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ABSTRACT 

Recently a new inverse design algorithm has been developed for the design of ducts, called ball-spine (BS). In 
the BS algorithm, the duct walls are considered as a set of virtual balls that can freely move along some 
specified directions, called ‘spines’. Initial geometry is guessed and the flow field is analyzed by a flow 
solver. Comparing the computed pressure distribution (CPD) with the target pressure distribution (TPD), new 
balls positions for the modified geometry are determined. This procedure is repeated until the target pressure 
is achieved. In the present work, the ball-spine algorithm is applied to three-dimensional design of axial 
compressor blades. The design procedure is tested on blades based on NACA65-410 and NACA65-610 
profiles and the accuracy of the method is shown to be very good. As an application, the pressure distribution 
of the blade with NACA65-610 profiles is modified and the pressure gradient in the aft part of the blade is 
decreased and selected as target pressure distribution. The corresponding geometry which satisfies the target 
pressure is determined using the BS design algorithm. 

Keywords: Ball-Spine algorithm; Inverse design; Compressor blade; Target pressure distribution. 

NOMENCLATURE 

A  element area [m2] 
0P total pressure [Pa] 

a acceleration of the ball [m/s2] TPD target Pressure Distribution [Pa] 
C geometry correction coefficient [m2s2/kg] x x position of the ball [m], x coordinate 
CPD computed Pressure Distribution [Pa] y y position of the ball [m], y coordinate 
d distance of the ball from chord line [m] P pressure difference [Pa] 
Error P pressure error parameter PD distribution of pressure difference [Pa] 
Error S displacement error parameter s displacement of the ball [m] 
F force imposed on the ball [N] t time step[s] 
i  node index from leading to trailing edge 
j node index from hub to tip Subscripts  

maxJ no. of nodes from hub to tip Comp. computed conditions 

CL blade chord length [m] LE leading edge 
m ball mass [kg] new new conditions 

xn x-component of normal vector old old conditions 

yn y-component of normal vector Target target conditions 
P static pressure [Pa] TE trailing edge 

1. INTRODUCTION

Design of hardware involving fluid flow or heat 
transfer such as intakes, manifolds, compressor and 
turbine blades, etc., is defined as the shape 
determination of the solid elements so that the flow 
or heat transfer rate is optimized in some sense. 

Often, both Computational Fluid Dynamics (CFD) 
and design algorithms are involved in determining 
the optimal shape. The computational costs in 
design techniques are usually a challenge, so an 
appropriate algorithm for the rapid shape 
determination is always of interest to designers. 

In general, the design problems are categorized in two 
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groups, optimization problems and inverse design 
problems. In the first group, an objective function, 
which can be compounded of various targets, is 
defined and using optimization algorithms, the 
optimum values for the design parameters of the 
function are determined. Li et al. (2006) developed a 
blading design optimization system using an 
aeromechanical approach and harmonic perturbation 
method. They implemented this method on NASA 67 
rotor and improved the efficiency of the rotor by 0.4% 
considering the stress limitations. Verstraete et al. 
(2007) presented a multidisciplinary optimization and 
applied it to the design of a small radial compressor 
impeller. In this method a genetic algorithm and 
artificial neural network have been used to find 
geometry with maximum efficiency regarding a 
maximum stress limitation in the blades. 
 

For the second type of design problems, i.e. inverse 
design ones, there are basically two different 
algorithms to solve the design problems: decoupled 
(iterative) and coupled (direct or non-iterative) 
techniques. In the coupled solution approach an 
alternative formulation of the problem is used in which 
the surface coordinates appear (explicitly or implicitly) 
as dependent variables. In other words, the coupled 
methods tend to find the unknown part of the boundary 
values and the flow field unknowns simultaneously in 
a (theoretically) single-pass or one-shot approach. 
More information can be found in Lamm (1993)  . 
Equations of coupled methods make the set of the 
governing equations very complicated; hence these 
methods are limited to simple flow regimes.  
 

On the other hand, the iterative design approach 
solves a series of sequential problems in which the 
geometry is modified in each step (evolved) so that 
the desired TPD is eventually achieved  (See 
Garabedian and McFadden 1982). In these iterative 
methods, the governing equations are similar to the 
flow field equations and the conventional solvers 
could be used as a black box. Hence the iterative 
methods are applicable for complicated flow regimes. 
 

The traditional iterative methods used for inverse 
design problems are often based on trial and error or 
optimization-search algorithms. The trial and error 
search process is very time-consuming and 
computationally expensive; it also depends on the 
designer’s experience. 
 

The iterative methods presented so far use the physical 
algorithms instead of the mathematical ones to 
automate the geometry modification in each iteration 
cycle. The physical-based methods are easier and 
quicker than the mathematical (or optimization based) 
iterative schemes. Nili-Ahmadabadi et al. (2009) 
presented an iterative inverse design method for 
internal flows called Flexible String Algorithm (FSA). 
They considered the duct wall as a flexible string 
frequently deformed under the difference between 
TPD and CPD, ∆PD = TPD – CPD. They developed 
this method for non-viscous compressible (Nili-
Ahmadabadi 2010 a) and viscous incompressible 
internal flow regimes (Nili-Ahmadabadi 2010b). 
Recently, Nili et al. (2010c), have presented a novel 
inverse design method called Ball-Spine algorithm (BS 
algorithm). They developed this method for quasi-3D 

design of meridional plane of centrifugal compressors 
(Nili et al. 2013). In a recent paper, Madadi et al. 
(2011) applied the ball-spine algorithm to 2D design 
of sharp leading edge airfoils.  
 

In this paper, the method is applied to three-
dimensional design of axial flow compressor 
blades. To do so, the ball spine algorithm is applied 
section by section from hub to tip of compressor 
blade. The method is applied to three test cases in 
this paper. Two compressor blades based on 
NACA65-410 and NACA65-610 profiles are 
selected as validating cases and a new blade with a 
modified pressure gradient of NACA65-610 blade 
is designed as an application of the method.  
 

It should be noted that the performance of an axial 
compressor depends on all stages, rotors, stators, 
chord length, tip clearance and numerous other 
parameters. In this paper, the authors focused on the 
design of the blade profiles which are used in the 
detail design step of an axial compressor design 
procedure. In practice, after preliminary design of 
an axial compressor, main parameters such as 
number of blades, chord length, hub-tip ratio, 
camber angle, lift coefficient, etc. are obtained. In 
the detail design step, the designer can use the ball 
spine method to design a blade which satisfies the 
given lift coefficient.  
 

The main advantage of this method is that in the ball 
spine algorithm, a relation between a physical 
quantity which is pressure and the geometry is 
introduced. Hence, the convergence rate of this 
method is very faster than other design techniques 
such as optimization based methods. On the other 
hand, the designer can use this method to improve the 
blade performance by diminish the separation regions 
regard to a convenient pressure distribution. For 
example if a separation zone is presented in the 
domain, the designer can use a pressure distribution 
with lower adverse pressure gradient to prevent the 
flow separation. Now, using the ball spine algorithm, 
the corresponding blade profile can be obtained. 

2. FLOW FIELD SOLUTION 

To solve the inviscid flow field within the three-
dimensional domain, a recently developed in-house 
code based on the flux difference splitting (FDS) 
scheme of Roe (1981) is used. The governing 
equations are discretized using the formulations 
presented by Kermani (2001).  
 

The Roe scheme gives non-physical expansion 
shocks in the regions where the eigenvalues of the 
Jacobian matrix vanish, e.g., the sonic regions and 
stagnation points. To solve this problem, an entropy 
correction formula from Kermani and Plett (2001) 
is used here. Grids are generated using an in-house 
code based on algebraic and elliptic grid generation 
methods. 

3. THE BALL-SPINE (BS) 
ALGORITHM 

In the present work, the ball-spine algorithm is 
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applied to three-dimensional design of a compressor 
blade. For better understanding, at first the basis of 
the ball spine algorithm is explained for a two-
dimensional duct. Then the method is explained for 
three-dimensional geometries. 
 
Here, the duct wall is considered as a set of virtual 
balls allowed to be freely moved along the specified 
direction called spines, shown in fig.1 Passing fluid 
flow through the flexible duct causes a pressure 
distribution to be applied to the outer side of the 
wall. If a target pressure distribution is applied to 
the inner side of the wall on each ball, the flexible 
wall deforms to reach a shape satisfying the target 
pressure distribution. In other words, the force due 
to the difference between the target and computed 
pressure distribution at each point on the wall is 
applied to each virtual ball and causes them to 
move. As the target shape is obtained, this pressure 
difference vanishes and the balls will stop moving.  
 

Balls and Spines

Flow

 
Fig. 1. 2-D duct with balls and spines. 

 
To derive the kinematic relations of a flexible wall, 
a uniform mass distribution along the wall is 
supposed. Now a sample ball on the duct wall is 
considered. The net force applied to the ball along 
the spine direction is computed as,  

.F P A   (1)

where,
 
 

.Target CompP P P    (2) 

and A   is the area of  each element (or projected 
area of the ball). If a ball moves along the spine 
through a specified time step ( t ), the 
corresponding displacement is computed from the 
following dynamic relations,

 
 

21
( ) ,

2

F
s a t a

m
     (3) 

where, m  and s  are the mass and displacement 
of the ball, respectively. Substituting Eqs. (1) and 
(2) into Eq. (3) yields,

 
 

   2
.

1

2 Target Comp
A

s t P P
m

     (4) 

or,
 
 

 .. , Target Comps C P P P P       (5) 

where,  2. 2C A t m  which is called “Geometry 

Correction Coefficient” has the dimensions of 
[m2.s2/kg]. Using the computed displacement for 
each ball (or computational node) on the wall, new 
geometry is obtained. Grids are generated for new 
geometry and the flow field is solved using flow 
solver. The procedure is repeated until the target 
and computed pressure distributions met and the 

balls positions become fixed. The design algorithm 
is shown in fig. 2 
 

start

Read the target 
pressure

Read the initial 
geometry

Solve the 
flow field

Determine the modified geometry by a 
feedback signal from the difference 
between the target and computed 

pressures

Make grid for the 
revised geometry

If target and computed pressures are equal?

No

Yes

Stop

Well done

 
Fig. 2. Design flowchart. 

 

Now the method is explained for a two-dimensional 
compressor airfoil. For this case, the flow field is 
solved within a two-dimensional compressor cascade 
which is shown in fig. 3 The balls on the blade 
surfaces, the spine directions, and the boundary 
conditions are also presented. 
 

The direction normal to the chord line is selected as 
the spine for the airfoils shown in fig. 4 As shown 
in  0fig. 3, in the present work the compressor cascade 
is considered as a duct but to give a better sense to the 
reader, using a translational mapping by cascade pitch, 
the airfoil geometry is shown in fig. 4.  
 

The new position of each ball is calculated as 
follows:

 
 

.new old yy y s n   (6)  
and,  

.new old xx x s n   (7)  
where, xn  and yn are the components of the spine 

direction vector normal to the blade chord line shown 
in fig. 4. 
 

Because the wall is considered as a set of separated 
balls, during the design process, the wall curvature 
may be discontinuous in adjacent nodes (balls). An 
example of such discontinuity is shown in fig. 5. To 
smooth the wall curvature, a filtration scheme is 
applied to the ball distance from the chord line after 
each geometry correction step. The filtration scheme is 
formulated as follows,

 
 

1 12

4
i i i

i
d d d

d   
  (8)  
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Fig. 3. Computational domain for compressor 

cascade, balls and spine directions. 
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Fig. 4. Spine directions for design of airfoils. 

 
where id  is the distance of the i-th ball from the 

blade chord line (see  0fig. 4). In  0fig. 5, the filtered 
geometry is plotted using a dashed line.  
 

 
Fig. 5. Wall boundary filtration. 

 

For compressor blade design, a target pressure 
distribution is given for each airfoil surface i.e. suction 
side and pressure side. To satisfy both distributions, 
the geometry correction is done on both surfaces. 
Finally, when both pressure distributions match, the 
geometry is fixed.   
 

The method is explained for tow-dimensional design 
of a compressor blade cascade. Now, to extend the 
method to three-dimensional design of a compressor 
blade profile, several sections are selected from hub to 
tip of the compressor blade shown in fig. 2 The inverse 
design method explained before is used to design of 
each section. It means that the-three dimensional target 
pressure distribution is considered on the blade 
surfaces. The three-dimensional flow field is solved in 
the blade passage and the pressure distribution on the 
blade surface at each section is computed. In the 
geometry correction step, the ball movements are done 

at each section marching from hub to tip of the blade. 
The designer can select the number of sections from 
hub to tip of the blade. In the present work, the 
sections are selected on each grid layer from first 
which is at the hub to the last which is at the tip of the 
blade. It should be noted that the flow field solution is 
done using 3D flow solver and the 3D effects are 
considered here. To make better comparison, results 
are shown for hub and tip sections.  
 

Hub

Tip

Hub

Tip

 
Fig. 6. Sections from hub to tip of the blade used 

for three- dimensional design of blade profile. 
 

In Eq. (5) a parameter C is introduced as Geometry 
Correction Coefficient. Considering a large value for 
the parameter C causes the balls displacements to 
increase and the convergence rate to be improved. On 
the other hand, if the parameter C exceeds a limit, the 
solution becomes unstable. Although a small value of 
C causes the design procedure to be stable, the 
convergence rate decreases. Hence, an optimum value 
for the geometry correction factor should be 
determined. In the present work, the balls are supposed 
on each computational node on the wall. This selection 
makes the implementation of the method easier. 
Someone can use different number of balls and uses an 
interpolation method to compute the intermediate node 
displacements. 
 

Here, the inviscid flow solver is used to improve the 
speed of the method. Also the viscous solver could be 
used as flow solver. It is an advantage of the ball 
spine method that the flow solver is used as a black 
box and the designer can use any in-house flow solver 
and commercial ones. Because the method is used the 
pressure distribution for geometry correction and 
while no separation region exists, the trend of pressure 
distribution for inviscid and viscous flows over a body 
are similar, the designer can use an inviscid flow 
solver to have a faster design code. Of course, using a 
viscous flow solver can improve the accuracy of the 
method. As an alternative, the designer can study the 
viscous flow through the domain after the design 
procedure to evaluate the performance of the method. 
If needed, the designer can modify the target pressure 
distribution regarding to fluid dynamics and boundary 
layer concepts and use a more convenient pressure 
distribution (for example a pressure distribution with 
lower adverse pressure gradient) and repeat the design 
procedure to achieve an acceptable performance. 

4. RESULTS AND DISCUSSION 

In the present work, the ball-spine method is applied to 
three-dimensional design of compressor blade profiles 
and evaluated for three test cases. At first, as a 
validation test case, a compressor blade based on 
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Fig. 7. Evolution of geometries and their corresponding pressure distributions from the initial guess 

(Generation 0) toward the target geometry; hub section. 
 
NACA65-410 profiles is considered. The blade is 
composed of NACA65-410 profile which has a stagger 
angle of 22.50 at the hub section and a stagger angle of 
32.50 at the tip section. At first the flow field within 
the domain of the target geometry is solved and the 
obtained pressure distribution from the hub section 
to the tip section is considered as the target pressure 
distribution. The initial guessed geometry is 
selected as a blade composed of flat plate airfoils 

from hub to tip with stagger angle similar to the 
target geometry. Now the design procedure is 
started from mentioned initial guessed geometry 
and using the considered target pressure distribution 
the design process is continued to reach the target 
pressure distribution.  
 
In fig. 7, the design history is shown by geometry 
generations and corresponding pressure 
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Fig. 8. Initial guess, target and converged geometries for NACA65-410 test case; (a) hub section, 

 (b) tip section. 
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(b) Tip section  
Fig. 9. Blade profiles for NACA65-410 test case, magnified in y-direction; (a) hub section, 

(b) tip section. 
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Fig. 10. Target and converged pressure distributions for NACA65-410 test case; (a) hub section, 
 (b) tip section. 

 
distributions at hub section. As it is seen, after 45th 
generation the target and computed pressure 
distributions match and the shape modification is 
stopped. It is reminded again that the compressor 
blade passage is considered as a three-dimensional 
duct (a two-dimensional section is shown in fig. 3), 
and to have a better view of the blade, using a 
translation by cascade pitch the blade geometry is 
presented in the following figures of the paper. 
 
In fig. 8, the initial and target geometries with the 

final converged one are illustrated and compared at 
hub and tip sections. As shown, a view point near 
the leading and trailing edges is magnified for better 
comparison. According to this figure, the final 
converged geometry is very close to the target 
geometry. In  0fig. 9, the blade profiles at hub and 
tip sections are presented and magnified in y-
direction. The convergence of the method is 
emphasized in this figure. 
 
In fig. 10, the converged pressure distribution is 
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compared with the target pressure distribution at 
hub and tip section; the results indicate a good 
agreement. In  0Fig. 11, the convergence history is 
shown by pressure and displacement error 
parameter defined as, 

 
max

Target Comp. Blade
1 surfaces

max 0( 1)

TE

LE

J i

i
j i i

TE LE

P P

Error P
J i i P

 



   

 

 

(9)  

max

Blade
surfaces1

max ( 1)

TE

LE

J i

j i i

TE LE C

S

Error S
J i i L

 




   

 
 

(10)  

where 0P  is the total pressure, S  is the 

displacement of each ball and CL  is the blade chord 

length. The design process converges after about 40 
geometry modifications. 
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Fig. 11. Convergence history for NACA65-410 
test case, Error P and Error S are introduced in 

Eqs. (9) and (10). 
 
In fig. 12, the convergence history of the design 
process is shown for different values of geometry 
correction coefficient C. The convergence rate is 
increased as the coefficient C is increased to an 
optimum value of 5010-9. More increase in values 
of C results in divergence of the method. It is 
concluded that for a design process an optimum or 
critical value of geometry correction coefficient, C, 
should be determined. 
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Fig. 12. Effect of geometry correction coefficient, 

C, on convergence rate of the design process. 
 

For the second validation test case, the approach is 
applied to a blade composed of NACA65-610 
airfoil having a greater lift coefficient than 
NACA65-410 airfoil. In this case, the NACA65-
410 blade (previous test case) is considered as the 
initial guessed geometry and the pressure 
distribution of NACA65-610 blade is considered as 
the target one. In  0fig. 13, the initial, target and 
converged geometries are illustrated and magnified 
in y-direction at hub and tip sections. The 
comparison between the converged and target 
geometries shows a good agreement. Moreover, the 
comparison between the initial, target and 
converged pressure distributions at hub and tip 
section is presented in fig. 14. It is clear that the 
converged and target pressure distributions 
coincide.  
 

The previous test cases were studied for validation 
of the ball-spine algorithm. Here, as an applied 
example, a new target pressure distribution is 
considered and the accuracy and applicability of the 
method is assessed. To do so, the pressure 
distribution of NACA65-610 blade is considered 
and the location of minimum pressure is moved 
toward the blade leading edge. This change 
decreases the adverse pressure gradient on the aft 
part of the blade. For this test case, starting from 
NACA65-610 blade as the initial guessed geometry, 
the design process converges to the corresponding 
blade. In Fig. 15, the target, the initial (corresponds 
to NACA65-610 blade) and the converged pressure 
distributions are compared at hub and tip sections. 
As it is seen, the location of minimum pressure is 
moved toward the blade leading edge. The 
converged and target pressures have acceptable 
agreement. 
 

In  0Fig. 16, the initial guessed geometry (NACA65-
610 blade) and the new designed blade at hub and 
tip sections are compared. 

5. CONCLUSIONS 

Recently a Ball –Spine (BS) algorithm has been 
proposed and its accuracy has been assessed for 
tow-dimensional geometries. In this paper, the 
method is extended to the design of three-
dimensional compressor blades. To do so, the ball 
spine algorithm is applied section by section from 
the hub to the tip of the blade. During the design 
process, the flow field is solved using a 3D solver 
and 3D effects are considered. The method was 
applied to two blades based on NACA65-410 and 
NACA65-610 profiles as validating test cases and 
the results show good agreements with the target 
pressures and geometries. Then as an extension, 
based on the pressure loadings of NACA65-610 a 
new target pressure was introduced to decrease the 
adverse pressure gradient in the aft part of the 
blade. The design algorithm was applied and the 
geometry of the new designed airfoil was obtained, 
which matches the considered target pressure very 
well. In the present work, the method is developed 
for subsonic airfoils. As an extension, the method 
could be implemented for transonic and supersonic 
conditions.  
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Fig. 13. Blade profiles for NACA65-610 test case, magnified in y-direction; 
(a) hub section, (b) tip section. 
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Fig. 14. Comparison of initial, target and converged pressure distributions for NACA 65-610 test case; 
(a) hub section, (b) tip section. 
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Fig. 15. Comparison of initial pressure, modified target pressure and new designed airfoil pressure 
distributions; (a) hub section, (b) tip section. 
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Fig. 16. Blade profiles for new designed airfoil, magnified in y-direction; (a) hub section, (b) tip section. 
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