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ABSTRACT 

The effects of nonlinear radiation on hydromagnetic boundary layer flow and heat transfer over a shrinking 

surface is investigated in the present work. Using suitable similarity transformations, the governing nonlinear 

partial differential equations are transformed into nonlinear ordinary differential equations. The resultant 

equations which are highly nonlinear are solved numerically using Nachtsheim Swigert shooting iteration 

scheme together with Fourth Order Runge Kutta method. Numerical solutions for velocity, skin friction 

coefficient and temperature are obtained for various values of physical parameters involved in the study 

namely Suction parameter, Magnetic parameter, Prandtl number, Radiation parameter and Temperature ratio 

parameter.  Numerical values for dimensionless rate of heat transfer are also obtained for various physical 

parameters and are shown through tables. The analytical solution of the energy equation when the radiation 

term is taken in linear form is obtained using Confluent hypergeometric function. 

 

Keywords: Magnetic field; Heat transfer; Thermal radiation; Shrinking surface; Confluent hypergeometric 

function. 

NOMENCLATURE 

a shrinking rate T∞ temperature of the free stream fluid 

B0 magnetic field strength u velocity in the x direction 

Cf skin friction coefficient v velocity in the y direction 

Cp specific heat at constant pressure v0 constant suction velocity  

F dimensionless velocity x dimensional distance along the sheet 

k thermal conductivity of the fluid y dimensional distance normal to the sheet 

k* Rosseland mean absorption coefficient  

M 2 magnetic parameter η dimensionless coordinate 

Nux local Nusselt number θ dimensionless temperature 

Pr Prandtl number θw temperature ratio parameter  

qw heat flux at the surface μ dynamic viscosity of the fluid 

qr radiative heat flux ν kinematic viscosity of the fluid 

Rd radiation parameter ρ density of the fluid 

Rex local Reynolds number σ electrical conductivity of the fluid 

S Suction parameter σ * Stefan Boltzmann constant 

T temperature of the fluid τw shear stress at the wall 

Tw temperature at the wall 𝜓 stream function 

1. INTRODUCTION 

Radiation heat transfer effects on forced convection 

flows are very important in space technology and 

high temperature processes and lot of studies have 

been reported on the effects of radiation on the 

boundary layer flow of an electrically conducting 

fluid past a body. 

Soundalgekar et al. (1960) examined the radiation 

effects on free convection flow of a gas past a semi-

infinite flat plate. Viskanta and Grosh (1962) 

investigated the boundary layer in thermal radiation 

absorbing and emitting media. Mosa (1979) 

discussed one of the models for combined radiative 

hydromagnetic heat transfer. The  effects of 

radiation of an optically dense viscous 

incompressible fluid past a heated vertical plate 

with uniform free stream velocity and surface 
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temperature was explored by Hossain and Takhar 

(1996). In this investigation, consideration had been 

given to gray gases that emit and absorb, but do not 

scatter thermal radiation. The Rosseland diffusion 

approximation offers one of the most 

straightforward simplifications of the full integro-

partial differential equations. 

The effects of radiation on the free convection heat 

transfer problem in the absence of a magnetic field 

and viscous dissipation was studied by Hossain et 

al. (1999). Elbashbeshy (2000) investigated the 

radiation effect on heat transfer over a stretching 

surface.  He considered the full term expansion for 

the radiation term. Duwari and Damseh (2004) 

presented the radiation-conduction interaction in 

free and mixed convection fluid flow for a vertical 

flat plate in the presence of a magnetic field. 

Radiation effects on the flow near the Stagnation 

point of a stretching sheet were investigated by Pop 

et al. (2004).  Cortell (2008) analyzed the radiation 

effect in Blasius flow. Aydin and Kaya (2009) 

studied MHD mixed convective heat transfer flow 

about an inclined plate.   

Swati Mukhopadhy et al. (2011) discussed the 

effect of nonlinear radiation on steady boundary 

layer flow and heat transfer over a porous moving 

plate.  Anjali Devi and David Maxim Gururaj 

(2012) considered the effects of variable viscosity 

and nonlinear radiation on MHD flow with heat 

transfer over a surface stretching with a power law 

velocity. Misra and Sinha (2013) studied the effects 

of Hall current and thermal radiation on flow of an 

electrically conducting and radiating fluid through a 

porous medium. The effect of thermal radiation on 

unsteady flow and heat transfer of MHD micropolar 

fluid over a stretching sheet subjected to suction 

was investigated by Shit et al. (2013). 

Recently, the boundary layer flow due to shrinking 

sheet has attracted considerable interest.  In 

particular in the past few years much attention has 

been focused for the study of different types of flow 

and heat transfer over a shrinking sheet for various 

fluids due to its numerous applications. The 

velocity on the boundary is towards a fixed point 

and so the flow over a shrinking sheet is physically 

different from that of the stretching sheet. It is also 

shown that the mass suction is required generally to 

maintain the flow over the shrinking sheet.  

Micklavcic and Wang (2006) were the first to 

investigate the flow over a shrinking sheet. Wang 

(2008) investigated the stagnation flow towards a 

shrinking sheet. Yao and Chen (2009) examined 

analytical solution branch for the Blasius equation 

with a shrinking sheet.  

Nadeem et al. (2009) obtained the series solution 

for the stagnation flow of a second grade fluid over 

a shrinking sheet using homotopy analysis method. 

Cortell (2010) discussed on certain boundary valve 

problem arising in shrinking sheet flows. Thermal 

boundary layer over a shrinking sheet is 

investigated by Fang and Zhang (2010) for 

prescribed power law wall temperature and power 

law wall heat flux case. 

Shrinking sheet problems are also extended for 

electrically conducting fluids. Hayat et al. (2007) 

reported the analytical solution of 

magnetohydrodynamic flow of second grade fluid 

over a shrinking sheet. Sajid et al. (2008) analyzed 

rotating flow of a viscous fluid over a shrinking 

sheet for electrically conducting fluids.  

Noor et al. (2009) investigated MHD flow adjacent 

to permeable shrinking sheet in a porous medium. 

Ali et al. (2010) observed the MHD viscous flow 

and heat transfer due to permeable shrinking sheet 

with constant surface heat flux. Ali et al. (2010) 

analysed the effect of radiation on unsteady three 

dimensional flows and heat transfer past a 

permeable shrinking sheet. Javed et al. (2011) 

analyzed the viscous dissipation effect on steady 

hydromagnetic viscous fluid for nonlinear shrinking 

sheet. The effects of suction/blowing on steady 

boundary layer stagnation point flow and heat 

transfer towards a shrinking sheet with thermal 

radiation was carried out by Bhattacharyya and 

Layek (2011). Jafar et al. (2012) investigated MHD 

flow and heat transfer over stretching/shrinking 

sheets with external magnetic field, viscous 

dissipation and Joule effects without the radiation 

effect. Recently, Mahapatra and Nandy (2013) 

studied on momentum and heat transfer in MHD 

axisymmetric stagnation point flow over a shrinking 

sheet. 

Thermal radiation effects might play a significant 

role in controlling heat transfer processes in 

polymer processing industry. The radiative flows of 

an electrically conducting fluid with high 

temperature in the presence of magnetic field are 

encountered in electrical power generation, space 

vehicle re-entry, nuclear engineering applications 

and other industrial areas. Owing to these 

applications, the present work mainly deals with a 

problem of such kind. The paper discusses the 

effect of magnetic field on the forced convection 

flow of a viscous, incompressible, electrically 

conducting and radiating fluid from a shrinking 

sheet with uniform rate of suction and uniform 

magnetic field. Many outstanding theoretical 

models have been developed for radiative 

convection flows and radiation conductive 

transport. As a result, in most of the investigations, 

the radiation term appears in linear form. A new 

dimension is added to hydromagnetic boundary 

layer flow over a shrinking surface by the 

consideration of radiation term in full form. 

Rosseland approximation is utilized in the energy 

equation which gives the value for qr. When the 

nonlinear radiation is considered, the assumption 

that the temperature difference with in the flow is 

sufficiently small is not made and hence the effect 

of radiation in taken in real sense. Based on these, 

the current work investigates the nonlinear radiation 

effects on hydromagnetic boundary layer flow and 

heat transfer over a shrinking surface. 
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2. PHISICAL MODEL 

2.1 Governing Equations  

The steady, two-dimensional, hydromagnetic 

boundary layer flow of a viscous, incompressible, 

electrically conducting and radiating fluid over a 

shrinking surface with nonlinear radiation effects is 

considered. It is assumed that the components of the 

velocity be (u, v). The applied magnetic field is 

assumed to be in the y direction and is taken as B0 = 

B0 ĵ . The flow configuration and the coordinate 

system are shown in Fig. 1. 

 

 

Fig. 1. Flow model and coordinate system 

 

The fluid has constant physical properties. The fluid 

is assumed to be gray, emitting and absorbing, but 

non-scattering medium. The x axis extends parallel 

to the shrinking surface, while y axis extends 

upwards normal to the surface. The radiative heat 

flux in the x direction is considered to be negligible 

in comparison to that in the y - direction. The 

effects of viscous and Ohmic dissipation are 

neglected in the energy equation. 

Under the usual boundary layer assumptions, the 

conservation equations of mass, momentum and 

energy can be described by the following equations: 

Continuity Equation: 
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where u and v are the velocity components in the x 

and y directions respectively, T is the temperature of 

the fluid, ν is the kinematic viscosity, σ is the 

electrical conductivity of the fluid, B0 is the 

magnetic field, ρ is the density of the fluid, Cp is the 

specific heat at constant pressure, k is the thermal 

conductivity of the fluid and qr is the radiative heat 

flux. 

The term of Lorentz force in Eq. (2) is derived 

under the assumption that the induced magnetic 

field is assumed to be negligible in comparison to 

that of the applied magnetic field. This is valid 

when the magnetic Reynolds number is considered 

as very small. Since the flow is steady, curl E = 0. 

Also div E = 0 in the absence of surface charge 

density. Hence E = 0 is assumed. 

The radiative heat flux in the energy equation is 

simplified utilising the Rosseland approximation for 

radiation [Brewster (1992)] for an optically thick 

layer and qr is written as 
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where σ* is the Stefan-Boltzmann constant, k* is the 

Rosseland mean absorption coefficient. Using Eq. 

(4), the energy equation becomes 
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2.2  Boundary Conditions  

The appropriate boundary conditions for the 

velocity and temperature are: 

i) on the shrinking surface (y = 0) 

u = uw = - ax  ,     v = -v0 (no slip wall condition) 

and T = Tw (Constant Surface Temperature)         (6) 

where v0  is the constant suction velocity. 

ii) Matching with quiescent free stream (y → ∞) 

u → 0,  T → T∞                  (7) 

where a > 0 is a dimensional constant called 

shrinking rate, the subscripts w and ∞ refer to the 

wall and boundary layer edge respectively. 

To examine the flow regime adjacent to the surface, 

the following similarity transformations are utilized. 

 
ν
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where 𝜓(x, y) is the stream function such that, 
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Now, Eq. (1) is identically satisfied and substituting 

Eq. (8), Eqs. (2) and (5) reduce to the following 

nonlinear ordinary differential equations: 

0
22

 FMFFFF              (9) 



S.P. Anjali Devi and J. Wilfred Samuel Raj / JAFM, Vol. 8, No. 3, pp. 613- 621, 2015.   

616 

 

 

0)1())1(1(
4

)1(1
3

4
1

22

3

















θθθθ

θθθ
θ

ww

w

rPRd

F
RdrP

          (10) 

with boundary conditions 

,0)(,1)0(,)0(  FFSF  

θ (0) = 1 and θ (∞) → 0                (11) 

The nondimensional parameters occurring in the 

above equations are defined by 
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2.3 Skin Friction Coefficient and Non-

dimensional Rate of Heat Transfer 

The wall shear stress on the shrinking surface is 

specified by 
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The frictional drag or skin friction coefficient is 

given by 
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The rate of heat flux at the wall is defined as 

follows 
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and the local Nusselt number is given by 
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where
ν

2
xa

eR x  is the local Reynolds number. 

3. NUMERICAL SIMULATION 

Equations (9) and (10) are highly nonlinear and 

therefore the system cannot be solved analytically.  

Hence, the Eqs. (9) and (10) with its boundary 

conditions in Eq. (11) are solved numerically using 

Nachtsheim Swigert shooting iteration scheme 

together with Fourth Order Runge Kutta method.  

This method is well established and has been 

successfully implemented to study a variety of 

nonlinear heat and fluid flow problems which 

involve asymptotic boundary conditions. Numerical 

solutions have been carried out for different values 

of Suction parameter, Magnetic parameter, Prandtl 

number, Radiation parameter and Temperature ratio 

parameter. The effect of these parameters over 

velocity, temperature, skin friction coefficient and 

dimensionless rate of heat transfer are displayed 

through figures and tables. 

4. ANALYTICAL SOLUTION 

The exact solution of Eq. (9) subjected to the 

corresponding boundary conditions in Eq. (11) is 
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The analytical solution of the energy equation (10) 

can be found using Confluent hypergeometric 

function when the radiation term is taken in linear 

form that is when θw = 1.0. Then the equation 

becomes 
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The solution of Eq. (15) is given in the form of 

confluent hypergeometric function subjected to its 

corresponding boundary condition in Eq. (11) as 

follows 
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The expression for )0(θ  is given as 

0

200

200

0

0

,1,

,2,1

1
)0( a

P
aa

P
aa

a

aP
α

α

α

α
θ 











































  

where,
2

)1(4
22



MSS

α , 

)(
22

20 M
P

a  α
α

and 
43

3




Rd

rPRd
P . 

5. NUMERICAL RESULTS AND 

DISCUSSION 

Nonlinear radiation effects on MHD boundary layer 

flow and heat transfer over a shrinking surface have 

been investigated. Numerical solutions are obtained 

for various values of physical parameters and are 

illustrated graphically. Parametric studies were 

conducted by varying the Suction parameter, 

Magnetic parameter, Prandtl number, Radiation 

parameter and Temperature ratio parameter. In 
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order to validate the numerical results obtained, 

comparison with the analytical results is made 

under some special cases. When θw = 1.0, the exact 

solution of the energy equation is found out using 

Confluent hypergeometric function which is shown 

in Eq. (16). The values of )0(θ  for various values 

of Prandtl number and Radiation parameter which 

are obtained both numerically and analytically are 

compared and shown through Table which are 

found to be in excellent agreement. Numerical 

values for non-dimensional rate of heat transfer for 

various values of physical parameters are obtained 

and are presented in Table.  

 

5.1 Comparison Result 

From Fig. 2 it is noted that when the Temperature 

ratio parameter is unity (radiation term is taken in 

linear form) the numerical results for dimensionless 

temperature for various values of Radiation 

parameter are identical to the analytical results that 

are found using Confluent hypergeometric function. 

This comparison justifies the numerical simulation 

adopted in this investigation. 

 

 
Fig. 2. Comparison graph of dimensionless 

temperature for various Radiation parameter 

 

5.2 Effect of Suction parameter 

Figure 3 exhibits the variation in dimensionless 

velocity for several values of Suction parameter.  It 

is evident from the figure that the effect of Suction 

parameter is to reduce the momentum boundary 

layer thickness for its higher values. This is due to 

the acceleration in dimensionless velocity which 

causes the boundary layer thickness to decrease. 

Skin friction coefficient for various values of 

Suction parameter against Magnetic parameter is 

illustrated in Fig. 4. It is seen that the skin friction 

increases due to increase in Suction parameter at 

fixed value of Magnetic parameter. Further, the skin 

friction coefficient rises as the Magnetic parameter 

ascends along the horizontal axis. 

Figure 5 presents the effect of Suction parameter 

over temperature distribution. The thermal 

boundary layer thickness decreases with an increase 

in Suction parameter. The explanation of such 

behaviour is that the fluid is brought closer to the 

surface and reduces the thermal boundary layer 

thickness. It is also clear that the maximum value of 

the temperature occurs near the surface of the plate.  

 
Fig. 3. Effect of Suction parameter over the 

dimensionless velocity 

 
Fig. 4. Skin friction coefficient for different 

values of Suction parameter 

 

Fig. 5. Dimensionless temperature profiles for 

various values of Suction parameter 

 

5.3 Effect of Magnetic Parameter 

From Fig. 6 it is observed that the effect of 

Magnetic parameter accelerates the dimensionless 

velocity and consequently the thickness of 

momentum boundary layer thickness reduces.  Thus 

the Lorentz force arising because of interaction of 

magnetic and electric fields for the motion of an 

electrically conducting fluids makes the boundary 

layer thinner.  

It can be seen from Fig. 7 that the temperature of 

the fluid decreases when the strength of Magnetic 

parameter increases. This leads to a reduction in 

thermal boundary layer thickness.  

 

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0 S  = 2.5

M2 = 1.0

Pr = 0.71


w
1.0

Rd = 1.0, 2.0, 3.0, 5.0, 109

Numerical results

Analytical results


 (


)



0 1 2 3 4 5


-1.0

-0.8

-0.6

-0.4

-0.2

-0.0

F
 ' 

(
) S = 1.5, 2.5, 3.5, 4.5, 5.5S = 1.5, 2.5, 3.5, 4.5, 5.5

M2 = 1.0

0.5 2.4 4.3 6.2 8.1 10.0



0

2

4

6

8

F
 ''

 (0
)

S = 1.5,  2.5, 3.5, 4.5, 5.5

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0 M2 = 1.0

Pr = 0.71

Rd = 2.5


w
1.1

S = 1.5, 2.5, 3.5, 4.5, 5.5


(


)





S.P. Anjali Devi and J. Wilfred Samuel Raj / JAFM, Vol. 8, No. 3, pp. 613- 621, 2015.   

618 

 

 
Fig. 6. Effect of Magnetic parameter over the 

dimensionless velocity 

 
Fig. 7. Dimensionless temperature profiles for 

various values of Magnetic parameter 

 

5.4 Effect of Prandtl Number 

Figure 8 shows the effect of Prandtl number on the 

dimensionless temperature.  As expected the 

temperature as well as the thermal boundary layer 

thickness is rapidly reduced with an enhancement in 

Prandtl number. This is agreeable with the fact that 

the increase of Prandtl number leads to reduction in 

thermal boundary layer thickness. 

 

 
Fig. 8. Dimensionless temperature profiles for 

various values of Prandtl number 

 

5.5 Effect of Radiation parameter 

The effect of Radiation parameter on temperature 

distribution in the boundary layer region is 

elucidated in Fig. 9. It is observed that the influence 

of Radiation parameter is similar to that of Prandtl 

number. When the value of Radiation parameter is 

amplified, the temperature declines, consequently 

the thermal boundary layer thickness becomes 

smaller. 

 
Fig. 9. Dimensionless temperature profiles for 

various values of Radiation parameter 

 

5.6 Effect of Temperature Ratio Parameter 

To illustrate the outcome of Temperature ratio 

parameter on temperature distribution Fig. 10 is 

drawn. The Temperature ratio parameter boosts the 

temperature and so the thermal boundary layer 

thickness also increases. 

 

Fig. 10. Dimensionless temperature profiles for 

various values of θw 

 

Table 1 Numerical values of skin friction 

coefficient for various values of S and M2 
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Table 1 shows the numerical values of skin friction 

coefficient for various values of Suction parameter 

and Magnetic parameter.  It is observed that values 

of skin friction coefficient increases significantly 

due to increase in Suction and Magnetic parameter. 

Further in the absence of radiation, the values of 

skin friction coefficient for S = 2.0 and 3.0 with   

M2 = 2.0 are identical to the results of Muhaimin et 

al. (2008).  

 

Table 2 Numerical and analytical values of - 

θ'(0) for various values of Pr and Rd when θw = 

1.0, S = 2.5 and M2 = 1.0 

Pr Rd Numerical Analytical 

0.71 2.0 0.940471 0.940472 

1.00  1.342494 1.342490 

1.50  2.049624 2.049620 

2.30  3.203898 3.203900 

7.00  10.16214 10.16210 

0.71 1.0 0.664207 0.664207 

 2.0 0.940471 0.940472 

 3.0 1.091026 1.091030 

 5.0 1.250666 1.250670 

 109 1.600030 1.600030 

 

Table 3 Dimensionless rate of heat transfer for 

various values of S, M2, Pr, Rd and θw  when            

S = 2.5, M2 = 1.0, Pr = 0.71, Rd = 2.0 and θw = 1.1 

S M2 Pr Rd θw 
x

x

eR

Nu

 
1.5 1.0 0.71 2.0 1.1 0.68035 

2.5     1.56193 

3.5     2.33579 

4.5     3.07986 

5.5     3.81117 

2.5 0.0 0.71 2.0 1.1 1.52200 

 0.5    1.54619 

 1.0    1.56193 

 1.5    1.57362 

 3.0    1.59711 

2.5 1.0 0.71 2.0 1.1 1.56193 

  1.00   2.22896 

  1.50   3.40284 

  2.30   5.32081 

  7.00   16.90422 

2.5 1.0 0.71 1.0 1.1 1.54318 

   2.0  1.56193 

   3.0  1.57142 

   5.0  1.58095 

   109  1.60003 

2.5 1.0 0.71 2.0 1.0 1.56745 

    1.1 1.56193 

    1.3 1.55061 

    1.5 1.53972 

    2.0 1.51845 

 

Table 2 presents the numerical and analytical values 

of )0(θ  when θw = 1.0 for various Prandtl number 

and Radiation parameter. The table shows that the 

numerical and analytical values of )0(θ  for 

various Prandtl number and Radiation parameter 

agree with each other which justify the numerical 

scheme adopted. 

Table 3 displays the non-dimensional rate of heat 

transfer for different values of Suction parameter, 

Magnetic parameter, Prandtl number, Radiation 

parameter and Temperature ratio parameter. The 

influence of Suction parameter, Magnetic 

parameter, Prandtl number and Radiation parameter 

is to enhance the dimensionless rate of heat transfer 

while the effect of Temperature ratio parameter is to 

diminish the dimensionless rate of heat transfer.  

6. CONCLUSION 

A mathematical model has been developed and 

numerical investigation is carried out to explore the 

effects of nonlinear radiation on hydromagnetic 

forced convection boundary layer flow of an 

electrically conducting fluid flow over a shrinking 

surface. Using similarity variables, a set of self-

similar equations is obtained. The dimensionless 

conservation equations have been solved 

numerically using Nachtsheim Swigert shooting 

iteration scheme together with Fourth Order Runge 

Kutta method. The analytical solution of energy 

equation is found when linear form of radiation 

term is taken into account. The physical situation is 

shown by means of graphs for various physical 

parameters involved in the system, namely Suction 

parameter, Magnetic parameter, Prandtl number, 

Radiation parameter and Temperature ratio 

parameter. In this simulation, the default value of 

Pr is chosen to be 0.71 which corresponds to air. 

The numerical computations have led to the 

following conclusion: 

When θw = 1.0, the numerical results are identical to 

that of the analytical results for dimensionless 

temperature for several values of Radiation 

parameter and Prandtl number which confirms the 

validity of numerical simulation. 

The effect of Suction parameter is to enhance the 

dimensionless velocity, skin friction coefficient and 

dimensionless rate of heat transfer whereas there is 

a fall in dimensionless temperature. 

An increase in Magnetic parameter accelerates the 

dimensionless velocity and skin friction coefficient. 

The dimensionless temperature is declined by the 

effect of Magnetic parameter. Unlike the 

dimensionless temperature, the dimensionless rate 

of heat transfer is enhanced by it.  

For larger values of Suction parameter and 

Magnetic parameter the momentum boundary layer 

thickness and the thermal boundary layer thickness 

become thin. 

The temperature and the thermal boundary layer 

thickness reduce with an enhancement in Prandtl 

number. Further, the effect of Prandtl number is to 

enhance the dimensionless rate of heat transfer. The 

thermal boundary layer thickness can be reduced by 

increasing the value of Prandtl number.  
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Thickness of thermal boundary layer decreases with 

a rise in Radiation parameter, while the 

dimensionless rate of heat transfer is improved by 

it.  

Temperature ratio parameter has a tendency to 

increase the temperature and consequently the 

thermal boundary layer thickness also. It declines 

the dimensionless rate of heat transfer. 

It is evident from the figures that the velocity and 

temperature takes its limiting value for higher 

values of dimensionless distance η that is the far 

field boundary conditions for the velocity and 

temperature are satisfied which confirms the 

accuracy of the numerical scheme used. 

The results presented indicate clearly that the 

Temperature ratio parameter have significant effect 

on heat transfer characteristics.  

 It is believed that the results of the problem are of 

great interest in processes involving radiative heat 

transfer.   
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