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ABSTRACT 

The stagnation point flow of thixotropic fluid towards a linear stretching surface is investigated. Mass transfer 

with first order chemical reaction is considered. The resulting partial differential equations are reduced into 

the ordinary differential equations. Dimensionless velocity and concentration fields have been computed. 

Graphical plots are presented to illustrate the details of flow and mass transfer characteristics and their 

dependence upon the physical parameters. Numerical values of surface mass transfer are first computed and 

then analyzed. 
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1 2,K K  

1 2,R R  

Re  

         stagnation point parameter  

         concentration  

       concentration at the wall  

         ambient fluid concentration  

       mass diffusion coefficient  

         dimensionless velocity  

       mass flux  

         reaction rate  

         thixotropic parameters  

       material parameters  

         Reynolds number  

Sc  

Sh  

eu  

wu  

,u v  

 
  

  

  

  

  

       Schmidt number  

         Sherwood number  

         free stream velocity  

       stretching velocity  

         velocity components  

 

       kinematic viscosity  

       dimensionless variable  

       dimensionless concentration  

       chemical reaction parameter  

         fluid density  

 

1. INTRODUCTION 

A significant research effort has been made to 

explore the rheological characteristics of non-

Newtonian fluids during the last few decades. In 

particular, such fluids are quite common in process 

of manufacturing coated sheets, foods, optical 

fibers, drilling muds, plastic polymers etc. A 

diverse body of conducted research has 

demonstrated that non-Newtonian fluids cannot be 

described by a single constitutive relationship. Thus 

a number of non-Newtonian fluid models have been 

proposed. In general, the modelled equations in the 

non-Newtonian fluids are complicated and higher 

order than the Navier-Stokes equations. The non-

Newtonian fluids are mainly classified into three 

categories namely the differential, rate and integral. 

In existing literature, much attention has been 

devoted to the flows of second grade and Maxwell 

fluids. Although a wide range of theoretical studies 

have been performed for second grade and Maxwell 

fluids but few recent refs. in this regard may be 
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mentioned through the attempts by (Jamil and 

Fetecau (2010), Wang and Tan (2011), Jmail et al. 

(2011), Hayat et al. (2011), Ahmad and Asghar 

(2011), Rani and Reddy (2013) and Rashad et al. 

(2013)). In addition many materials including 

drilling muds, clays, certain oils, cosmetic products, 

colloids and suspension etc. become less viscous 

when stirred. Materials with such behavior are 

called thixotropic fluids. The difference between 

thixotropic and shear thinning fluid is that a shear 

thinning fluid shows a decrease in viscosity with 

increasing shear rate while thixotropic fluid 

displays a decrease in viscosity over time at 

constant shear rate. The details of the characteristics 

and restrictions on the sign and magnitude of 

thixotropic fluid model can be seen in the study 

Sadeqi et al. (2011). Shehzad et al. (2013) studied 

the boundary layer flow of thixotropic fluid under 

thermal stratified, thermal radiation and mixed 

convection. Hayat et al. (2013) invsetigated the 

hydromagnetic radiative flow of thixotropic fluid 

with variable thermal conductivity. Newtonian 

heating effect in boundary layer flow of thixotropic 

fluid has been explored by Awais et al. (2013). 

The stagnation point flow over a stretching sheet 

has great concern in extrusion process, paper 

production, drawing of plastic sheets, continuous 

casting etc. Considerable progress has been made 

regarding the stretching and stagnation point flows 

in the past. Chiam (1994) studied the two-

dimensional stagnation-point flow of viscous fluid 

towards a linear stretching surface. In this study, the 

stretching velocity is taken equal to the free stream 

velocity and consequently no boundary layer is 

observed. Mahapatra et al. (2009) examined the 

stagnation point flow when stretching and free 

stream velocities are different. They found that 

boundary layers exist in this situation. The effect of 

thermal radiation on magnetohydrodynamic 

stagnation point flow in a porous space with mixed 

convection has been investigated by Hayat et al. 

(2010). Slip and heat transfer effects on boundary 

layer stagnation point flow of viscous fluid towards 

a shrinking surface are studied by Bhattacharyya 

(2011). Boundary layer stagnation point flow of 

viscous fluid and heat transfer with thermal 

radiation has been examined by Bhattacharyya and 

Layek (2011). Hayat et al. (2011) investigated the 

stagnation point flow of Maxwell fluid over a 

stretched sheet with mass transfer. Melting heat 

transfer in the stagnation point flow of Powell-

Eyring fluid was studied by Hayat et al. (2013). 

Shateyi and Makinde (2013) considered the 

stagnation point flow over a convectively heated 

disk. Hayat et al. (2013) investigated the stagnation 

point flow of Maxwell fluid with convective 

boundary condition and thermal radiation. MHD 

axisymmetric stagnation point flow over a shrinking 

sheet has been explored by Mahapatra and Nandy 

(2013). Singh and Sharma (2014) discussed the heat 

and mass transfer effects in boundary layer flow 

near a stagnation point. 

Many practical diffusive operations involve the 

molecular diffusion of species in the presence of 

chemical reaction within or at the boundary. There 

are two types of chemical reaction namely 

homogenous and heterogeneous. Homogenous 

reaction exists uniformly throughout a given phase 

while the heterogeneous reaction occurs in a 

restricted region (or within the boundary of a 

phase). The flow analysis with heat and mass 

transfer in presence of chemical reaction is 

important in chemical and hydrometallurgical 

industries. For instance, smog formation represents 

a first order homogenous chemical reaction. Having 

these facts in mind, the object of current study is to 

investigate the stagnation point flow of thixotropic 

fluid towards a stretching surface with chemical 

reaction. First order chemical reaction is 

considered. In all the above reported studies of the 

thixotropic fluid deal in the absence of stagnation 

point flow, mass transfer and chemical reaction. 

The present study deals with the stagnation point 

flow of thixotropic fluid in presence of mass 

transfer and chemical reaction. The relevant 

nonlinear problem is solved by homotopy analysis 

method (HAM) by Liao (2003), Yao (2009), 

Vosughi et al. (2011), Rashidi et al. (2011), 

Turkyilmazoglu (2012), Shehzad et al. (2013), 

Malvandi et al. (2014) and Hayat et al. (2014). 

Convergence of the obtained solutions is checked. 

Influence of pertinent parameters on the flow 

quantities is addressed. 

2. DEFINITION OF FLOW PROBLEM 

We consider the stagnation point flow of an 

incompressible thixotropic fluid towards a 

stretching sheet with chemical reactive species A 

first order chemical reaction is considered. The 

sheet is stretched with a velocity  ( )wu x cx   

(where  c   is a constant). We choose the Cartesian 

coordinate system in such a way that x  axis is 

along the stretching surface and y  axis 

perpendicular to it. The equations governing the 

boundary layer flow are 

0,
u v

x y

 
 

 
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e
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2

2
( ),

C C C
u v D k C C

x y y




  
   

  
 

Where u  is x  component of the velocity, v  is 

y  component of the velocity,  1R   and  2R   are 

the material constants,   is the kinematic viscosity 

of fluid,   is the density of fluid, C  is the 

concentration field, D  is the mass diffusion and 

k   is the reaction rate. 

(1) 

(2) 

(3) 
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In addition to the above three equations, the 

boundary conditions for this problem are 

,   0,   at  0,

,     as ,

w w

e

u u cx v C C y

u u ax C C y

    

   
 

where  c   is the stretching rate. 

To seek the solution, the following transformations 

are defined: 

( ),  ( ),  .
c

u cxf v c f y   


     

Now incompressibility condition is automatically 

satisfied and the problem is reduced as follows: 

2 2
1 2( ) ( )f ff f K x f f K x        

22 4 2 2 2( ) / 0,ivf f f f ff f ff f a c           

0,Scf Sc       

0,   1,   1  at 0,

/ ,   0  as 

f f

f a c

 

 

   

   
 

in which  
3 2

1

2

6
1( )

R c x
K x


    and  

4 2

2

2

4
2( )

R c x
K x


   

are the dimensionless non-Newtonian parameters of 

the thixotropic fluid, /Sc D  is the Schmidt 

number and /k c   is the dimensionless 

chemical reaction parameter. 

The local Sherwood number is 

( )

w

w

xj
Sh

D C C




 

in which the mass flux wj  is given by 

0

.w

y

C
j D

y


 
   

 
 

Dimensionless form of Eq. (9) is 

1/2/ Re (0).xSh    

 

3. HOMOTROPY ANALYSIS SOLUTIONS 

We express f  and   by a set of base functions  

{ exp( ),  0, 0}k n k n     

as follows 

,

0 0

( ) exp( ),k k
m m n

n k

f a n  
 

 

   

,

0 0

( ) exp( ).k k
m m n

n k

b n   
 

 

   

In above equations ,
k
m na  and ,

k
m nb  are the 

coefficients. Further the initial approximations and 

auxiliary linear operators are selected as 

0

0

( ) ( / ) (1 / )[1 exp( )],

 ( ) exp( ),
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Where  iC    ( 1 5)i     represent the arbitrary 

constants. The problems at zeroth order 

deformation are 

  0
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In which q  is an embedding parameter and fh  and 

h  are the non-zero auxiliary parameters. The 

nonlinear operators fN  and N  are 
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Taking  0q   and 1,q   one can write 

0
ˆ ˆ( ;0) ( ) and ( ;1) ( ),f f f f      

0ˆ ˆ( ;0) ( ) and ( ;1) ( ),          

and when q  increases from 0 to 0 then ( , ),f q  

(7) 

(8) 

(15) 

(9) 

(11) 

(10) 

(12) 

(13) 

(14) 

(21) 

(22) 

(23) 

(4) 

(5) 

(6) 

(16) 

(17) 

(18) 

(19) 

(20) 
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( , )q   vary from 0( )f   to ( )f   and 0( )   to 

( ).   Using Taylor's series we have 
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The convergence of series (24) and (25) strongly 

depends upon fh  and .h  We select fh  and h  

in such a way that the series (24) and (25) converge 

at 1.q   Hence we can write 

0
1

( ) ( ) ( ),m
m

f f f  



    

0
1

( ) ( ) ( ),m
m

     



    

Where the special solutions mf  and m  are given 

below 

1 2 3( ) ( ) ,m mf f C C e C e        

4 5( ) ( ) .m m C e C e         

4. CONVERGENCE ANALYSIS AND 

DISCUSSION 

The auxiliary parameter fh  and h  have the key 

role in controlling and adjusting the convergence of 

the series solutions. For permissible values of fh  

and ,h  the h   curves are plotted at 14th -order of 

approximations.  

Figure 1 demonstrates that the admissible values of 

fh  and  h  are 0.75 0.2fh     and 

1.0 0.3.h     Further, the presented series 

solutions converge in the whole region of   when 

0.6fh    and 0.7.h     It is further found from 

Table 1 that 12
th

 and 16
th

 order deformations are 

sufficient for f  and ,  respectively. 

In Figs. 2 to 8, the influence of emerging 

parameters on the velocity and concentration fields 

is studied. In particular, the Figs. 2 to 5 represent 

the variations of thixotropic parameters 1,K  2,K  

stagnation point parameter / ,a c  Schmidt number 

Sc  and chemical reaction parameter .  Figures 2 

to 4 illustrate the effects of thixotropic parameters

1,K  2K  and stagnation point parameter /a c  on 

the velocity profile .f   From Figs. 2 and 3 it can be 

seen that velocity field and boundary layer 

thickness are increasing functions of 1K  and 2.K  

Fig. 3 depicts that an increase in the velocity field is 

more pronounced in case of 2.K  when compared 

with 1K  Fig. 4 elucidates that the velocity profile 

.f   is an increasing function of  stagnation point 

parameter /a c  Here the velocity field is increased 

but the momentum boundary layer thickness is 

reduced. The effects of  /a c  Sc  and   on the 

concentration profile are examined in the Figs. 5 to 

8. Figure 5 provides the variation of /a c  on   in 

destructive ( 0)   chemical reaction. Increase in 

value of /a c  decreases   The variation of 

Schmidt number Sc  on   is observed in Fig. 6 It 

is noticed that the concentration field   decreases 

when Sc  increases. Here the Schmidt number is 

dependent on the mass diffusion coefficient. Larger 

Schmidt number corresponds to weaker mass 

diffusion coefficient. Such weaker diffusion 

coefficient is responsible for the redaction in 

concentration field. As expected the fluid 

concentration increases due to an increase in 

generative chemical reaction parameter  ( 0)   

(see Fig. 8).The fluid concentration   has the 

opposite behavior for destructive chemical reaction 

parameter ( 0)   when compared with that of 

generative chemical reaction (Fig. 7)  

 

Fig. 1. h   curves for the functions  f  and   

when 1 0.4,K   2 0.5,K   / 0.2,a c   0.8Sc   

and 0.5.   

 

Fig. 2. Influence of  1K  on velocity profile ( )f   

when 2 0.5,K   and / 0.2,a c   

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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Fig. 3. Influence of 2K  on velocity profile ( )f   

when 1 0.4K   and / 0.2,a c   

 
Fig. 4. Influence of stagnation point parameter

/a c  on velocity profile ( )f   when 1 0.4K   

and 2 0.5,K   

 
Fig. 5. Influence of stagnation point parameter 

/a c  on concentration profile ( )   when 

1 0.4K   2 0.5,K   0.8Sc   and 0.4.   

 
Fig. 6. Influence of Schmidt number Sc  on 

concentration profile  ( )    when  1 0.4K   

2 0.5,K   / 0.8a c   and 0.4.   

 
Fig. 7. Influence of reaction parameter 0   on 

concentration profile ( )   when 1 0.4K   

2 0.5,K   / 0.2,a c   and 0.8Sc   

 
Fig. 8. Influence of reaction parameter 0   on 

concentration profile  ( )   when 1 0.4K   

2 0.5,K   / 0.2,a c   and 0.8Sc   

 

The values of surface mass transfer rate (0)  are 

presented in the Tables 2 and 3. The surface mass 

transfer rate (0)  increases by increasing 1K  

and  2.K  However it decreases for large values of 

a/c.  The surface mass transfer rate (0)  

increases by increasing both Schmidt number and 

chemical reaction parameter.  

 

Table 1 Convergence of homotopy solutions for 

different order of approximations when  

1 0.4K   2 0.5,K   / 0.2,a c   0.8Sc   

0.5,   0.6fh    and 0.7.h    

Order of approximations (0) (0)

1 0.759317 0.877333

5 0.767386 0.847801

12 0.767444 0.847690

16 0.767444 0.847691

25 0.767444 0.847691

35 0.767444 0.847691

f   
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Table 2 Numerical values of local Sherwood 

number (0)  for different values of 1,K  2 ,K  

Sc  and   when / 0.2,a c   

1 2 (0)

0.0 0.0 0.8 0.5 0.839923

0.5 0.842755

1.0 0.844963

2.0 0.848376

0.0 0.3 0.844042

0.8 0.849083

1.0 0.850737

0.4 0.5 0.6 0.525735

1.0 0.955795

1.5 1.17993

0.3 0.745382

0.8 0.981174

1.2 1.13462

K K Sc  

 

 

Table 3. Numerical values of local Sherwood 

number for different values of  ,Sc    and /a c  

when 1 2 0.K K   

/ (0)

0.5 0.5 0.2 0.651519

1.0 0.947175

1.5 1.17733

0.8 0.0 0.544838

0.6 0.887229

1.7 1.29661

0.0 0.824839

0.3 0.850034

0.5 0.872783

Sc a c 
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