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ABSTRACT 

In the present paper, the stability of a compressible rotating Walters’ B' viscoelastic fluid through a porous 

medium is considered in the presence of uniform vertical magnetic field, Hall current and suspended particles. 

It is found that the region of stability increases with the increase in magnetic field, rotation and 

compressibility and it decreases with the increase in suspended particles and Hall currents. Also, it has been 

established that the medium permeability has destabilizing effect in the absence of rotation while in the 

presence of rotation it may have stabilizing effect on the system. Graphs are plotted to find the region of 

stability in the presence of various physical parameters like Hall current parameter, suspended particles, 

rotation, magnetic field and medium permeability. The principle of exchange of stabilities holds good under 

certain conditions and the modes may be non-oscillatory or oscillatory. 
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1. INTRODUCTION 

The basic concepts of fluid mechanical phenomena 

have been given in Bansal (2004) and Gupta and 

Gupta (2013) to understand various fascinating and 

diverse applications of fluid mechanics. A 

comprehensive and detailed overview of the onset 

of thermal stability of an incompressible Newtonian 

fluid has been well documented by Chandrasekhar 

(1981) and Drazin and Reid (1981).  Rayleigh 

(1883) studied the character of equilibrium of an 

inviscid and incompressible fluid with vertical 

density variation. For the case of compressible 

fluids, the governing equations become quite 

tedious. To overcome this situation, Boussinesq 

tried to justify the approximation for compressible 

fluids when the density variations are mainly due 

to thermal effects in the equations of motion. 

Spiegel and Veronis (1960) have simplified the 

system of equations for compressible fluids by 

assuming that the vertical height of the fluid is 

much smaller than the scale height as defined by 

them and the perturbations in density, temperature 

and pressure do not exceed their total static 

variations. The effects of suspended particles on 

various stability problems have relevance 

importance in several scientific and engineering 

applications such as geophysics, chemical 

engineering and astrophysics. In geophysical 

situations, the fluid is generally not pure but 

contains some dust particles. In astrophysical 

context, a comet consists of a dusty snowball which 

is a mixture of frozen gases and changes from solid 

to gas and vice-versa. Scanlon and Segel (1973) 

have investigated the effect of suspended particles 

on Bénard convection and found that the critical 

Rayleigh number was reduced solely because the 

heat capacity of the pure gas was supplemented by 

the particles. So the effect of suspended particles 

was to accelerate the onset of convection. The 

thermal instability problems of compressible fluids 

with Hall currents and suspended particles through 

a porous medium have been studied by Sharma and 

Gupta (1993). Sharma and Aggarwal (2006) have 

studied the effect of compressibility and suspended 

particles on thermal stability in a Walters’ (model 

B') elastic-viscous fluid in hydromagnetics.  

Bhatia and Steiner (1973) have studied the problem 

of thermal instability of a Maxwellian visco-elastic 

fluid in the presence of a magnetic field and found 

that the magnetic field has a stabilizing influence on 

the overstable mode of convection in a visco-elastic 

fluid layer. Kumar et al. (2010) have studied the 

thermal convection in a Walters’ (model B') elastic-

viscous dusty fluid in hydromagnetics under the 

influences of compressibility and rotation. There 
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are many elastico-viscous fluids that cannot be 

characterized by Oldroyd’s constitutive relations or 

Maxwell’s constitutive relations. Two such classes 

of fluids are Walters’ B' fluid and Rivlin-Ericksen 

fluid. Walters’ (1962)  reported that the mixture of 

polymethyl methacrylate and pyridine at 250C 

containing 30.5g of polymer with density 0.98g per 

litre behaves very nearly as the Walters’ B' fluid. 

Walters’ B' fluids have relevance importance in 

agriculture, plastic industry, chemical technology, 

petroleum industry, industrial technology, food 

processing industry and polymer industry. Polymers 

are used in the manufacture of contact lenses, seats, 

foam, plastics, space crafts, tyres, rubber, belts, load 

carrying ropes, communications appliances, 

cushions, adhesives etc.  

Thermal convective instability through a porous 

medium has merited extensive attention over the 

years and is of fundamental importance in a wide 

range of scientific and technical purposes like 

solidification, chemical processing industry, 

geophysical fluid dynamics, petroleum industry, 

recovery of crude oil from earth’s interior etc. A 

porous medium is defined as a solid with inter-

connected voids. A detailed study of convection 

through porous medium has been covered 

extensively in Nield and Bejan (2006). Liquid 

saturated porous material are often present on and 

below the surface of the earth in the form of dust 

particles, limestone and other sediments permeated 

by groundwater or oil. Recently, the development 

of geothermal power resources has increased 

considerable attention in convection through porous 

medium. The gross effect when the fluid slowly 

percolates through the pores of a homogeneous and 

isotropic medium is governed by Darcy’s law 

which states that the usual viscous term in the 

equations of motion of fluid is replaced by the 

resistance term  '

1

1

k t
 

  
   

  
q , where µ, 

'
 ,

1k

and q denotes, respectively, the viscosity, visco-

elasticity, medium permeability and Darcian (filter) 

velocity of  Walters’ B'  fluid.  

If an electric field is imposed at right angle to the 

magnetic field strength then the whole current will 

not flow along the direction of electric field. This 

nature of the electric current to flow across an 

electric field in the presence of magnetic field is 

known as Hall effect. Hall current plays an 

important role in many geophysical and 

astrophysical problems as well as in flow of 

laboratory plasmas. Sunil et al. (2000) have studied 

the effect of Hall currents on thermal instability of 

Walters’ (model B') fluid. Gupta and Aggarwal 

(2011) have investigated thermal instability of 

compressible Walters’ (model B') fluid in the 

presence of Hall currents and suspended particles 

and found that compressibility and magnetic field 

have a stabilizing effect whereas Hall currents and 

suspended particles have destabilizing effects. Rana 

(2013) has discussed the problem of thermosolutal 

convection in Walters’ (model B') rotating fluid 

permeated with suspended particles and variable 

gravity field in porous medium in hydromagnetics. 

The Magnetohydrodynamic thermoconvective 

problems of Walters’ B' fluid including the effects 

of various parameters like rotation, variable gravity 

and suspended particles through a Brinkman porous 

medium have been studied by Kumar et al. (2013). 

Keeping in mind, the importance and applications 

of non-Newtonian elastico-viscous fluids in 

Geology, Petroleum Industry, Chemical 

Technology, and various applications mentioned 

above, the study and investigations have become 

important and attractive on such fluids. Stability is 

discussed analytically as well as graphically. 

2. MATHEMATICAL FORMULATION OF 

THE PROBLEM 

We consider a static state, in which a compressible 

Walters’ B' visco-elastic fluid of depth d is arranged 

in horizontal strata in a porous medium of porosity

and permeability k1. The system is assumed to be 

rotating with angular velocity Ω (0, 0, Ω) along the 

vertical axis. A uniform vertical magnetic field 

intensity H (0, 0, H) pervade the system. A 

temperature gradient
dT

dz
   is maintained by 

underside heating. Both the boundaries are taken to 

be free and perfect conductors of heat. The pressure 

p, density  , viscosity  and viscoelasticity 

depend upon the vertical co-ordinate z- only. The 

character of equilibrium of this initial static state is 

determined by supposing that the system is slightly 

disturbed and then following its further evolution. 

Let , , , , ,ij ij ij ij i iT e q and x   denotes the stress 

tensor, shear stress tensor, rate of strain tensor, 

Kronecker delta, velocity vector and position 

vector, respectively. The constitutive relations for 

the Walters’ B' viscoelastic fluid are 

  1
, 2 ,

2

i
ij ij ij ij ij ij

j

j i

vv
T p e e

t x x
    

         
   

 

(1) 

The governing mathematical equations of motion 

and continuity relevant to the problem are 

 

     

1

0

1 1
.

2

4

e

p
t k t

K N


  





    
              


    
 

i

d

q
q q X q

q ×Ω q - q H H

     (2) 

 . 0
t





   


q                                          (3) 

Where  , , , , , , ,0N x te     q,qd denote, 

respectively, the density of compressible fluid, 

kinematic viscosity, kinematic visco-elasticity, 

magnetic permeability, co-efficient of volume 

expansion, velocity of pure fluid, velocity of 

suspendzed particles and number density of the 

suspended particles. The symbol iiX = -g  

represents external force term due to gravity 

variation,  , ,x x y z  and 6K    where 

being particle radius, is the Stokes’ drag coefficient. 
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The presence of suspended particles adds an extra 

force term, in equation of motion, proportional to 

velocity difference between particles and fluid. 

Since the force exerted by the fluid on the particles 

is equal and opposite to that exerted by the particles 

on the fluid, there must be an extra force term, 

equal in magnitude but opposite in sign, in the 

equations of motion for the particles. Inter-particle 

reactions are ignored as the distances between the 

particles are assumed to be quite large compared 

with their diameters. The effects of pressure, 

magnetic field and gravity on the particles are very 

small and hence ignored. 

If 0mN  is the mass of particles per unit volume, 

then the equations of motion and continuity for the 

particles are: 

   0 0

1
mN K N

t

 
     

d
d d d

q
q . q q - q        

 

(4) 

 0
0. 0

N
N

t


  


dq                                       

 

(5) 

Let ρ ,c ,c ,c ,Tand ks s v pt  denote, respectively, the 

density of solid material, heat capacity of solid 

material, the specific heat at constant volume, heat 

capacity of suspended particles, the temperature and 

the effective thermal conductivity of the pure fluid. 

Assuming that the suspended particles and the fluid 

are in thermal equilibrium, the equations of heat 

conduction gives: 

   

2
0

1 .

.

v s s v

pt

T
c c c T

t

mN c T k T
t

  


       

 
      

 
d

q

q

                (6) 

The Maxwell’s equation yields 

 

 

2

4

t

N e






    




    

H
q × H H

H × H

                (7) 

. 0 H                                   (8) 

Where η, N and e  denote the electrical resistivity, 

electron number density and the charge of an 

electron, respectively. 

The steady state of the system is  

       

  0

0,0,0 , 0,0,0 , , ,

, , tan .

p p z z

T T z N cons t

    

   

dq q

H = 0,0,H
          

(9) 

Following any state variable X can be expressed in 

the form 

     , , , , , ,0f x y z t f f z f x y z tm       (10) 

Where mf  stands for the constant space 

distribution of f, 0f  is the variation in the absence 

of motion and  , , ,f x y z t stands for the 

fluctuations in f resulting from the motion of fluid. 

According to Spiegel and Veronis (1960), it has 

been shown that the equations governing for 

compressible fluids are equivalent to those for 

incompressible fluids if the static temperature 

gradient   is replaced by its excess over the 

adiabatic gradient
p

g

c

 

 
 
 

. 

Where 

 

 

   

0

0

0

1
, ,

1 1
, ,

.

m m
m

m m

m m

m m

z

m m

T T
T T z

K p p

K
T p

p z p g dz


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 


 

 

  
    

   

   
     

    

  
              

(11) 

Where 0 and 0T  stands for the density and 

temperature of the fluid at the lower boundary 

whereas andm mp  stands for a constant space 

distribution of pressure p and density 

respectively. 

3. MATHEMATICAL ANALYSIS AND 

DISPERSION RELATION 

Here, we shall analyze the stability of the basic state 

defined by Eq. (9) by applying usual perturbation 

technique. Let q (u,v,w), qd (l,r,s), N, θ, p ,  and

 x y zh h ,h ,h denote, respectively, the perturbation 

in fluid velocity q(0,0,0), the perturbation in 

particle velocity qd (0,0,0), perturbation in particle 

number density 
0N , temperature T, pressure p, 

density   and magnetic field H. The density 

variation   due to temperature perturbation θ is 

given by 

.m                    (12) 

Then, the linearized perturbation equations 

governing the motion of fluid are 

 

     

1

1 1 1

2

4

i
m m

e

m m

p
t k t

K N


   

 



 

   
             


   
 

d

q
g q

q ×Ω q - q h × H

   (13) 

. 0 q                                         (14) 
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1
m

K t

 
  

  
dq q                                           (15) 

    2

p

E b b
t c


  
 

       
   

g
w s             (16) 

 . 0
N

N
t


  


dq                         (17) 

. 0 h                                                                (18) 

   2

4t N e




 
           

h
H q h h H     (19) 

Where 

   
0

0 0 11 ,, ,, ,
pts s

i
m v m v m v

mN CC k
E b

C C C


 

  

 
    

 


 
And w, s, be the vertical fluid and particle velocity, 

respectively.  

Writing Eq. (13) in component form and 

eliminating p  between them on using Eqs. (14) 

and (15), we obtain 

 

 

 

2 '

' '
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2 2
2 2

2 2 '

2

' '

1 1
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1

2
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m

e
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






       
         

        

     
              

      
       
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z

w

w w g

HΩ ζ
h

  (20) 

where
2 2 2

2

2 2 2x y z

  
   
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is the three dimensional 

Laplacian operator.  

'

' '
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 


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       
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         

ζ
ζ

Hζ ξ Ω w
 (21) 

Where 
x y

 
 
 

y x
h h

ξ  is the z-component of 

current density and 
x y

 
 
 

v u
ζ  is the z-

component of vorticity.  

Equation (16) with the help of Eq. (15) gives 
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m
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 



    
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(22) 

Equation (19) along with Eq. (18) gives 
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Where 
4 N e





1

H
M is the Hall current parameter 

and 0N
M

N


 is the ratio of particle number 

densities. 

Now, analyzing the perturbation quantities using 

normal mode method by considering solution with a 

dependence on x, y and t of the form: 

     
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W S
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Z K X
     

(25) 

Where  2 2 2k k kx y  , is the resultant wave 

number of the disturbances and n  be the frequency 

of the harmonic disturbance, which is, in general, a 

complex constant. 

Now, the dimensionless and linearized perturbation 

equations on using Eq. (25) in Eqs. (20) to (24), 

become 
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1H M
K W X  (29) 

 
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2 2

2 2

2

D a d
D D D a

p d


 

            
  

1H M
X Z K  (30) 

where the following non-dimensional quantities and 

parameters are introduced: 
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k
P

d
  is the dimensionless medium 

permeability,  1p



 , is the thermal Prandtl 

number, 2p



  , is the magnetic Prandtl number. 

The exact solution for the lowest mode subject to 

the boundary conditions (for the case of two free 

boundaries),  

W = D2W =0, DZ =DK=0  

and 0  at z = 0 and 1.               (31) 

is defined as  

0 sinW W z                                                   (32) 

where W0   is a constant. 

Eliminating K, Θ, X and Z between Eqs. (26) to 

(30) and using Eqs. (31) and (32), we obtain the 

dispersion relation 

 

 

 

 

   

 

     

 

1 1 1
1 2

1 1

2
1 1

2
1 1

1
1 1 1

2
1 1 1 2 1

2
1 2 1

2
2

1 2 1 2 1

1 2 1

1

1

1
1 1

1

1

1 1 1

1

1 1 1

1

x E p iG
R

G x B i

i f F i
x

Pi

Q
x E p i

x x E p i x p i

Q x p i

M x x p i x p i

Q x p i



  

  

  



  

 

  



 
   

   
   

 

   
    

    

  


 
     


  

  

       
 

    

 

1

2

2
1 1 1

2 2
1 1 2 1

1
1

1 1

AT

i f F i Q

Pi x p i

  

    

 
 
 
 
 
 
 
 
 
 
 
 
 


 


 


 


 
 
 
  

   
               

 (33) 

where 
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2
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g d

R

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  is the thermal Rayleigh number, 

2 2

,
4

e

m

H d
Q


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  is the Chandrasekhar number and 

2
22

,A

d
T



 
  
 
 

 is the Taylor number. 

Equation (33) is required dispersion relation 

accounting the effects of rotation, Hall currents, 

compressibility, magnetic field and medium 

permeability on thermal instability of Walters’ 

(model B') elastico-viscous fluid permeated with 

suspended particles through a porous medium. 

4. RESULTS AND DISCUSSION 

4.1  Case of Stationary Convection 

When the instability sets in as stationary 

convection, the marginal state will be characterized 

by putting 0  in Eq. (33) then the Rayleigh 

number reduces to 

 

 
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                  
  

   
 

(34) 

which expresses the modified Rayleigh number R1 

as a function of the dimensionless wave number x 

and the parameters
1AT , B , P , 1Q , 1M . Hence, it 

is clear that for stationary convection Walters’ 

(Model B') elastico-viscous fluid behave like an 

ordinary Newtonian fluid since elastico-viscous 

parameter F vanishes with   . 

In the absence of rotation and porous medium

 
1

. . 0, 1, 1Ai e T P   , Eq. (34) reduces to:

 

 
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2
1 12

1
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11
1

1 1 1
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R x

G xB x M x Q

                       
 

(35) 

Which is identical with the expression derived by 

Gupta and Aggarwal (2011). 

In the absence of Hall currents, Eq. (35) yields 

 
 

2
1 1

1
1

1

xG
R x Q

G xB

          
                  (36) 

Which is identical with the expression derived by 

Sharma and Aggarwal (2006). 

From Eq. (34), we obtain 

1 1
1

G
R R

G

  
  

 
                                                

(37) 
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Where 1R and 1R 
denote, respectively, the critical 

Rayleigh numbers in the presence and absence of 

compressibility. The negative and infinite values of 

critical Rayleigh number for G<1 and G=1 are not 

relevant for the problem under consideration. Hence 

the effect of compressibility is to postpone the onset 

of thermal convection. 

To study the effects of suspended particles, Hall 

current parameter, rotation, magnetic field and 

medium permeability, we will examine the 

behaviour of 

1

1 1 1 1 1

1 1

, , ,
A

dR dR dR dR dR
and

dB dM dT dQ dP
 

analytically. 

Equation (34) gives 
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(38) 

   

    

2
2

1 1
1

2
1

1 1

11

1 1 1

Q x QxdR G

dM G xB x M x Q

                       

 (39) 

Equations (38) and (39) show that suspended 

particles and Hall currents have a destabilizing 

effect on the system. These destabilizing influences 

of suspended particles and Hall currents agree with 

the previous work reported by Gupta & Aggarwal 

(2011). 

Equation (34) also yields 
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(40) 
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  (41) 

Equations. (40) and (41) show that rotation and 

magnetic field have stabilizing effects on the 

system. These stabilizing effects are an agreement 

of the earlier works of Sharma and Aggarwal 

(2006) and Gupta and Aggarwal (2011). 

From Eq. (34), we also get 

     
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 (42) 

From Eq. (42), we observe that in the absence of 

rotation, medium permeability has destabilizing 

effect whereas in the presence of rotation, it has 

destabilizing effect when

  
2 2

11 A lx Q P T P     and stabilizing effect 

when   
2

2

1

1
A l

x Q P T P    . 

The dispersion relation (34) is analyzed 

numerically. Graphs have been plotted for various 

values of the parameters for determining the region 

of stability. 

Fig. 1. Variation of Rayleigh number 1R  with 

suspended particles B for G=10, 
1

AT = 10 , M1 

=10, Q1 = 50, 0.1 , 0.1P   for fixed wave 

numbers x = 0.2, x = 0.4, x=0.6 and x = 0.8. 

 

Fig. 2. Variation of Rayleigh number 1R  with 

rotation
1

AT  for G=10, 10B  , M1 =10, Q1 = 50, 

0.1 , 0.1P   for fixed wave numbers x = 0.2,     

x = 0.4, x=0.6 and x = 0.8. 

Figures 1 and 5 show the decrease in the values of 

Rayleigh number 1R  with the increase in 

suspended particles B, Hall current parameter M1, 

respectively. This shows that the effect of 

suspended particles and Hall currents is to 

accelerate the onset of convection. Figures 2 and 3 

show that the values of Rayleigh number 1R

increases with the increase in rotation TA  and 

magnetic field Q1, respectively, thereby depicting 

the stabilizing effects of rotation TA and magnetic 

field Q1. 

0

100

200

300

400

500

600

700

0 20 40 60

R
ay

le
ig

h
 N

o
. 

R
1

Suspended Particles B

X=0.2

X=0.4

X=0.6

X=0.8

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60

R
ay

le
ig

h
 N

o
. 

R
1

Rotation TA

X=0.2

X=0.4

X=0.6

X=0.6



K. Kumar et al. / JAFM, Vol. 8, No. 3, pp. 419- 427, 2015.  

425 

Fig. 3. Variation of Rayleigh number 1R  with 

magnetic field Q1 for G=10, B=10, 
1

AT = 10 , M1 

=10, 0.1P  , 0.1  for fixed wave numbers x 

= 0.2, x = 0.4, x=0.6 and x = 0.8. 

Fig. 4. Variation of Rayleigh number 1R  with 

medium permeability P  for G=10, B=10,

1
AT = 10 , M1 =10, Q1 = 50, 0.1  for fixed wave 

numbers x = 0.2, x = 0.4, x=0.6 and x = 0.8. 

 

Fig. 5. Variation of Rayleigh number 1R  with 

Hall current parameter M1 for G=10, B=10, 

1
AT = 10 , Q1 =50, 0.1P  , 0.1  for fixed 

wave numbers x = 0.2, x = 0.4, x=0.6 and x = 0.8. 

Figure 4 shows that the medium permeability has a 

destabilizing effect for P=0.1 to P=0.2 and 

stabilizing effect for P=0.2 to P=1.2. Therefore, 

medium permeability has both stabilizing and 

destabilizing influences on the system. 

5. PRINCIPLE OF EXCHANGE OF 

STABILITIES AND OSCILLATORY 

MODES 

To determine the possibility of oscillatory modes, if 

any for the problem on hand, we multiply Eq. (26) 

by W  (complex conjugate of W) and using Eqs. 

(27) to (30) together with the boundary condition 

(31), we obtain 
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  (43) 

where 
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In the above integrals   denotes the complex 

conjugate of . The integrals 1 8I I are all positive 

definite. 

Putting ii   in Eq. (43), where i  is real and 

equating the imaginary part of Eq. (43), we obtain 
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Equation (44) yields that 0i   or 0i   which 

mean that modes may be non oscillatory or 

oscillatory. The oscillatory modes introduced due to 

presence of rotation, magnetic field (or Hall 

currents) and visco-elasticity. In the absence of 

magnetic field, rotation and visco-elastic parameter, 

Eq. (44) gives 
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(45) 

It is evident from Eq. (45) that if 1 and 1B G 

then the term inside the bracket is positive which 

implies that 0i  , and only non-oscillatory modes 

are prevail which implies that the principle of 

exchange of stabilities will hold good for the 

problem under consideration. 

Thus 1 and 1B G   are the necessary conditions 

for the validity of principle of exchange of 

stabilities for the problem of thermal convection in 

Walters’ (model B') visco-elastic compressible fluid 

permeated with suspended particles in the presence 

of rotating, magnetic field and Hall currents in a 

porous medium. 

6. CONCLUSION 

In the present note, the problem of thermal 

convection in Walters’ (model B') visco-elastic 

compressible fluid permeated with suspended 

particles in the presence of rotating, magnetic field 

and Hall current in a porous medium is studied 

using usual perturbation technique. It is found that 

for the case of stationary convection, Walters’ (B') 

elastico-viscous fluid behaves like an ordinary 

Newtonian fluid. We have also investigated the 

effect of various parameters of physical importance 

like suspended particles, Hall current parameter, 

rotation, compressibility, magnetic field and 

medium permeability. The effect of suspended 

particles and Hall current parameter is to destabilize 

the system whereas magnetic field, rotation and 

compressibility are found to have stabilizing effect 

on the system. The medium permeability has both 

stabilizing and destabilizing effect on the system 

under certain conditions. The oscillatory modes 

prevail in the system due to the presence of 

presence of rotation, magnetic field (or Hall 

currents) and visco-elastic parameter. The necessary 

conditions for the validity of principle of exchange 

of stabilities in the absence of magnetic field (or 

Hall currents), rotation and visco-elastic parameter 

are also obtained. 
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