric relationship between the 

volume of the ambient expansion to the volume of 

the solid, R is computed as 
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  3
1

max1 erR s      (4) 

and the potential pressure gradient as 

f
f

P



    (5) 

where φ is the mass expansion rate per unit velocity 

gradient equal to 1.148 x 10-3kg-s/m2.  

The relationships above seem to break down when 

the velocity gradient is about 160 s-1 and the 

Reynolds number for all data sets has been less than 

1.  The kinematic viscosities have been in the range 

of  1 x 10-6 and 6 x 10-7 m2/s and considered to be 

very important in deciding the applicability of the 

relationships. High kinematic viscosities and 

adhesive forces are expected to operate in different 

dynamics.  

Note the spherical expansion ξ between brackets in 

Eq. 2.  ξ is an implication of the volumetric 

relationships associated with the computation of the 

velocity by Eq. 1 and is the end result of the fact 

that the ambient expansion is emax times the 

volume of the tributary solid mass (kg/m2) of the 

particle, (and hence emax times the volume of the 

solid sphere) holding the same value for different 

particle sizes.  It is an important device as its form 

varies with the geometry and varies in magnitude 

with variations in temperature and relative 

difference of the density of the solids to the density 

of the fluid. Whenever used in the context of the 

WPE we must bear in mind that there is always a 

velocity profile involved. The expansion is a key 

insight of the WPE in the derivation of a solution 

for the spherical aggregates in this paper.  We here 

present a rational construction of the expansion 

profiles about spherical aggregates based on the 

basic understanding that its size is prescribed by the 

relative difference of density of the solids to the 

density of the fluid, the potential pressure gradient 

and available space surrounding the aggregates.  In 

essence, we are better considering ourselves 

computing shear stress and force through expansion 

dimensions that are calibrated to satisfy an 

equilibrium condition i. e. that the pressure gradient 

times the tributary volume (m3/m2) in the expansion 

must be equal to the shear stress (wall shear in 

N/m2) of the aggregate. It will be seen that 

geometric constrains to the free expansion limit the 

mobilization of stress in areas where the expansions 

overlap other expansions or solid surfaces within 

the aggregate.     

4. HYPOTHESIS 

The doublet consists of two solid spheres of radius 

rs bonded together by a surface force and two 

overlapping spherical expansions of radius R2. Note 

that two perfect spheres bonded together by a 

surface force that is equally distributed throughout 

the entire surfaces FN is an aggregate that is 

Internally Unstable (IU) for moment as the contact 

surface by itself cannot mobilize a resisting moment 

at their point of contact. The spheres unavoidably 

rotate regardless of the magnitude of the surface 

stress. Two spheres in the envisioned configuration 

can be stable against rotation if the surface force 

(stress) is not evenly distributed and/or the “double 

layer” nature of the surface force allow for the 

mobilization of a resisting moment and/or the 

spheres are not perfect and have small irregularities. 

Although, we consider perfect spherical geometries 

and expansions, the premise is that they are 

Internally Stable (IS) as there is always a resisting 

moment of sufficient magnitude at their contact 

point by any of the means envisioned. Visualizing 

the system we note: 

 The wall shear of each particle can be computed. 

 The two spherical expansions overlap. 

 The assumption of internal stability prevents 

rotation. 

We draw the following preliminary conclusions: 

 In the portion of the expansion defined by a cone 

which base is the intersection of the spheres and 

the apex is the center of the solid sphere, the 

fluid and the dynamics are not free to expand; 

and the mobilization of shear stress is limited by 

the limited space.  In further discussion, this 

configuration will be quoted as the overlapping 

expansion and the reminder of the expansion 

will be quoted as the free expansion. 

 The transfer of the submerged weight of the 

particle to the fluid by a single value of wall 

shear is not feasible due to the physical constrain 

of overlapping expansions. 

We formulate the following hypothesis for the 

dynamics of mobilization of the driving force by the 

fluid and the subsequent rational to compute the 

velocity based on understanding of the WPE:  

To satisfy equilibrium, the expansion fluid missing 

in the overlapping expansions is distributed to 

enlarge the free expansions.  As such, the 

conclusion drawn from the dynamics, that the 

expansion fluid needs to be emax times the volume 

of the spheres (to be able to mobilize the submerged 

weight), provides knowledge of the volume; the 

solution can thus be obtained by characterizing the 

dimensions of the free expansion to satisfy this 

requirement and compute the corresponding shear 

stress and velocity of the aggregate through the 

enlarged expansions. The discussion below is 

intended to test this hypothesis.  

It is important to note that the dimensions of the 

expansion are extremely important in reaching an 

accurate computation of settling velocity. As such 

the efforts made in this paper to characterize the 

geometry accurately are a key aspect of its purpose. 

5. DOUBLET 

The notation Rn, with n equal the number of 

aggregates, will be used to denote the radius of the 

spherical expansion computed about a unit of the 

aggregate containing n units.  Geometry wise the 

two overlapping expansions are two spherical caps 

whose volume V2 can be computed exactly as: 
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Where h is the distance between the spherical 

surface of the expansion and the plane tangent to 

the spheres at their point of contact measured on a 

line joining the centers.  Setting h = (R2+rs) we 

obtain: 
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We continue by noting that 2(4/3πrs3)(1+emax) 

computes the volume of the system containing the 

two spheres and expansions and two times the right 

side of Eq. 7 computes the same.  Eqs. 5 and 3 

provide the means to solve for emax and compute 

this volume. We define e2 as the maximum tributary 

volume of the doublet to satisfy R2=rs(1+e2)1/3 to 

write our equality as, 
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This simply equates Eq. 7 to the prescribed volume 

of the system.  The left side of Eq. 8 is the volume 

without the geometry and the right side the same 

volume for the given geometry. After the 

mathematical reshuffling we obtain, 
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We need to clarify e2.  The tributary volume is 

defined as the volume of the spherical system about 

a unit VR2 (or volume of the overlapping sphere) 

minus the volume of the solid sphere divided by the 

volume of the sphere. This quantity is a rigorous 

definition of the WPE resulting from the dynamics 

and the characterization of the wall shear as the 

driving force. It should be noted that the entire 

sphere defined by e2 from Eq. 9 and R2 retains a 

greater volume than 4/3πrs3(1+emax). For doublets 

e2 is to define the volumetric relationship within a 

sphere of radius R2 whose truncated expansion 

retains a volume of 4/3πrs3(1+emax).  In general 

the notation en, with n equal the number of spherical 

units within an aggregate, will be used to denote the 

volume of the n ambient truncated expansions 

divided by the volume of the n solid spheres.  

Continuing our discussion, solving for e2 in Eq. 9 

the spherical expansion ξ2 for the doublet becomes 

available as: 
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The velocity of the doublet Vs2 follows as computed 

across the corresponding truncated spherical 

expansion as: 
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, and the ratio of the velocity of the doublet with 

respect to the singlet of identical particles ζ2 is 

defined by the ratio of their corresponding 

expansions ξn (between brackets in Eq. 10).  It is 

emphasized that Eq. 9 is the mathematical construct 

allowing the construction of the expansion 

dimensions to satisfy equilibrium and geometry, Eq. 

11 with the corresponding subscript n, as in en is the 

end result of applying the dynamics in the expanded 

expansion to compute the velocity at the wall of the 

solid sphere in an aggregate having n units and Eq. 

1 with the subscripts n, as in Rn to denote the 

number of spheres forming the aggregate can be 

used to compute the velocity profile. The velocity 

profile can thus be computed from r = Rn to r = rs, 

where rs is the radius of the solid sphere. All these 

relationships are the result of a sound derivation 

from the dynamics and geometry. Hence, the goal 

for the computation of the velocity for all 

aggregates in this paper is to find the mathematical 

constructs for defining the size of the enlarged 

expansions (as portrayed by en) as they correspond 

to the number of units in the aggregates, the 

geometry and the volumetric relationships 

satisfying equilibrium. 

Noting that φ have been determined to be 

approximately 1.148 x 10-3 (kg-s)/m2, we find, the 

pressure gradient for our fluid properties as (μρf)/φ 

= 871 Pa/m and the maximum tributary ratio emax 

=  g(ρs-ρf)/Pf; where g is the acceleration due to 

gravity, is computed as 18.57 for our solid 

properties (Gs = 2.65).  After solving for e2 in Eq. 

9, the maximum spherical expansion for the singlet 

is 6.126 and 9.07 for the doublet, which indicate a 

velocity 48% greater for the doublet.  As ζ2 and in 

general ζn depend on the relative size of the 

expansions, its value is not a constant for variations 

in temperature and fluid.  Note that Stimson and 

Jeffery (1926) seem to have concluded that the 

velocity of the doublet is a single factor greater than 

the singlet for any doublet, a fact that appears very 

unlikely given the variations of the relative size of 

the expansions with temperature.  Both 

experimental results by Ela,  W.P. et al. (1999) and 

Bart, E. (1959) for the case of IS doublets FN 

indicate 40%, which correspond to a specific 

gravity of solids  Gs of about 1.8 for our fluid 

properties. Other data sets examined by Eveson, G. 

F. (1959) are for IU doublets and Unbound 

Aggregates (UA). UA to denote groups of solid 

units settling at close distances between each other 

but not touching so that their motion is influence by 

neighboring overlapping fluid expansions. Velocity 

wise, the latter condition is out of the scope of this 

work, as there is no attempt for deriving the 

velocity for this condition, shear stress wise or 

forces wise the need to examine results of this 

nature will arise in further discussion in this paper.  

6. STABILITY OF ROTATION AND 

ORIENTATION  

When one envisions a settling aggregate, the 

immediate question that arises is, what is the 

orientation of the particle as it settles?. The 

immediate conclusion of equilibrium is that for all 
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conditions, IS aggregates or singlets rotate, except, 

when the summation of moments about the center 

of mass of the system is equal to cero (ΣMc = 0).  

In this discussion we refer to an IS settling 

aggregates as Externally Stable (ES) or Externally 

Unstable (EU) when equilibrium considerations 

indicate that they do not rotate ΣMc = 0 or rotate 

ΣMc ≠ 0 respectively as it settles.  As such, notation 

of the type ISEU for Internally Stable Externally 

Unstable apply for aggregates with units in fixed 

positions with respect to each other and rotate 

overall as they settle.   

For assessment of equilibrium we need to reach an 

understanding of the forces and stresses acting on 

the particle.  For this purpose we examine data sets 

and observations of UA on the grounds of the WPE 

to determine the relative magnitude of the forces 

acting on them. The understanding reached so far 

indicate: 

A) We can compute the shear stress across a free 

expansion of given dimensions. 

B) The shear stress is reduced whenever the free 

condition is breached.  It is inferred by 

equilibrium conclusions that the total force 

mobilized across an overlapping expansion can 

be estimated as the product PfVo; where Vo is 

the volume of fluid within the overlapping 

expansions.   

Jayaweera K . 0. L. F. et al. (1964) presented in a 

straight forward manner settling experiments of 

IUSs as follows: 

1. Equal-sized spheres falling side-by-side 

2. Equal-sized spheres falling vertically one 

behind the other 

3. Two equal spheres with line of centres inclined 

to horizontal 

4. Equal-sized spheres released in a horizontal 

straight line 

5. Clusters of 3 to 6 equal spheres  

We state “a singlet surrounded by a free expansion 

is IS”.  Observations 1 to 5 indicate that the spheres 

do not rotate once they reach a certain distance 

from the cluster. 

Statement A and B hold true.  The top of doublets 

always rotate inward towards each other as the 

shear stress is less in the overlapping expansion.  In 

addition, this effect continues at some distance.   

The center of mass of the particle tends to take a 

position below the higher shear stress (or rotate 

about it) and the particles thus separate as they 

settle until the entire expansions become free.  

Moreover, in a horizontally aligned  triplet, the 

particle towards the center always advance ahead of 

the other two because the double overlapping 

expansions reduce the friction as compare to a 

single overlapping expansions for the rest.  Friction 

to denote in general, shear stress that is not being 

computed whose relative magnitude can be assessed 

by geometric considerations. 

We state “the doublet at Re (Reynolds number) 

<0.01is IS and ES”.  This doublet, released side by 

side did not separate or rotate.  The internal stability 

is presumed to be related to cohesive properties of 

the fluids employed.  At the smaller Re the cohesive 

forces in the fluid attached to the small spheres 

become significant.  The external stability will be 

addressed in fore coming discussion. 

 In addition we note:   

C) A reduction in friction occurs at the location of 

the wake which appears to extend to a greater 

distance than the expansion.  In all experiments, 

a sphere that is initially above another sphere 

accelerates to touch the leader and then slides 

round the leader to take a stable position on a 

horizontal plane.  Then rotate and separate as 

noted previously.  

We propose a simple rational to decide on the 

stability of rotation and the orientation of IS 

aggregates under the scope of this paper based on A, 

B and C.   We state “an IS doublet FP is EU”. We 

can see that the shear stress acting on its frontal face 

and the reduced friction towards the back due to A, B 

and C can be presumed to induce a pair about the 

centre of mass.  We state “an IS doublet FN is ES”.  

Again, based on A, B and C we can presume that the 

pair about the center of mass is cero.  This is also 

supported by the IS doublet at Re<0.01 which was 

observed to settle side by side without rotation. 

Equation  11 has been derived to account for the 

two identical free expansions developing freely 

across the fluid which appear to match the 

conditions of the IS doublet FN. This draws, in 

general, the conclusions regarding the computation 

accomplished by Eq. 11. 

7. TRIPLET 

We consider a triplet in its closest possible 

arrangement as shown in Fig. 1 (a).  Planes JA, JB 

and JM define the volumes that “belong” 

exclusively to each sphere.  The volume defined by 

the three expansions of radius R3 is simply three 

overlapping spheres. According to the rational 

provided for the doublet, we are able to compute the 

velocity Vs3 of the triplet across the profile of the 

truncated expansion (b). 

The volume and area of the three overlapping 

spheres is of great interest in molecular diffusion 

and other problems and not a trivial matter.  We 

embrace the problem as follows:  On Fig. 1(b) and 

(c), our goal is to subtract the volume of the system 

VSY enclosed by the segments AX and XB and the 

cord AB of the sphere of radius R3 with centre in O 

to the volume of the entire overlapping sphere VR3 

of radius R3, as shown in fig. 1(b) and (c).  AX and 

XB are tangent to the solid sphere of radius rs.  One 

of the caps (enclosed by the segments BD and the 

cord BD) of volume VC, which can be computed 

exactly as 1/3πH2(3R-H), where H is the length FG,  

is envisioned as the rotation of the other by the 

angle of rotation θ.  For spheres in their closest 

arrangement θ can be verified to be 60o.  It can be 

seen that the summation of the volume of the two 

caps is equal to the volume VSY enclosed by the 

segments AX, BX and the cord AB  plus one wedge 
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XCD of volume Vw defining the intersection of the 

caps.  We propose the following relationship for the 

volume of the wedge VW: 
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Where h is the length XE and H the segment FG 

defined previously.  Equation 12 is in a sense, an 

expansion relationship of the cap of volume VC 

whose dimension can be defined entirely by R3, rs 

and θ.  We will see how the exponents are justified 

in fore coming discussion. The VW can be seen to 

turn to VC when θ is 0 and 0 when θ is equal to the 

aperture angle of the cap α defined by the segments 

OB and OD. The segment OX can be computed as 

rs/cos(θ/2) and R3 =rs(1+e3)1/3, hence XE=h=R3-

OX or h=rs((1+e3)1/3-1/cos(θ/2)).  By definition H= 

rs((1+e3)1/3-1). Let us write Eq. 12 as per the above 

definitions:

 

Fig. 1. Geometry of the triplet and its expansion. 
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VC for the cap of height H takes the form, 
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The volume VSY then becomes available as 

VSY=2VC-Vw and the volume of the truncated 

sphere VTS in Fig. 1 (b) in a unit of the triplet equal 

the volume of the sphere VR3 (computed as 

4/3πrs3(1+e3) minus VSY. Then 3 times the volume 

of the truncated sphere equal the volume of the 

system of the triplet V3 as, 

leads to the velocity and ζ3=2.03.  Equation 16 is 

the mathematical construct to define the geometry 

of the expansion profile for the triplet which can be 

computed from r = rs to r = R3. 
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Then V3 must accommodate the prescribed volume of 3(4/3πrs3(1+emax)). Further reshuffling leads to, 
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Using the rational provided above, it can be seen 

that the volume of the expansions for the aligned 

triplet V3A can be computed as 3VR-4VC.  As per 

definitions we reach,   
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Then, 3 times the prescribed volume of the triplet 

equal V3A. The end result is written as, 
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The velocity becomes available and ζ3A=1.779. The 

relationship is the same for all triplets for which the 

truncated expansions of 2 units are not touching. 

Equation 12 appears applicable for must cases, when 

the triplet is its closest arrangement.  It can be seen 

by geometry that the formation of a wedge only 

occurs when R3 > rs/cos(θ/2) or e3 = (1/(cos3(θ/2))-

1or e3 = 0.54.   The exception occurs for the latter 

condition in which we can see that V3(e3<0.54) = 

3VR3-6VC.  The relationships can be easily derived 

but not presented because they cover cases for 

specific gravity of solids exceeding the specific 

gravity of fluids by less than about 4%. 

With regard to the stability of rotation and orientation 

of the triplet we note that the triplet always define a 

plane.  The terms FN and FP will be used in analogy 

with the doublet but in reference to the plane and not 

the line.  We state, “an IS aligned triplet and a IS 

triplet in its closest arrangement FN are ES”.  The 

equilibrium condition ΣMc = 0 is satisfied by 

consideration of A and B.  In addition we state “the 

same IS triplets FP are EU”.  ΣMc ≠ 0 as indicated 

for observations 1 to 5 by means of C and A (the 

stress on the frontal face), for clusters up to n = 6, the 

reduced friction on the back of the sphere yield for an 

acceleration of the particles following the leader to 

draw level on a symmetric arrangement.  The 

computations accomplished by the equations above 

are for free expansions and are expected to model the 

conditions of the ISES aggregates. 

8. COMPARISON WITH AVAILABLE 

THEORY AND DATASETS 

As per available theory from Stimson and Jeffery 

(1926) the doublet is expected to settle by a factor 

of 1.42 faster than the singlet. This value compares 

well with some experimental data from Bart, E 

(1959) and Eveson et al. (1959) with significant 

scatter. The computed expansion ratio ζ2 for specific 

gravity of solids of 2.65 in water at 20o C is 1.48 

using this model. Note that the expansion ratio is 

not constant and as such, ζ2 varies with temperature 

and fluid. For example, using the same properties 

except temperature at 15 o C, ζ2 can be verified to be 

1.46. Also, using the relationships controlling the 

expansion size and pressure gradient, a specific 

gravity of solids of about 2.1 in water at 20o C 

would have yielded the factor derived by these 

authors.  

Ela, W. P. et al. (1999) measured ζ3 ≈ 1.5 for their 

experimental conditions (in a continuous flow water 

column and normalized to 20oC) and computed 

coalesced ζ3 ≈ 2.07. ζ3 computed using this model 

delivered 2.03 for the same solid and fluid 

properties of the doublet. The same remarks above 

for the doublet apply for the triplet with regard to 

the expansion ratio.  

The hypothesis behind these derivations appears 

reasonably justified by the evidence.  

9. MORE THAN THREE SPHERES 

The consideration in this section is for spheres in 

their closest arrangement as shown in the coplanar 

aggregate of 35 spheres shown in Fig 2. By adding 

spheres to the triplet on the same plane we note:  

 a hexagonal honeycomb like structure forms by 

joining lines tangent to the spheres at their point of 

contact,   

 the lines define the truncated expansions that 

“belong exclusively” to each sphere when we 

extend them in a “radial” direction to the limits of 

the expansion, 

 n aggregates define L number of lines and S 

number of vertices within the honeycomb 

arrangement.  

 

 
 

 

Fig. 2. Coplanar aggregate of 35 spheres 

It can be seen in Fig. 2 that the geometry at each 

vertex is the same geometry studied for the triplet. 

i.e. when we remove six caps from the three spheres 

we are in addition subtracting three additional  

wedges, as every pair of caps that overlap duplicate 

a wedge.  The volume of the plane aggregate of n 

spheres Vn is defined as Vn = n(VRn) - 2L(VC) + 

3S(VW).  Where VRn has been defined as the 

volume of one spherical system (without removing 

the overlapping caps) in an aggregate containing n 

units. According to the WPE the requirement for 

equilibrium of forces dictate that the volume of the 

aggregate Vn is to satisfy n(4/3πrs3(1+emax)) = Vn.  

Fig. 2 shows a plane aggregate of 35 spheres for 

which L = 82 and S = 48. 

Substituting our definitions for Vn we obtain  
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and emax is thus  
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an aggregate of 8 spheres, L = 14 and S = 7 

yielding ζ8=3.51 and for Fig. 2, ζ35=4.97. Note that 

due to the inexact calculation of the volume of the 

wedge Eq. 20 is to revert into the complex numbers 

to find a solution when n increases to a certain 

number.   One thing we know by simple geometric 

considerations is that when n tends to infinite, the 

volume of each “hexagonal spherical expansion” 

within Fig. 2 will tend to be 4/3πrs3(1+emax) thus 

reaching a stable quantity and velocity as for a 

slender plate described by Mendez Y. (2014).  Also, 

note that the ratios L/n and S/n will tend to 3 and 2 

respectively at infinite turning the coefficients of 

the second and third term into 6. The exactness of 

the computation of the volume of the wedge can 

hence be refined by finding the greatest integer 

exponent p on (hp/Hp-1) that satisfy Eq. 20 with the 

coefficient 6 at infinite for the second and third 

term. With the exponent p = 6 we reach e∞ = 81.46 

for emax = 18.57 and ζ∞=5.94. For exponents less 

than 6 the relationship starts reverting slowly 

towards the complex numbers and for greater 

exponent it reverts upon reaching the exponent 7.  

We have inferred that the maximum accuracy is 

obtained from the exponent 6.  Note the difference 

between ζ∞ (5.94) and ζ35 (4.97). Although in 

natural or experimental conditions the coplanar 

configuration should be extremely rare, it can be 

seen that adding units to the arrangement does not 

further limit the available space in the truncated 

expansion to allow for the fluid response 

individually.  The equations developed for the plane 

condition should not be taken as to suggest that the 

increase in velocities for three dimensional 

arrangements of n units is as low as those suggested 

by the coplanar condition.  This can be seen when 

we note that the volume density of fluid η defined 

as the volume of fluid and the volume of solids 

within an aggregate (commonly quoted as porosity) 

can be as low as 0.5 or less, as opposed to the 

tributary volume in the order of 18 to allow for the 

fluid response.  The limited space hence mandate 

the mobilization of force through the “shell” of the 

aggregate and the increase of velocity with the n 

units is much greater than for the plane condition.  

The relationships for the three dimensional 

condition are being studied and will be the subject 

of a future article. 

Finally, the same considerations apply for the 

stability of rotation and orientation of the coplanar 

aggregates in its closest arrangement so that we 

conclude that the IS coplanar aggregate of n units 

FN is a ES and Eq. 11 with the corresponding 

subscripts is deemed to accomplish the computation 

for the velocity under this orientation.   

The relationships for the aligned aggregate of n 

units can be easily developed by similar geometric 

considerations and there is no need to present them. 

10. CONCLUSION 

The settling velocity of particles and aggregates is a 

poorly understood subject.  The model presented 

has been envisioned to satisfy equilibrium 

considerations under fluid dynamics and appears in 

fair agreement with available experimental data and 

theory. Although, a rational solution for the 

problem of the triplet has appeared for many years 

as an overwhelmingly difficult task the WPE offers 

a simple rational to embrace an intuitively plausible 

solution for the problem, easy to follow by non 

specialists.   

The geometries associated with aggregates entrain 

problems that have not been solved by geometry. 

The use of computer software, however have 

decreased this difficult problem and the application 

of the WPE in combination with software appear to 

have great potential for the solution of practical 

problems and additional research needed in this 

field.  
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