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ABSTRACT 

The flow of a ferromagnetic liquid due to gravity-aligned stretching of an elastic sheet in the presence of a 

magnetic dipole is considered. The fluid momentum and thermal energy equations are formulated as a six 

parameter problem and a numerical study is made using the shooting method based on Runge – Kutta 

Fehlberg and Newton Raphson methods. Extensive computation on the velocity and temperature profiles is 

presented for a wide range of values of the parameters. It was found that the primary effect of the 

magnetothermomechanical interaction is to decelerate the fluid motion as compared to the hydrodynamic 

case. The results have possible industrial applications in ferromagnetic liquid based systems involving 

stretchable materials. 

 

Keywords: Ferromagnetic liquid; Magnetic dipole; Stretching sheet; Grashof number; Prandtl number; 

Shooting method. 

NOMENCLATURE 

A, D positive constants 

f
C  local skin friction coefficient 

cp specific heat at constant pressure 

g acceleration due to gravity 

Gr Grashof number 

H magnetic field 

K pyromagnetic coefficient 

k thermal conductivity 

L  characteristic length 

M magnetization 

Pr Prandtl number 

T temperature of the fluid 

Tw temperature of the stretching sheet 

Tc Curie temperature 

(u,v) velocity along the x, y axes 

(U,V)  nondimensional radial and axial 

 velocities 

  dimensionless distance from the origin 

 to the center of the magnetic  pole 

  ferrohydrodynamic  interaction

 parameter 



 thermal expansion coefficient 

  non-dimensional Curie temperature 

Ө(ξ , η)  nondimensional Temperature 

  viscous dissipation parameter 

μ dynamic viscosity 

μ0  magnetic permeability 

  kinematic viscosity 

  fluid density 

  shear stress at the sheet 

  magnetic scalar potential 

(ξ , η) nondimensional lengths 

1. INTRODUCTION 

The study of laminar boundary layer flow and heat 

transfer in Newtonian and non-Newtonian fluids 

past a stretching sheet has been investigated 

extensively by many researchers due to its scientific 

and engineering applications. In processes such as 

polymer extrusion, the object on passing between 

two closely placed solid blocks is stretched into a 

liquid region. The desired mechanical properties of 

the extrudate depends on the rate of cooling/heating 

and the rate of stretching (see Fisher E.G. 1976; 

Bailey R.L. 1983).  

In the present problem the viscous and 

nonconducting ferrofluid is representative of the 

ambient liquid which serves the purpose of 

controlled heat transfer in the presence of a 

magnetic field.  

Ferrofluids are artificially synthesized and 

composed 
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of a carrier fluid and suspended particles. These 

particles are small (3-5 nm), solid, magnetic, single 

domain and coated with a molecular layer of a 

dispersant. Thermal agitation keeps them suspended 

and the coating keeps them noncolloidal (see 

Rosensweig R.E. 1985; Neuringer and Rosensweig 

1964). 

The combined influence of thermal and magnetic 

field gradients on the saturated ferrofluid flowing 

along a flat plate was investigated by NeuringerJ.L. 

(1966). The flow of a viscous fluid past a linearly 

stretching surface was considered by Crane L.J. 

(1970) for a Newtonian fluid. Andersson and 

Valnes (1998) extended Crane’s problem by 

studying the influence of the magnetic field, due to 

a magnetic dipole, on a shear driven motion (flow 

over a stretching sheet) of a viscous non-conducting 

ferrofluid. It was concluded that the primary effect 

of the magnetic field was to decelerate the fluid 

motion as compared to the hydrodynamic case.  

At the present time there are enumerable papers on 

the stretching sheet problem using different 

continua and considering various effects such as 

non-Newtonian characteristics, radiation, and 

magnetic field and so on. The above discussions can 

be found in Abel et al. 2008, 2009a, 2009b, 2009c, 

2009d, 2011; Andersson 1998, 1992, 2006; Cortell 

2010, 2008, 2007a, 2007b, 2006; Dandapat 2011, 

2010, 2007; Dulal Pal 2010a, 2010b; Siddheshwar 

and Mahabaleshwar 2005; Hayat et al. 2010a, 

2010b; Abbas et al.2010; Wang C.Y. 2007; Hamad 

2007; Arnold et al. 2010; Seddeek 2007; Prasad et 

al. 2010; Magyari and Keller 2006; Van Gorder and 

Vajravelu 2010; Vajravelu and Cannon 2006; 

Abdoul and Ghotbi 2009; Tzirtzilakis and 

Kafoussias 2003 and the references there in. 

In many of the physical situation the sheet may be 

stretched vertically, rather than horizontally, into 

the ambient liquid. In this case the liquid flow and 

the heat transfer characteristics are determined by 

the motion of the stretching sheet and the buoyant 

force. There are no studies in literature concerning 

the flow and heat transfer in a ferrofluid due to a 

vertical stretching sheet in the presence of external 

magnetic field. This paper aims at studying the 

same using two different types of boundary heating, 

namely, prescribed surface temperature (PST) and 

prescribed surface heat flux (PHF). Shooting 

method based on Runge-Kutta-Fehlberg and 

Newton Raphson schemes is used in arriving at the 

numerical solution of the proposed problem. 

2. MATHEMATICAL FORMULATION 

Consider a steady two-dimensional flow of an 

incompressible, viscous and electrically non 

conducting ferrofluid driven by an impermeable 

sheet in the vertical direction. By applying two 

equal and opposite forces along the direction of 

gravity which is taken as the x-axis, and y-axis in a 

direction normal to the flow, the sheet is stretched 

with a velocity uw (x) which is proportional to the 

distance from the origin. A magnetic dipole is 

located some distance from the sheet. The centre of 

the dipole lies on the y-axis at a distance ‘a’ from 

the x-axis and whose magnetic field points in the 

positive x-direction giving rise to a magnetic field 

of sufficient strength to saturate the ferrofluid. The 

stretching sheet is kept at a fixed temperature Tw 

below the Curie temperature Tc, while the fluid 

elements far away from the sheet are assumed to be 

at temperature T = Tc and hence incapable of being 

magnetized until they begin to cool upon entering 

the thermal boundary layer adjacent to the sheet.  

The boundary layer equations governing the flow 

and heat transfer in a ferrofluid are as follows, 

0
u v

x y

 
 

 
              (1) 

2

0

2
( )

c

u v u H
u v M g T T

x y y x




 


   

    
   

      (2) 

0

2 22

2
2

p

T T M H H
c u v T u v

x y T x y

T u v
k

y y y

 

 

    
  

    

  
  

  

   
   
   

   
   
   

 (3) 

where u and v are the velocity components along x 

and y directions respectively,  is the fluid density, 

  the dynamic viscosity, 






  the kinematic 

viscosity, Cp specific heat at constant pressure, k the 

thermal conductivity, g  the acceleration due to 

gravity, 


representing the coefficient of thermal 

expansion, 
0

 the magnetic permeability, M the 

magnetization, H the magnetic field, T the 

temperature of the fluid. 

The assumed boundary conditions for solving the 

above equations are: 

 

 

w

 u = cx ,  v = 0,   

 T = T in PST 0

 in PHF

c

w

x
T A at y

L

T x
k q D

y L

  


  












        (4) 

0,u T T as y


                    (5) 

where k is the thermal conductivity of the fluid. A 

and D are positive constants and L = 
c


 is the 

characteristic length. The flow of ferrofluid is 

affected by the magnetic field due to the magnetic 

dipole whose magnetic scalar potential is given by: 
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2 2

2 ( )

x

x y a









 

 
 
 

,                 (6) 

where  is the dipole moment per unit length. 

The magnetic field H  has the components 

 

2 2

2
2 2

( )

2 ( )
x

x y a
H

x x y a

 



  
  

  

                (7) 

 
2

2 2

2 ( )

2 ( )

 

y

x y a
H

y x y a

 



 
  

  

                (8) 

Since the magnetic body force is proportional to the 

gradient of the magnitude of H , we obtain: 

 
1

22
2

H
x y

  
 

 

  
    

             (9) 

 

 

4

2

3 5

2
,

2

2 4

2 ( )

H x

x y a

H x

y y ay a










 

 

 
 

 

 
 
 

 
 
 

              (10) 

Variation of magnetization M with temperature T is 

approximated by a linear equation 

M = K ( Tc – T )                 (11) 

where K is the pyromagnetic coefficient. 

3. SOLUTION PROCEDURE 

We now introduce the non - dimensional variables 

as assumed by Andersson (1998). 

 
1

2

( , ) ( , )
c

x y 


 , 
( , )

( , )
u v

U V

c

 ,              (12) 

2

1 2

2

1 2

( ) ( ) in PST case

( , )

( ) ( ) in PHF case

c

c w

T T

T T

    
  

    


 

 





  (13) 

Where  c w

x
T T A

L

   in PST case, 

 c w

DL x
T T

k L

   in PHF case. 

The boundary layer equations 1-3 on using 10-13 

takes the following form: 

0
U V

 

 
 

 
                (14) 

 
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2
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2

4
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U
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 


      

 
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

 


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  (15) 
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2
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2

' 2 '

2 1 2

2
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'' ''

1 2

Pr 2

2 2 4

2

U V

U V V

U V

   



   

 


    

   
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 

 
 

 
 
 
 

   
   
   

 


  

 

 
   

 

(16) 

The boundary conditions, given by Eq. (4), now 

takes the form: 

1 2

' '

1 2

( , 0) , ( , 0) 0,

( , 0) 1, ( , 0) 0, (PST),

( , 0) 1, ( , 0) 0, (PHF),

( , ) 0, ( , ) 0

U V

U

  

   

   

  

 

 

  

   








(17) 

Introducing the stream function ( , ) ( )f    

that satisfies the continuity equation in the 

dimensionless form 14, we obtain: 

'

( ), ( ),U f V f
 

  

 

 
    

 

             (18) 

where the prime denotes differentiation with respect 

to  . On using Eq. (10), Eq. (12) and Eq. (18) in 

Eq. (15) and Eq. (16), we obtain the following 

boundary value problem  

(i) PST 

' ' ' ' ' 2 1

14

' 2
( ) 0

( )

f ff f Gr



 

    


              (19) 

 ' ' ' '

1 1 1

2
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2
( ) 2 ( ) 0,

( )

f f

f
f
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 
  

 

 
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

              (20) 

' ' ' 2 ' ' 2

2 2 2 3

'

1 4 5

2
( ) Pr(3 )

( )

2 4
( ) 0,

( ) ( )

f
f f f

f f

 
   

 

  
   

   

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 

 
 
 

      (21) 

'

1 2
0, 1, 1, 0 at 0f f         (22) 

'

0f  , 
1

0  , 
2

0    as                   (23) 

(ii) PHF 
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' ' ' ' ' 2 1
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            (26) 
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0, 1, 1, 0 at 0f f                  (27) 

'

1 2
0, 0, 0 asf                    (28) 

The six dimensionless parameters, which appear 

explicitly in the transformed problem, are the 

Prandtl number Pr, the viscous dissipation 

parameter  , the dimensionless Curie temperature 

 , the ferrohydrodynamic interaction  parameter 

 , the Grashof number Gr and the dimensionless 

distance   from the origin to the center of the 

magnetic pole, defined respectively as 
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02
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 

 
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


 ,

1

2
2c a





 
 
 

               (29) 

The local skin friction coefficient 
f

C , which is a 

dimensionless form of the shear stress  at the 

sheet is given by: 

f
C =

2

2

( )

xy

cx






= 

1

22 (0) Re
x

f


               (30) 

In the PST case we are fixing the surface 

temperature and hence we calculate the local heat 

flux as follows, 

1

22

1 2
Re [ (0) (0)]

x x
Nu                     (31) 

In the PHF case we are fixing the surface heat flux 

and hence we compute the surface temperature as 

follows, 

  2

1 2
[ (0) (0)]

DL x
Tw Tc

k L

                   (32) 

 

3.1 Method of Solution: 

The three coupled differential equations (19) to (21) 

subject to the boundary conditions (22) and (23) 

constitute a non - linear two - point boundary value 

problem, which is solved by means of a standard 

shooting technique. The higher order ordinary 

differential equations are formulated as first order 

equations and the resulting set of seven first order 

equations can be integrated as an initial value 

problem using the adaptive stepping Runge-Kutta- 

Fehlberg (RKF45) method. The trial values of 
'' ' '

1 2
(0), (0), (0)f    were adjusted iteratively 

by Newton Raphson‘s method to assure a quadratic 

convergence of the iterations required in order to 

fulfill the right end boundary conditions. The initial 

value problem to be solved are given below  

 

3.2 Initial Value Problem-1 (IVP-1) 
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    (33) 

with the initial conditions:  

y1(0)=0, y2(0) = 1, y3(0) = a0, y4(0) = 1, 

y5(0) = b, y6(0) = 0, y7(0) = c0                             (34) 

We need to solve a sequence of initial value 

problems as above so that the end boundary values 

thus obtained numerically match upto a desired 

degree of tolerance with the boundary values at   

given in the problem. Now the problem is to find a0, 

b0, c0 such that: 

F1 (a0, b0, c0) = f   ( , a0, b0, c0) –  

f  ( ) = y2 ( , a0, b0, c0) – y2 ( ), 

F2 (a0, b0, c0) = 
1

  ( , a0, b0, c0) –  

1
 ( ) = y4 (  , a0, b0, c0) – y4 ( ),  
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F3 (a0, b0, c0) =
2

  ( , a0, b0, c0) –  

2
 ( ) = y6 (  , a0, b0, c0) – y6 ( ).                 (35) 

These are three nonlinear equations in a, b, and c 

which are solved by the Newton-Raphson method. 

This method for finding roots of non-linear 

equations, with a0, b0 and c0 as the initial values, 

yields the following iterative scheme: 
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,  

(n = 0, 1, 2, ...).                               (36) 

To implement Newton-Raphson method, the nine 

partial derivatives of F1, F2 and F3 with respect to a, 

b and c are required.  By differentiating the IVP 1 of 

Eq. (33) and Eq. (34), with respect to a and setting 

Yi = 
i

y

a





, the second initial value problem (IVP-2) 

is obtained. 
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(37) 

with the initial conditions, 

Y1 (0) = 0; Y2 (0) = 0; Y3 (0) = 1; Y4 (0) = 0; 

Y5 (0) = 0; Y6 (0) = 0; Y7 (0) = 0.              (38) 

Similarly IVP-3, IVP-4 are obtained by 

differentiating IVP-1 with respect to b and c 

respectively. Thus three additional initial value 

problems IVP-2, IVP-3 and IVP-4 known as the 

variational equations in literature, are obtained and 

solved using variable stepping RKF45 method.  

4. RESULTS AND DISCUSSION 

An analysis is carried out to study the effect of 

magnetic field on the flow of the ferromagnetic 

liquid due to a vertically stretched sheet. Heat 

transfer is studied using two different boundary 

heating, namely, PST and PHF. With the aid of 

similarity transformations the partial differential 

equations governing the flow and heat transfer are 

converted into a set of non-linear coupled ordinary 

differential equations. The resulting problem is a 

boundary value one and the same is solved using 

shooting technique based on RKF45 and NR 

methods. The numerical results are shown in the 

form of graphs from Figs. 2 to 7. The skin friction 

coefficient is tabulated in Table 1 for a wide range 

of values of the governing parameters.  

Figure (2) shows the effect of ferrohydrodynamic 

interaction parameter   on velocity profiles 
'

( )f   

for PST and PHF cases. From these plots it is 

evident that increasing values of   results in 

flattening of 
'

( )f  . The transverse contraction of 

the velocity boundary layer is due to the applied 

magnetic field, which produces considerable 

opposition to the motion.  

 

 

Fig. 1. Schematic representation of flow 

configuration (broken lines represent the 

magnetic field) 
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(a) 

 
(b) 

Fig. 2. Effect of ferrohydrodynamic interaction 

parameter   on velocity profile in PST and 

PHF with   = 1,  = 2 and   = 0.01 

 

 
(a) 

 
(b) 

Fig. 3. Effect of Prandtl number Pr on velocity 

profile in PST and PHF with   = 1,   = 2 and 

  = 0.01 

 
(a) 

 
(b) 

Fig. 4. Effect of Grashof number Gr on velocity 

profile in PST and PHF   = 1,  = 2 and  

  = 0.01 

 

 
(a) 

 

(b) 

Fig. 5. Effect of ferrohydrodynamic interaction 

parameter   on temperature profile in PST and 

PHF with   = 1,  = 2 and   = 0.01 
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(a) 

 
(b) 

Fig. 6. Effect of Prandtl number Pr on 

temperature profile in PST and PHF with   = 

1,  = 2 and   = 0.01 

 
(a) 

 
(b) 

Fig. 7. Effect of Grashof number Gr on 

temperature profile in PST and PHF with   = 

1,  = 2 and   = 0.01 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Comparison of heat transfer in two 

boundary conditions PST and PHF when   is 

varied with   = 1,  = 2 and   = 0.01 

 

From Fig. 3 which illustrates the effect of Pr on the 

velocity profiles it is clear that increasing values of 

Pr reduces the horizontal velocity profiles in both 

PST and PHF cases. The Prandtl number is the ratio 

of two diffusivities, diffusivity of momentum and 

vorticity and that of the heat. At high Prandtl 

number the fluid is very viscous and the velocity is 

reduced. 

The effect of Grashof number Gr on the horizontal 

velocity profiles is shown in Fig. 4 for the cases of 

PST and PHF. The Grashof number highlights the 

significance of convection in controlling the axial 

velocity. These plots indicate that the momentum 

boundary layer thickness increases with the 

increasing values of Gr, enabling the fluid to flow 

freely. The buoyancy force evolved as a 

consequence of the cooling of the vertical stretching 

sheet acts like a favourable pressure gradient 
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accelerating the fluid in the boundary layer region. 

It also indicates the relative importance of inertia to 

viscous forces. When Gr is large the domination of 

advection over conduction always occurs 

simultaneously with dominance of inertial forces 

over viscous forces. It can also be interpreted as that 

the flow will have a boundary layer character.  

Figure (5) shows the effect of   on temperature 

profiles. As   increases the skin friction is 

increased which enhances the heat transfer. The 

same effect is reiterated in Fig. 5. A number of 

striking phenomena are exhibited by the magnetic 

fluid in response to the impressed magnetic fields. 

These responses include the normal field instability 

due to which a pattern of spikes appears on the fluid 

surface, enhanced convective cooling in ferrofluids 

having a temperature dependent magnetic moment, 

unusual buoyancy relationships, such as the self-

levitation of an immersed magnet. The parameter 

  has a regulating effect on the fluid as it regulates 

the velocity of the motion. This happens only at the 

lower values of  , but at higher values some 

unrealistic patterns are observed. 

Figure (6) highlights the effect of thermal 

diffusivity parameter Pr on heat transfer. It is clear 

from this figure that the fluid with lesser Prandtl 

number is effective in controlling the heat transfer. 

The effect of Grashof number on heat transfer is 

same as that of Pr as can be seen from Fig. 7. Here 

we note that for Gr = 0 recovers the results of 

horizontal stretching sheet problem. 

The skin friction coefficient is tabulated in Table 1 

for various values of  , Pr and Gr. This table 

highlights the same effects of the parameters that 

we have discussed through figures. The skin friction 

is increased in presence of magnetic field (   = 2) 

as compared to the case of absence of magnetic 

field (   = 0) that is,   dominates in controlling 

the heat transfer as compared to other parameters.  

 

Table 1 Values of - '' (0)f  for different values of Gr and Pr in the absence / presence of ferromagnetism 

for PST and PHF 

 

-f ’’(0) 

 

Gr Pr 
PST PHF 

0   2   0   2   

1 

2 

0.597198 1.264163 0.590702 1.280894 

2 0.233778 0.878759 0.252027 0.878351 

3 -0.106231 0.523613 -0.049035 0.537847 

4 -0.429651 0.188691 -0.325007 0.233937 

5 -0.740288 -0.131168 -0.582449 -0.044760 

6 -1.040571 -0.439099 -0.825365 -0.304578 

2 

1 0.062698 0.751592 -0.209880 0.686542 

2 0.233778 0.878759 0.252027 0.878351 

3 0.330682 0.984821 0.458720 0.952642 

4 0.396045 0.984821 0.576737 0.988155 

5 0.444270 1.012052 0.652899 1.007067 

6 0.481881 1.031515 0.706001 1.017839 

 

From the Fig. 8 it is clear that the thermal boundary 

layer thickness in PHF case exceeds the PST case 

showing that more heat is diffused away into the 

system. Hence the PHF boundary conditions are 

better suited for proper cooling of the sheet. As 

mentioned earlier the desired properties of the 

extrudate depend on the rate of cooling. For 

applications where in the better cooling rate is 

required the PHF boundary condition can be made 

use. 

5. CONCLUSIONS 

The following inference is arrived at from the 

results that we have discussed in the previous 

section. 

1. The ferrohydrodynamic interaction parameter   

has a significant say in the control of flow and heat 

transfer of the ferrofluid. It should be kept at 

minimum. 

2. Grashof and Prandtl numbers assists flow thereby 

reducing heat transfer hence these parameters als 

must be at their minimum for effective cooling. 
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