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ABSTRACT 

The present paper deals with the study of the pressure corrections to the viscous potential flow analysis of 

Kelvin-Helmholtz instability with tangential electric field at the interface of two viscous fluids. Viscosity 

enters through normal stress balance in the viscous potential flow theory and tangential stresses for two fluids 

are not continuous at the interface. Here we have considered viscous pressure in the normal stress balance 

along with the irrotational pressure and it is assumed that the addition of this viscous pressure will resolve the 

discontinuity between the tangential stresses and the tangential velocities at the interface of two fluids. The 

viscous pressure is derived by mechanical energy balance equation and this pressure correction applied to 

compute the growth rate of electrohydrodynamic Kelvin-Helmholtz instability. A dispersion relation is 

obtained and stability criterion is given in the terms of critical value of relative velocity. It has been observed 

that the inclusion of irrotational shearing stresses have stabilizing effect on the stability of the system. 

 

Keywords: Pressure correction; Viscous potential flow; Electrohydrodynamic stability; Incompressible fluid; 

Interfacial flows. 

 

1. INTRODUCTION 

Kelvin-Helmholtz instability arises when two fluid 

layers of different physical properties are 

superposed one over other and are moving parallel 

to each other with a horizontal relative velocity 

[Chandrasekhar, Drazin and Reid]. The Kelvin- 

Helmholtz instability occurs in various situations 

such as wind blowing over the ocean, meteor is 

entering the earth atmosphere and in oil exploration 

industry etc. 

In viscous potential flow, viscous term in the 

Navier-stokes equation is identically zero when the 

vorticity is zero but the viscous stresses are not zero 

(Joseph and Liao 1994). Tangential stresses are not 

considered in viscous potential flow theory and 

viscosity enters through normal stress balance. In 

this theory no-slip condition at the boundary is not 

enforced so that two dimensional solutions satisfy 

three dimensional solutions. Joseph et al. (1999) 

have studied viscous potential flow analysis of 

Rayleigh-Taylor instability and observed that the 

length of the most dangerous wave increases 

strongly with viscosity. The viscous potential flow 

analysis of Kelvin-Helmholtz instability at the plane 

geometry is studied by Joseph and Funada (2001). 

They have observed that the stability criterion for 

viscous potential flow is given by the critical value 

of relative velocity. Awasthi and Agrawal (2011) 

have studied the viscous potential flow analysis of 

Kelvin-Helmholtz instability of cylindrical interface 

and observed that the viscous potential flow 

solution is more stable than inviscid potential flow 

solution. 

As the electric field plays an important role in many 

practical problems of chemical engineering and 

other related fields, there is increasing interests in 

the study of electrohydrodynamic instability. The 

nonlinear Kelvin-Helmholtz instability in the 

presence of normal electric field with surface 

charge has been investigated by Mohamed and El-

Shehaway (1989). Mohamed et al. (1994) studied 

the nonlinear electrohydrodynamic Kelvin-

Helmholtz instability of inviscid fluids with heat 

and mass transfer in presence of a tangential electric 

field and observed that heat and mass transfer plays 

dual role in the stability criterion in contrast with 

linear analysis. The viscous potential flow analysis 

of Kelvin-Helmholtz instability in the presence of 

tangential electric field when there is heat and mass 

transfer across the interface has been studied by 

Asthana and Agrawal (2010).They have observed 

that the tangential electric field has stabilizing effect 

on the stability of the system. 
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mailto:mukeshiitr.kumar@gmail.com


Mukesh Kumar Awasthi et al. / JAFM, Vol. 8, No. 3, pp. 539-547, 2015.  

540 

Viscous correction for the viscous potential flow 

(VPF) is called VCVPF. It is also an irrotational 

flow which differs from VPF only by additional 

viscous pressure. Wang et al. (2005) have given the 

idea that the effect of the shearing stresses can 

included in the system by adding viscous pressure 

in the normal stress balance along with irrotational 

pressure. Wang et al. (2005) have considered the 

contribution made by shearing stresses for capillary 

instability in which one fluid is taken as viscous and 

other fluid is a gas of negligible density and 

viscosity. They included the viscous pressure in the 

normal stress balance at the free surface and showed 

that the growth rates computed using VCVPF is 

almost same as computed for exact solution. Wang 

et al. (2005) studied the viscous contribution to the 

pressure for potential flow analysis of capillary 

instability of two viscous fluids; they found that the 

viscous correction of the pressure leads to an 

excellent approximation of the exact solution, 

uniform in the wave number, when one of the fluids 

is gas. 

Recently, Awasthi and Agrawal (2011) have studied 

the viscous contribution to the pressure for the 

potential flow analysis of Kelvin-Helmholtz 

instability in the presence of tangential magnetic 

field and observed that the inclusion of irrotational 

shearing stresses stabilize the system. The viscous 

contribution to the pressure for the potential flow 

analysis of capillary instability in the presence of 

axial electric field has been studied by Awasthi and 

Agrawal (2011). They have observed that the axial 

electric field and irrotational shearing stresses both 

have stabilizing effect on the stability of the system. 

The objective of the present work is to include the 

effect of shearing stresses in the potential flow 

analysis of the Kelvin-Helmholtz instability of two 

viscous fluids in the presence of electric field acting 

in the direction of streaming. Both fluids are taken 

as dielectric, viscous with different kinematic 

viscosities, different permittivity and having relative 

horizontal velocity. In the viscous potential flow 

analysis the effect of irrotational shearing stresses is 

completely neglected. Here we have considered 

viscous pressure in the normal stress balance along 

with irrotational pressure and this viscous pressure 

will include the effect of shearing stresses in the 

system. The formulation for the pressure correction 

is derived and it is used to compute growth rates for 

Kelvin-Helmholtz instability with electric field 

acting in the direction of streaming. It has observed 

that the effect of irrotational shear stresses stabilize 

the system. 

2. PROBLEM FORMULATION 

Consider a system of two incompressible, viscous 

and dielectric fluid layers of finite thickness whose 

undisturbed interface is at y = 0 as demonstrated in 

Fig.1. After disturbance the interface is given by: 

( , , ) ( , ) 0F x y t y x t                                     (1) 

The unit outward normal to the first order term is 

given by: 

= +x y
x





e en                  (2) 

In the undisturbed state, lower fluid of density
(1)

 , 

viscosity 
(1)

  and dielectric constant 
(1)

 occupies 

the region 
1

0h y   and upper fluid of density

(2)
 , viscosity 

(2)
 and dielectric constant 

(2)


occupies the region 20 y h  . The bounding 

surfaces 
1

y h   and 2y h  are considered to be 

rigid. The lower and upper fluids have uniform flow 

 1
, 0U and  2 , 0U  respectively. Both fluids are 

assumed to be incompressible and irrotational. 

 

Fig. 1. The equilibrium configuration of the fluid 

system. 

In each fluid layer velocity is given by the potential 

function ( , , )x y t and the potential function 

satisfies Laplace equation, so 

2 ( )
0            ( 1, 2)

j
j                                   (3) 

where 

2 2
2

2 2x y

 
  

 
 

The two fluids are subjected to external electric 

field 0E  along x-axis i.e. 

0       for    ( 1, 2)  xE je 
j

E                          (4) 

In this analysis, it is assumed that quasi static 

approximation is valid for the problem; hence the 

electric field can be derived from electric scalar 

potential function ( , , )x y t such that 

( )

0       for    ( 1, 2)  j

xE je    
j

E            (5) 

Gauss’s law requires that the electric potential also 

satisfies Laplace equation i.e. 

2 ( )
0            ( 1, 2)

j
j                                  (6) 

In the initial state we assume, 

                           
( )

0
       ( 1, 2)

j

j
U x j             (7) 
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As per the kinematic condition, every particle on 

the interface will remain on the interface; we get the 

following boundary conditions: 

(1)

1
U

yt x

    
 

 
                                            (8) 

(2)

2U
yt x

    
 

 
                 (9) 

Conditions on the wall are given by: 

(1)

1
0    at     y h

y


  


               (10) 

(2)

20    at     y h
y


 


                               (11) 

(1)

1
0    at     y h

y


  


    (12) 

(2)

20    at     y h
y


 


    (13) 

The tangential component of the electric field must 

be continuous across the interface i.e. 

  0   or   0
x x y

    
   

  

  
     

n E

   

 (14) 

where   (2) (1)
x x x  in which superscripts refers 

to upper and lower fluid respectively. 

The normal component of electric displacement 

must be continuous across the interface i.e. 

   0   or  E 00
x x x y

   
  

   
    

   

  
     

n E    (15) 

The interfacial condition for conservation of 

momentum at the interface is given by: 

(2) (2) (1)

2 1

(1) 2 2

2 2

1
( )

2
n t

P P

E E

  

  

      

         

n n + n

n n

     (16) 

Using normal mode technique to solve the Eqs. (3) 

for ( 1, 2)j  with the conditions (10) and (11), we 

get: 

(1)

1 1
cosh[ ( )] exp( ) . .A k y h ikx i t c c       (17) 

(2)

2 2cosh[ ( )] exp( ) . .A k y h ikx i t c c     (18) 

Similarly solving the Eqs. (6) for ( 1, 2)j   with 

conditions (12) and (13), we get: 

(1)

1 1
cosh[ ( )] exp( ) . .B k y h ikx i t c c      (19) 

(2)

2 2cosh[ ( )] exp( ) . .B k y h ikx i t c c       (20) 

Let the interface elevation is given by: 

0
exp( ) .                          (21)A ikx i t c c     

where 
0 1 2 1, , ,A A A B and 2B  denotes complex 

amplitudes and c.c. stands for the complex 

conjugate of the preceding expression,   is the 

complex growth rate and 0k  denotes the wave 

number. Eqs. (17), (18), (19) and (20) with 

boundary conditions, we get: 

(1) 1

1 0

1

cosh[ ( )]1
( )

sinh

                                    exp( ) . .

k y h
ikU i A

k kh

ikx i t c c

 




 

 

    (22) 

(2) 2

2 0

2

cosh[ ( )]1
( )

sinh

                                         exp( ) . .

k y h
ikU i A

k kh

ikx i t c c

 




  

 

 (23) 

(2) (1)

(1) 0

(2) (1)

2 1

1

0

1

( )

( tanh( ) tanh( ))

cosh[ ( )]
              exp( ) .

cosh
.

iE

kh kh

k y h
A ikx i t c c

kh

 


 









 

  (24) 

(2) (1)

(2) 0

(2) (1)

2 1

2

0

2

( )

( tanh( ) tanh( ))

cosh[ ( )]
               exp( ) .

cosh
.

iE

kh kh

k y h
A ikx i t c c

kh

 


 









 

(25) 

3. PRESSURE CORRECTION FOR 

VISCOUS POTENTIAL FLOW 

The effect of irrotational shearing stresses have 

been included in the viscous potential flow analysis 

of electrohydrodynamic Kelvin-Helmholtz 

instability taking viscous pressure into the normal 

stress balance along with the irrotational pressure. 

The mechanical energy equation has been used for 

the derivation of the pressure correction. 

Let 
y1

n e  be the unit outward normal at the 

interface for the upper fluid and 
12  n n is the 

unit outward normal for the lower fluid; let 
x

t e  

be the unit tangent vector .We use the subscript ‘ v ’ 

for viscous and ‘ i ’ for irrotational. The normal and 

shear parts of the viscous stress are represented by 
n

  and 
s

 respectively. 

The Mechanical energy equations for upper and 

lower fluids are respectively: 

 

(2)
2

2

(2) (2)

2 2

2

2 2 2 2 2

2

:  

d
dV

Vdt

g dV dA 2 dV
V A V



 



      

u

u Tu n D D
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(2) (2)

2 2

s

2 2 2

2 2 2

2

:  

          ( )  
i n

g dV 2 dV
V V

p dA
A

 

 

 

     



  u t
1 2

u D D

n u

  

(26)

 

 
1

1 1

(1)
2

(1) (1)

1

1 1 1 1 1

2

:  

d
dV

Vdt

g dV dA 2 dV
V A V



 



      

u

u Tu n D D

1 1

(1) (1)

s

1 1 1

1 1 1 1

:  

          ( )  
i n

g dV 2 dV
V V

p dA
A

 

 

 

     



  u t
1 1

u D D

n u
   (27) 

with continuity of the normal velocity 

n
u   

1 1 12u n u n  

Sum of (27) and (28) can be written as, 

(2) (1)
2 2

2 1

(2) (1)

2 1

(2) (1)

2 1

s s

1 1 2 2 2 1

2 1

1

2 2 1 1

2 1

2 2

2 : 2 :               (28)

( )    
i n i n

n

d d
dV dV

V Vdt dt

g dV g dV
V V

dV dV
V V

u p p dA
A

 

 

 

   

  

 

  

           

u u

t t

2
u u

D D D D

u u

 

Here we introduced two pressure corrections 
1

v
p

and 
2

v
p  for lower and upper potential flow 

respectively. It is assumed that these two pressure 

corrections will resolve the discontinuity of the 

shear stress and tangential velocity at the interface, 

so 

1 2

s s s
               and       

s
u   t t

12u u    

So Eq. (19) becomes 

(2) (1)
2 2

2 1

(2) (1)

2 1

(2) (1)

2 1

1 1 1 2 2 2

2 1

1

2 2 1 1

2 2

2 : 2 :               (29)

( )  
i n i n

n

v v

d d
dV dV

V Vdt dt

g dV g dV
V V

dV dV
V V

u p p p p dA
A

 

 

 

 

  

 

  

        

u u

2
u u

D D D D

 

The integrands in the volume integrals in (18) and 

(19) are computed using potential flows. The 

VCVPF solution resolves the discontinuities of the 

tangential stresses and tangential velocities. 

Comparing Eqs. (28) and (29), we get: 

1 2 1 2
( )

v v s s

n
u p p dA dA

A A
            t t

21u - u  (30) 

The governing equation of pressure correction is 

given by; 

2
0

v
p                                  (31) 

Solving Eq. (31), two pressure correction is 

obtained as, 

1
( cosh sinh ) exp[( )]

v

k k
p C ky E ky ikx i t    (32) 

2
( cosh sinh ) exp[( )]

v

k k
p D ky F ky ikx i t    (33) 

4. DISPERSION RELATION 

The normal stress balance with viscous pressure is 

given by: 

(2) (2) (1)

2 2

(1) 2 2

1 1 2 2

1
( )

2

i i

n t

v v
P P P P

E E

  

  

      

           

n n +

n n n

(34) 

Using Bernoulli’s equation for irrotational pressure 

and linearizing it, we get: 

0

2

22

02
2

v
g P

t x x

x
E

y x

 
 




 
 

 
  

   
 

 
 

 

  
  
  

 
 
 

     (35) 

From Eq. (31) we get: 

1 1 10

2 2 20

2 ( ) coth( )

[ ]
+ 2 ( ) coth( )

k k

A ikU i kh

C D
A ikU i kh

 

 



 


 
 
  

 
(36) 

Substituting the values of 
(1) (2) (1) (2)

,  , , ,      in 

Eq. (35), we get dispersion relation: 

2

0 1 1 2 2
( , ) ( ) 0D k a a ib a ib       

   (37) 

where 

(1) (2)

0 1 2
coth( ) coth( )a kh kh             

 

(1) (2)

1 1 1 2 2
2 ( coth( ) coth( ))a k U kh U kh         

2 (1) (2)

1 1 2
4 ( coth( ) coth( ))b k kh kh          

2 (1) 2 (2) 2 3

2 1 1 2 2

2 2 (2) (1) 2

(2) (1) 0

(2) (1)

2 1

( coth( ) coth( ))

( )
( )

( tanh( ) tanh( ))

a k U kh U kh k

k E
gk

kh kh

  

 
 

 

  


  



3 (1) (2)

2 1 1 2 2
4 ( coth( ) coth( ))b k U kh U kh      

 

Let ,
R I

i     and equating the real and 

imaginary parts (37) will reduce to 

2 2

0 1 1 2( ) ( ) 0
R I R Ia a b a                        (38) 

and 
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0 1 1 22 0R I I Ra a b b      
                    

(39) 

So 

1 2

0 12

I
R

I

a b

a b







 


 

Putting this value in Eq. (38), we obtained a quartic 

equation in R  as, 

       
4 3 2

4 3 2 1 0 0
I I I IA A A A A            (40) 

where 

3

04 4A a                                     

2

03 18A a b                                   

2 2 2

0 1 12 2 0 04 5A a a a b a a                    

3 2

1 11 0 2 1 14A a a b b a b                     

2 2

2 10 0 0 1 2 2A a b a b b a b                    

From Eq. (40) we can get the value of maximum 

growth rate 
Im

 and corresponding wave number 

mk .To get the neutral curves we put ( ) 0I k  , so 

Eq. (40) reduces to: 

0 0A   i.e. 

2 2

2 1
00 0 1 2 2a b a b b a b                                     (41) 

Putting the values of 
2 20 1 1, ,  , ,  and a a a b b in the 

above equation, we get: 

2

2

(1) (2)

2 2

1 2
(2) (1)

1

2 (1) (2)

2 2 (2) (1) 2

0

(2) (1)

2 1

2
(2) (1)

2 1

( coth
coth coth

coth )

( )
1

  + ( )

( tanh( ) tanh( ))

( coth coth ) 0

kh
kh kh V

kh

k g

k E
k

kh kh

kh kh

 

 

  

 

 

 





 






 

 
 
  

 
 
 
  

  

   (42) 

Here V is the relative velocity which is given by: 

12V U U   

Let there be no streaming, i.e. 
12 0  and 0U U   

so 0V   , then from equation (40) we get: 

𝜎𝑘2 + (𝜌(1) − 𝜌(2))𝑔 

 +
𝑘𝐸0

2(𝜀(2)−𝜀(1))2

(𝜀(2) tanh(𝑘ℎ2)+𝜀(1) tanh(𝑘ℎ1))
= 0                       (43) 

Let the two fluids are semi-infinite i.e. 

1 12 2  and   so cothk 1 and  cothk 1h h h h     

In this case Eq. (43) becomes 

2 2

2 (2) (1) 2
2

2 (1) (2) (1) (2)0

(2) (1)

2

(1) (2) (2) (1)

( )
( )

( )1

kE
k g

V
k

 
    

 

   


   






 
    

 

 
 

(44) 

We can obtain lowest point on the Neutral Curve 
2

( )V k  as, 

2 2 2
( ) min ( ) ( )

0c c
V k V k V k

k
 


                           (45) 

Critical wave length is given by 2 /
c c

k  . The 

flow is unstable when 

22 2
( )

c
V V V                                                 (46) 

5. DIMENSIONLESS FORM 

 

(1)

2 1

2 1 2 (1)

2 1

2 1 2 1 (1) 2

(2) (2) (1) (2)

(1) (1) (1) (1)

1/ 2

ˆ ˆ ˆ ˆ ˆ,   ,   =1 ,  

ˆ ˆ ˆ ˆ ˆ ˆ,  ,    ,   =     

ˆ ˆ ˆˆ= ,   = , , , =

ˆ ˆWhere   ((1 ) ) /

h h
k kh h h h E E

h h gh

U U
U U V U U

Q Q gH

h

Q HQ

Q gH










    
    

   

 

    

   

 

 

The dimensionless form of Eq. (37) is given by 

 

 
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1 2

1 1 2 2

2

1 2

2 2 2

1 1 2 2

2 2

2

1 2
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ˆ
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ˆˆ ˆˆˆ ˆˆ( coth coth )

ˆ ˆ ˆˆ
1

ˆ ˆ(1 ) (1 )
ˆˆ

ˆ( 1)

ˆˆ ˆˆˆ(tanh( ) tanh( ))
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k kE
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
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1 1 2 2

0 (47)

ˆˆ ˆˆˆ ˆˆ4 coth cothik U kh U kh 



 

 
 
 
 
 
 
 
 
  

The Eq.(42) in dimensionless form may be written 

as,

 

 

2 2

1 2 1 2

2 2

2

1 2
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1 2
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1
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ˆ( 1)
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kh kh kh kh V

k kE

k

kh kh

kh kh

 



 







 

 
 

 




 

  

 
 
 
 
 
  

 



Mukesh Kumar Awasthi et al. / JAFM, Vol. 8, No. 3, pp. 539-547, 2015.  

544 

6. RESULTS AND DISCUSSION 

The dispersion relation for the linear analysis of 

electrohydrodynamic Kelvin-Helmholtz instability 

is quadratic in growth rate and instability occurs due 

to the positive values of the disturbance growth rate 

(i.e. 0
I

  ). If 
I

 is negative, the perturbation 

decays with time while if 0
I

  , the system is 

unstable as the perturbation grows exponentially 

with time. The case 0
I

   is the marginal stability 

case. Wang et al. [2005] has pointed out that the 

approach to add the extra pressure in the normal 

stress balance does not require the analysis of a 

boundary layer; it is the approach called the viscous 

correction of viscous potential flow (VCVPF). It is 

based on the assumption that the motion is 

irrotational, the normal stress is computed on the 

irrotational flow and the extra or corrected pressure 

can be computed right at the free boundary for the 

nonzero irrotational shear stresses. This extra 

viscous pressure is an additional and important 

viscous contribution to the normal stress. 

Following parametric values have been considered 

for the system of interest containing water in the 

lower region and air in upper region. Neutral curve 

for relative velocity divide the plane into the stable 

region (below the curve) and unstable region (above 

the curve) while the neutral curves curve for electric 

field divide the plane into a stable region (above the 

curve) and an unstable region (below the curve).The 

effect of various physical parameters on the onset of 

instability is interpreted from the following Figures. 

(1) 3 (2) 3

(1) (1)

2

1.0 / ,  0.0012 / ,

0.01 ,  0.00018 ,

72.3 / , 980 / ,

gm cm gm cm

poise poise

dyne cm g cm s

 

 



 

 

 

 

In Fig. 2, the neutral curves for the relative velocity 

for the water-air system have been drawn with 

0
0E   for various value of upper fluid fraction β. 

As upper fluid fraction increases, fluid pressure at 

crest will fall below the equilibrium pressure and as 

a consequence of this, amplitude of disturbance 

wave will diminish. It will stabilize the system 

observed from Fig. 2. The viscous potential flow 

analysis of Kelvin-Helmholtz instability without 

electric field has been studied by Funada and Joseph 

(2001) and they have observed that the upper fluid 

fraction has stabilizing effect. 

In order to observe the effect of electric field on the 

instability of interface we have plotted Fig. 3. Fig. 3 

shows the variation of neutral curves for the relative 

velocity for water-air system for various values of 

upper fluid fraction when 
0

10 /E Volt cm . It has 

been observed that the upper fluid fraction still 

stabilizes the system even in the presence of 

tangential electric field. It is clear from the Fig. 2 

and 3 that the stable region increases in presence of 

electric field for same values of other parameters. 

Hence tangential electric field has stabilizing effect. 

Figure 4 represents the neutral curves for the 

relative velocity at upper fluid fraction β = 0:5 for 

various values of electric field and observed that the 

stable region increases as electric field increases. 

Hence it is concluded that electric field has 

stabilizing effect. It is clear from the Eq. (48) that in 

the absence of electric field, the right hand of the 

Eq. (48) is (2) (1) 3
( )gk k     

. In the 

presence of electric field, the term depending on the 

applied electric field is added in the right hand side 

of the Eq. (48) and so that critical value of relative 

velocity increases. This shows that electric field has 

stabilizing influence. In Fig. 5, variation of the 

critical value of relative velocity with the ratio of 

dielectric constants has been shown for different 

values of applied electric field. Critical value of 

relative velocity first decreases and then increases. 

This shows that ratio of dielectric constants of two 

fluids has dual effect on the stability of the system. 

At the constant value of the electric field, the most 

unstable case was found when both the fluids have 

same dielectric constant i.e. ˆ 1  . 

 
Fig. 2. Neutral curves for the relative velocity for 

water-air system at 
0

ˆ ˆ0.0012, 0.018, 0E     

for different values of upper different fluid 

fraction. 

 
Fig. 3. Neutral curves for the relative velocity for 

water-air system at 
0

ˆ ˆ0.0012, 0.018, 10E     

for different values of upper different fluid 

fraction. 
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Fig. 4. Neutral curves for the relative velocity for 

water-air system at ˆ ˆ0.0012, 0.018, 0.5      

for different values of electric field intensity
0

E . 

Fig. 5. the critical value of relative velocity for 

water-air system at 

ˆ ˆ0.0012, 0.018, 0.5      for different values 

of electric field intensity
0

E . 

 
Fig. 6. Neutral curves for the electric field for 

water-air system at ˆ ˆ0.0012, 0.018, 900 /V cm s     

for different values of upper different fluid 

fraction. 

The neutral curves of electric field for the water-air 

system for various values of upper fluid fraction 

have been plotted in Fig. 6. The region above the 

curve represents the stable region while the region 

below the curve represents the unstable region. It 

has been observed that on increasing the upper fluid 

fraction, the stable increases. Therefore, the upper 

fluid fraction has stabilizing effect on the stability 

of the system. The effect of relative horizontal 

velocity on the neutral curves of the electric field 

has been studied in the Fig. 7. As relative velocity 

increases, the disturbance will grow faster and 

system will destabilized. Hence, relative velocity 

has destabilizing effect on the stability of the 

system as observed form the Fig. 7. 

 
Fig. 7. Neutral curves for the electric field for 

water-air system at ˆ ˆ0.0012, 0.018, 0.1      

for different values of relative velocity. 

 
Fig. 8. Growth rate curves for water-air system 

at ˆ ˆ0.0012, 0.018, 0.5      for different 

values of electric field. 

 
Fig. 9. Comparison between growth rate 

obtained for VCVPF, VPF and IPF solution 

when 

0
ˆ ˆ0.0012, 0.018, 0.5 and 0 /E volt cm      . 
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Fig. 10. Comparison between growth rate 

obtained for VCVPF, VPF and IPF solution 

when 

0
ˆ ˆ0.0012, 0.018, 0.5 and 2.0 /E volt cm      . 

Figure 8 shows the variation of growth rate curves 

I
  for the various values of electric field and 

observed that the growth rate curve decreases as 

electric field increases. It concludes that electric 

field has stabilizing effect on the stability of the 

system. 

Figure 9 shows a comparison between the growth 

rate curves for the water-air system obtained from 

the VCVPF solution with those obtained from the 

VPF solution as well as IPF solution. It has been 

observed that the growth rate in VCVPF solution is 

lower in comparison with VPF solution as well as 

IPF solution which indicate that the VCVPF 

solution is more stable than VPF solution and IPF 

solution. This occurs mainly because in the VCVPF 

analysis contains the effect of both shearing stresses 

as well as normal stresses while in viscous potential 

flow the effect of tangential stresses is neglected. 

Inviscid potential flow ignores the contribution of 

viscosity at all. In other words, we can say that the 

effect of viscosity is more in VCVPF solution in 

comparison with the other solutions like viscous 

potential flow solution or inviscid potential flow 

solution. 

In Fig. 10, the growth rates curves for the water-air 

system have been compared for the VCVPF 

solution, VPF solution and IPF solution when the 

applied electric field 
0

2.0 /E Volt cm . It has been 

observed that the growth rate curve decreases as 

electric field increases. It concludes that electric 

field has stabilizing effect.  

7. CONCLUSIONS 

A method for calculating a viscous correction of the 

irrotational pressure has been derived for problems 

in which the interface of two fluids is involved and 

the flow of two fluids is irrotational. It is assumed 

that the viscous corrections of irrotational pressure 

resolve the discontinuity of the tangential stress and 

tangential velocity at the interface. This viscous 

pressure correction is applied to Kelvin- Helmholtz 

instability in the presence of electric field and 

compares the growth rate curves with the growth 

rate curves of viscous potential flow. It is found that 

the growth rate in VCVPF solution decreases as 

compared with the VPF solution. It means that 

VCVPF solution is more stable than the VPF 

solution. Neutral curves for critical velocity are 

unaffected with viscous pressure contribution for 

viscous potential flow solution but VCVPF 

stabilizes the interface early as compared with the 

VPF solution. If electric field intensity increases at 

a constant relative velocity, VCVPF and VPF leads 

good approximation but if electric field intensity 

decrease the difference in the growth rates 

increases. If relative velocity increases at a constant 

electric field the difference increases and if relative 

velocity decreases difference also decreases. 
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