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ABSTRACT 

An analysis is carried out to study the effects of temperature-dependent transport properties on the fully 
developed free and forced MHD convection flow in a vertical channel. In this model, viscous and Ohmic 
dissipation terms are also included. The governing nonlinear equations (in non-dimensional form) are solved 
numerically by a second order finite difference scheme. A parametric study is performed in order to illustrate 
the interactive influences of the model parameters; namely, the magnetic parameter, the variable viscosity 
parameter, the mixed convection parameter, the variable thermal conductivity parameter, the Brinkmann 
number and the Eckert number. The velocity field, the temperature field, the skin friction and the Nusselt 
number are evaluated for several sets of values of these parameters.  For some special cases, the obtained 
numerical results are compared with the available results in the literature: Good agreement is found. Of all the 
parameters, the variable thermo-physical transport property has the strongest effect on the drag, heat transfer 
characteristics, the stream-wise velocity, and the temperature field.  
 

Keywords: Variable fluid properties; Mixed convection; Viscous dissipation; Keller-box method. 

NOMENCLATURE 

A constant ( Pa m-1) 
a constant defined in Equation (5)  

0B uniform magnetic field   (tesla) 

Br Brinkman number defined in (13) 

pC  specific heat at constant pressure  

 1 1 J kg K

g acceleration due to gravity  2ms

Gr Grashof number defined in (13) 

k thermal conductivity   1 1Wm K 

L  channel width  m  

Mn magnetic parameter defined in Eq.(13) 

1M mass flux conversion parameter 

Nu  Nusselt number 
P  pressure (Pa) 
Pr Prandtl number defined in Eq.(13) 

TR wall temperature ratio parameter 

defined in Eq.(13) 
Re Reynolds number defined in Eq.(13) 

1 2,T T  prescribed boundary temperatures (K) 

0T  reference temperature (K) 

T  fluid temperature (K) 

rT constant defined in Eq. (5) 

U velocity component in the X- direction  
(m s-1) 

V velocity component in Y-direction (m s-1)  
,X Y  space co-ordinates (m) 

0U reference velocity defined in Eq.(9)  

(m s-1) 
u dimensionless velocity component in the

X- direction (m s-1)

  thermal diffusivity  2 1m s

  volumetric coefficient of thermal

expansion  1K

  small parameter
 dimensionless fluid temperature
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  kinematic viscosity  2 1m s  

  electric conductivity ( mho m-1) 

0  is the ambient fluid density (kg m-3) 

r  transformed dimensionless reference 

temperature 

 

  mixed convection parameter defined in  
Eq. (13) 

w  wall shear stress (kg m-1 s-2)  

   dynamic viscosity  (Pa s) 
 

1. INTRODUCTION 

The study of mixed convection flow and heat 
transfer in a vertical/ horizontal channel has gained 
momentum in the recent past because of its number 
of applications in several  engineering processes, 
such as geothermal reservoirs; cooling of nuclear 
reactors; thermal insulation; energy storage and 
conservation; fire control; chemical, food and 
metallurgical industries; and petroleum reservoirs. 
This type of situation also occurs in electronic 
packages, microelectronic devices during their 
operations. Tou (1960) was the first among the 
others to initiate the study of laminar fully 
developed mixed convection flow in a vertical 
channel with uniform wall temperature. This was 
then extended by Habch and Acharya (1986) for 
asymmetric heating, where one plate is heated and 
the other is adiabatic. Thereafter numerous 
investigations have been carried out on mixed 
convection in a vertical/ horizontal channel with 
symmetric and/or asymmetric heating under 
different physical situations (Vajravelu and Sastri 
(1977), Aung and Worku (1986), Barletta (1988), 
Cheng et al. (1990), Bejan (1995), Barletta (1999), 
Chamkha (2000)). The mathematical models 
described in these papers deal with three kinds of 
thermal boundary conditions: (i) prescribed uniform 
temperature at both walls, which can be either equal 
or different; (ii) prescribed uniform temperature at 
one of the walls and prescribed uniform heat flux at 
the other wall; and (iii) prescribed uniform heat 
fluxes at both walls. Vajravelu and Sastri (1977) 
explored the effects of frictional heating on the fully 
developed free convective flow and heat transfer 
between parallel vertical walls kept at constant 
temperature. Aung and Worku (1986) analyzed the 
developing flow for asymmetric wall temperature or 
symmetric wall heat flux by a finite difference 
method. Cheng et al. (1990) studied the flow 
reversal with the boundary conditions (i), (ii) and 
(iii) mentioned above. Barletta (1999) analyzed the 
effects of viscous dissipation on the fully developed 
combined forced and free convection in a vertical 
channel for the case of prescribed wall heat flux.  
 
All the above investigators restricted their analyses 
to flow and heat transfer in the absence of a 
magnetic field. But in recent years, we find several 
applications of magnetic field, namely in MHD 
generators, cross field operators, shock tubes, 

pumps, and flow meters. The flow in an MHD 
generator channel is seldom fully developed over its 
entire length, and large heat fluxes occur at the 
entrance regions of these devices. In many cases the 
flow in these devices will be accompanied by heat 
either dissipated internally through viscous or Joule 
heating. In view of these practical applications, 
Umavathi and Malashetty (2005) investigated the 
laminar hydromagnetic flow and heat transfer in a 
vertical channel with symmetric/asymmetric wall 
temperatures in the presence of viscous dissipation. 
Also, the effect of magnetic field and viscous 
dissipation on fully developed mixed convection 
flow in a vertical channel was studied numerically 
by Saleh and Hashim (2010). Prathap Kumar et al. 
(2011) studied mixed convection 
magnetohydrodynamic and viscous fluid in a 
vertical channel. Liu and Lo (2012) studied 
numerically the entropy generation within a 
combined forced and free convective 
magnetohydrodynamic (MHD) flow in a parallel-
plate vertical channel. 
 
 In all the above mentioned papers, the 
thermophysical transport properties of the ambient 
fluid were assumed to be constant. However, it is 
well known (Lai and Kulacki (1990), Setayesh and 
Sahai (1990), Hassanien (1997), Attia (1999), Abel 
et al. (2002), Andersson and Aarseth (2007), Prasad 
et al. (2010), Prasad et al. (2013), Vajravelu et al. 
(2014)) that these physical properties may change 
with temperature, especially the fluid viscosity and 
the thermal conductivity. For lubricating fluids, heat 
generated by internal friction and the corresponding 
rise in the temperature affects the physical 
properties of the fluid, and the properties of the 
fluid are no longer assumed to be constant. The 
increase in temperature leads to increase in the 
transport phenomena by reducing the physical 
properties across the thermal boundary layer. Thus 
the heat transfer at the wall is also affected. 
Therefore to predict the flow and heat transfer 
characteristics of the generator channel, it is 
necessary to take into account the temperature 
dependent fluid properties. Hence, the study on the 
variable fluid properties will help in preventing 
wear and tear of the equipments we use in day-to-
day life. 
In view of these applications, the problem studied 
here extends the work of Umavathi and Malashetty 
(2005) for the temperature dependent variable fluid 
properties. Thus in the present paper, we study the 
effects of variable transport properties on the 
magnetohydrodynamic mixed convection flow and 
heat transfer in a vertical channel. Here the thermo-
physical transport properties namely, the density, 
the viscosity, and the thermal conductivity are 
assumed to be functions of temperature. In addition 
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to this, we have also included the contribution of 
viscous dissipation and ohmic dissipation in the 
energy equation.  Because of the intricacy of the 
physical model (due to the inclusion of the variable 
transport properties, the magnetic parameter, the 
viscous and ohmic dissipations), the momentum and 
energy equations are coupled and non-linear. The 
governing non-dimensional, non-linear differential 
equations are solved numerically by a second order 
finite difference scheme known as the Keller-Box 
method. Numerical computations were been carried 
out for temperature and velocity profiles, Nusselt 
number and slip velocity coefficient. 
 
The effects of variable viscosity, variable thermal 
conductivity, mixed convection parameter, 
magnetic parameter, and the Brinkmann number on 
the flow behavior and heat transfer process are 
presented trough graphs and tables, and their salient 
features are discussed.  

2. MATHEMATICAL 
FORMULATION 

Consider the problem of laminar, hydromagnetic 
mixed convection flow in a vertical channel.  Let 
the distance between the walls be L: A co-ordinate 
system is chosen such that the X-axis is parallel to 
the gravitational acceleration but with opposite 
direction. The Y-axis is perpendicular to the 
channel walls and the channel walls are represented 
by Y =0 and Y=L. The flow is assumed to be steady 
and the fluid properties are assumed to be constant 
except viscosity, density and thermal conductivity: 
They are assumed to vary with temperature. 
 
A constant magnetic field of strength 0B  is applied 

across the channel. The external uniform magnetic 
filed is directed along Y-axis, and the induced 
electric and magnetic fields are neglected.  
 
The flow is being fully developed, we get  

0,V   0,
V

Y





0

P

Y





, and ,

P d P
A

X d X


 


 

where V  is the velocity in the transverse direction 

P is the pressure and A is a constant. Thus from the 

continuity equation we have, 0,
U

X





so that the 

velocity component along  axisX   depends only 

on , . . ( ).Y i e U U Y Based on the fact that the flow 

is being fully developed we can also 
assume ( ).T T Y Under these assumptions the 

equations governing the flow and heat transfer (by 
including the variation of thermo-physical transport 
properties, and viscous & Ohmic dissipations) can 
be written in usual notation as:   

 

 

0
0

2
0

0 0

1

1
0,

dP
g T T

dX

Bd dU
T U

dY d Y



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 

 

 
   

 
  

                     

(1)  

   
2

0

2
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0

1

0
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d d T d U
T T

dY d Y C d Y

B
U

C

 





   
   

   

 

               (2) 

subject to the boundary conditions 

1

2

0 , 0,

0 , .

U T T at Y

U T T at Y L

  
  

                                (3) 

Here,

 

0  is the ambient fluid density,  g  is the 

acceleration due to gravity,  is the  volumetric co-
efficient of thermal expansion,  is the electric 
conductivity, 0B is the uniform magnetic field, T is 

the temperature, pC is the specific heat at constant 

pressure and 0T  is the reference temperature and it 

is assumed that  0 1 2 2.T T T   In order to 

determine the pressure gradient from the equation 
(1) the mass flux conservation M1 is required and 

can be written as: 1
0

.
L

UdY M   

Here the fluid properties, viscosity and thermal 
conductivity are assumed to vary with temperature 
and they are defined successively as follows: 

 
 

2.1   Variation of Viscosity 

The coefficient of viscosity is considered to vary as 
an inverse function of temperature (Lai and Kulacki 
(1990)) as follows: 

 0
0

1 1
1 .T T

 
                                            (4) 

This is reasonably a good approximation for liquids 
such as water and crude oil (Ling and Dybbs 
(1987)). The equation (4) can be rewritten as 

 1
,ra T T


                                                       (5) 

where 
0

a



  and 0
1

rT T


  . Here a  and rT are 

constants, and their values depend on the reference 
state and the thermal property of the fluid: In 
general 0a  for liquids and 0a   for gases. This 
is due the fact that the viscosity of a liquid usually 
decreases with increasing temperature while it 
increases for gases. To demonstrate further the 
appropriateness of equation (4), correlations 
between viscosity and temperature for air and water 
are given below since these two fluids are most 
commonly used in engineering applications: 
For air, 

  0
0

1 1
123.2 742.6 293 (20 );

2
T based on T K C


      

                                                                               (6) 
and for water, 

  0

0

1
29.83 258.6

288 (15 ).

T based onT

K C


  



                    (7) 

The data used for these correlations are taken from 
reference (CRC hand book (1986)). While equation 
(6) is good up to an error within 1.2% to the 
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temperature difference from 278 K (50 C) to 373 K 
(1000 C), equation (7) is good to an error within 
5.8% to the temperature difference from 283 K (100 

C) to 373 K (1000 C). Hence, the reference 
temperatures selected here for the correlations are 
very useful for applications.  
 
2.2 Variation of Thermal Conductivity 

Finally the thermal conductivity   varies with 
temperature in a linear fashion and useful for the 
range of 00 F to 4000 F. As in Chiam (1996), we 
assume that the thermal conductivity   is of the 
form 

 
   

0 0
0 0

2 0 0

1 , ,
p

T T k

T T C
   



 
     

   

           (8) 
where   is a small parameter known as variable 
thermal conductivity parameter. Here 0 is the 

thermal diffusivity and 0k  is the thermal 

conductivity of the fluid.  The governing equations 
can be non-dimensionalized using the following set 
of dimensionless variables and parameters based on 
the characteristic width L of the channel: 

 
 

0 0

0 2 0 0
, , , Re

T T U LU Y
u y

U T T L





   


  

     (9) 

The reference velocity U0 is given by  
2

0
0

.
AL

U


 

 
By using quantities in (5), (8) & (9) in to the 

equations (1)-(2), and in to conditions (3); we get 

2

2

2

1 1
1

1
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0,

1

r

r

n

r

d du

dy dy

d u
M u
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
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



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 

 
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                     (10) 
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2
2 0,

1
n

r

Br du
M Bru

dy


 
      
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                                                                      (11) 
0 , 0,

0 , 1 1,
Tu R at y

u at y




  

  
                            (12)

 
where , , Pr, andn r TM Br R   are respectively 

the mixed convection parameter, the magnetic 
parameter, the viscosity parameter , the Prandtl 
number, the Brinkmann number and the wall 
temperature ratio parameter. They are defined as  

  3 2 2
2 0

2 0 0
0

0

, ,
Re

og T T L B LGr
Mn

U L

 



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2 0

2
0 0 1 0

0 2 0 2 0

1
,
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r

T

T T

U T T
Br R

k T T T T










 

 
 

   (13) 
The fluid viscosity parameter is determined by the 
viscosity of the fluid in consideration and the 
operating temperature difference. A large value of 

r  implies either  0 2or T T   is small and the 

effect of variable viscosity can thus be neglected. 
On the other hand, for smaller value of r  either 

the fluid viscosity changes markedly with 
temperature or the operating temperature difference 
is high. In either case the variable fluid viscosity is 
expected to become more important. 
 
Also it is to be noted that liquid viscosity varies 
differently with temperature than that of gas, 
therefore it is important to note that r  is negative 

for liquids and positive for gases. It can seen that in 
the absence of thermo-physical transport properties, 
equations (10) and (11) reduce to those of Umavathi 
and Malasheety (2005), while in the absence of 
Brinkamann number and the magnetic parameter 
equations reduce to those of Hamadah and Wirtz 
(1991), and in the presence of therm-ophysical 
transport properties with the buoyancy force and the 
magnetic parameter are absent equations reduce to 
those of Satayesh and Sahi (1990). 
 
Furthermore, when the Brinkmann number and the 
magnetic parameter are absent, the analytical 
solution can be obtained for the constant thermo-
physical transport properties. It is found that our 
results agree well with the existing results of Aung 
and Worku (1986). For all practical purpose, the 
physical quantities of interest in this problem are 
the skin friction and the Nusselt number, and are 
given by respectively  

0
2

0 0 0,

,f
y L

u
C

yU


 

 
   

 

 2 0 0,

.
y L

L T
Nu

T T y 

 
    

        

               (14) 

3. EXACT SOLUTIONS FOR SOME 
SPECIAL CASES 

Here we present exact solutions in certain 
special cases. Such solutions are useful and 
serve as a base-line for comparison with the 
solutions obtained via numerical schemes. 
 
3.1. No Variable Fluid Properties, No 
Magnetic Field and No Viscous Dissipation 
 , 0, 0 0r Mn and Br       

In the limiting case of 
 , 0, 0 0r Mn and Br     the flow and  
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Table 1 Nusselt numbers as functions of and RT for isothermal-isothermal boundary for 
, 0.0, 0.0 0.0r Mn and Br      


Cheng et al (1990) Present Method 

RT =0.0 RT =0.5 RT =0.0 RT =0.5 
Nu1 Nu2 Nu1 Nu2 Nu1 Nu2 Nu1 Nu2 

100.0 2.769 1.565 2.323 1.756 2.768 1.567 2.320 1.759 
10.0 2.057 1.946 2.028 1.973 2.056 1.948 2.025 1.975 

1.0 2.000 1.994 2.003 1.997 2.000 1.991 2.001 1.994 

 
heat transfer problem reduces to  

2

2
1 0,

d u

dy
                                              (15) 

 

2

2
0

d

dy


                                                        (16)  (16) 

and using boundary conditions (12)  for   can 
be integrated  to give the following fully 
developed temperature profile  

 1 .T TR y R     

Integration of equation (15), using the velocity 
boundary conditions results in 

 

 

3 2 2

1
6 2 2

1 1
1

6 2 2

T T

T
T

y y y
u R R

R
R y





 
     

  
        

 

 

3.2  No Variable Fluid Properties But The 
Presence of Magnetic Field  

 , 0, 0r and Br     

With and 0Mn  , the convective flow is 
coupled with heat transfer phenomena. The 
exact analytical solution to the equation (10) 
satisfying the required conditions is given by  
 

 
1 1

1Mn y Mn yTR
u C e C e

Mn

  
    

 
 

 1 T Ty R y R

Mn

    
  

 1 2

1
.

1

Mn Mn
T

Mn

e e R
where C

e Mn

   



 

4. NUMERICAL PROCEDURE 

The coupled nonlinear ordinary differential 
equations (10) and (11) subject to the conditions 
(12) are solved by a second order finite difference 
scheme  known as the Keller-Box method (Keller 
(1992), Prasad et al.(2009,2010) ). The numerical 
solutions are obtained in four steps as follows: 

 reduce equations (10) and (11) to a 
system of first-order equations; 

 write the difference equations using 
central differences; 

 linearize the algebraic equations by 
Newton’s method, and write them in 
matrix-vector form; and 

 solve the linear system by the block tri-
diagonal elimination technique. 

 
The step size ,y and the position of the edge of the 

boundary layer Ly
 
are to be adjusted for different 

values of parameters to maintain accuracy. For 
brevity, the details of the solution procedure are not 
presented here. To demonstrate the accuracy of the 
present numerical method, results of the Nusselt 
numbers for the isothermal boundary are compared 
with the available results in the literature, for a 
special case (That is, in the absence of thermo-
physical properties, Cheng et al. (1990).). It can be 
seen from Table 1 that the present results agree very 
well with those of Cheng et al. (1990). 

5. RESULT AND DISCUSSION  

Employing the above numerical method, the 
governing equations of the problem are solved for 
several sets of values of the physical parameters. L 
The numerical results thus obtained are presented 
for velocity and temperature in Figures 1-7. Also 
the numerical results for the Nusselt number and the 
skin friction are presented in Table 2. Since it is not 
possible to present the results here for all possible 
permutations and combinations of all the physical 
parameters, we focus our attention on the effects of 
the new parameters (related to the thermo-
physicatransport properties) on the flow and heat 
transfer fields. Velocity profiles are depicted in 
Figures 1-3, whereas the temperature profiles are 
shown graphically in ures 4-7.  
 

In Figures 1-3 the profiles for the stream-wise 
velocity u  are presented for several sets of values 
of the governing parameters. The velocity u  
increases from its value zero at the left wall, 
reaching to its maximum around the midway of the 
channel, and attains zero as the other wall of the 
channel. 
 

Figure 1 is the graphical representation of the 
stream-wise velocity u  for different values of the 
magnetic parameter Mn . The velocity profiles show 
that the rate of transport is considerably reduced 
with an increase in Mn . It clearly indicates that the 
transverse magnetic field opposes the transport 
phenomena. This is because of the fact that the 
variation of Mn  leads to the variation of Lorentz 
force, due to magnetic field, and the Lorentz force  
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Table 2 Values of the skin friction and the Nusselt number for different values of 
the physical parameters. 

Br ε Mn λ θr 
0.0TR   0.2TR   

 0f    0    1    0f    0    1   

0.01 
 

0.01 

0.0 

50.0 

∞ 8.144124 0.820637 1.328645 11.218529 0.522618 1.215133 
-

10.0 
8.300903 0.809321 1.345021 11.576994 0.505657 1.237367 

-5.0 8.440881 0.798429 1.360770 11.921870 0.489235 1.258907 
-1.0 9.338680 0.697143 1.511198 14.367629 0.373366 1.412506 

1.0 

∞ 7.481717 0.868239 1.266422 10.444075 0.590283 1.134041 
-

10.0 
7.606374 0.861136 1.276954 10.749396 0.579847 1.148013 

-5.0 7.715908 0.854413 1.286881 11.041740 0.570001 1.161193 
-1.0 8.242496 0.811615 1.350740 13.079421 0.507171 1.246144 
-0.5 8.470123 0.775896 1.407380 13.830455 0.487229 1.273697 

0.0 

0.0 

-
10.0 

0.502858 1.014726 1.005519 0.511252 0.810878 0.805304 
5.0 1.348300 1.010704 1.001140 1.708050 0.805218 0.812699 

10.0 2.188508 1.002414 1.024357 2.897641 0.793034 0.829235 
50.0 8.300903 0.809321 1.345021 11.576994 0.505657 1.237367 
75.0 10.727517 0.662151 1.605673 14.260253 0.345573 1.475133 

1.0 

0.0 0.463902 1.014837 1.005409 0.471269 0.810991 0.805191 
5.0 1.218606 1.011950 1.009930 1.554021 0.806908 0.810766 

10.0 1.970231 1.005999 1.019870 2.632067 0.798114 0.823307 
50.0 7.606374 0.861136 1.276954 10.749396 0.579847 1.148013 
75.0 10.548641 0.709833 1.560979 15.051808 0.353762 1.499368 

0.0 

50.0 
-

10.0 

11.5776994 0.505657 1.237367 8.300903 0.809321 1.345021 
1.0 10.749396 0.579847 1.148013 7.606374 0.861136 1.276954 
5.0 8.248505 0.749338 0.935606 5.563474 0.976472 1.116201 

10.0 6.330556 0.826616 0.828675 4.050596 1.027476 1.034128 
20.0 4.345513 0.861388 0.767235 2.540242 1.049781 0.983884 
30.0 3.361934 0.862323 0.755478 1.823170 1.050058 0.972204 

0.0 
0.0 

50.0 
 

-1.5 
 

8.908285 0.748586 1.435482 13.382675 0.415921 1.359124 
0.3 9.492467 0.866014 1.254215 13.872817 0.498877 1.187705 
0.5 9.823563 0.947170 1.170586 14.142502 0.552316 1.108307 
0.0 

1.0 
8.062163 0.823208 1.333971 12.265627 0.527360 1.220844 

0.3 8.577590 0.951629 1.165541 12.668258 0.615403 1.070100 
0.5 8.866882 1.039385 1.099342 12.886137 0.670995 1.000824 
0.0 

1.0 50.0 
-

10.0 

7.587638 0.856773 1.283750 10.735861 0.576773 1.153877 
0.1 7.769167 0.900572 1.221051 10.866006 0.607216 1.099699 
0.3 8.097063 0.989351 1.122972 11.095063 0.665945 1.014802 
0.5 8.384879 1.079515 1.049505 11.290030 0.721789 0.951115 

0.0 
0.01 1.0 50.0 

-
10.0 

8.018701 1.015152 1.005100 11.308831 0.811307 0.804880 
0.01 7.606374 0.861136 1.276954 10.749396 0.579847 1.148013 
0.03 7.250573 0.731134 1.516387 10.277404 0.387163 1.443653 

 
produces resistance to the transport phenomena. 
This is consistent with the physics. 
 
Figure 2 shows the effect of mixed convection 
parameter   on the stream-wise velocity. It is 
observed that the increase in  is to increase the 
velocity profile in the mid region of the channel. 
Physically, 0  means heating of the fluid or 

cooling of the surface, 0 means cooling of the 

fluid or heating of the surface, and 
0  corresponds to the absence of mixed 

convection currents. 
 
Increase of   means an increase of the temperature 

difference  2 0T T . This leads to enhancement in 

the stream-wise velocity due to the enhanced 
convection. In the absence of  , the velocity 
profile is linear. The stream-wise velocity profiles 

for different values of variable viscosity parameter 

r  are shown graphically in Figure 3. The effect of 

increasing (in absolute sense) r is to decrease the 

parabolic nature in the mid region of the channel. 
From the results presented here, it clear that r  has 

strong effect on the stream-wise velocity and hence 
on the skin friction. The numerical results for 
temperature profiles are presented in Figures 4-7 for 
different values of the governing parameters. 
 

Figure 4 depicts the temperature  y  for different 

values of Mn . The effect of increasing values of 
Mn is to increase the temperature. Physically it 
means that when a transverse magnetic field is 
applied to an electrically conducting fluid, the fluid 
experiences a resistive force known as the Lorentz 
force, increasing the friction between its layers. Due 
to this, there is an increase in the temperature in the 
channel. 
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Fig. 1. Stream-wise velocity profiles for different 

valuesof magnetic parameter when e = 0.01, 
Br = 0.01,l = 50.0, q= -10.0. 

 

 
Fig. 2. Stream-wise velocity profiles for different 

values of mixed convection parameter when 
Mn= 1.0, e = 0.01, Br = 0.01, q= -10.0. 

 

 

 
Fig. 3. Stream-wise velocity profiles for different 
values of variable viscosity parameter when e = 

0.01, l = 50.0, Br = 0.01, Mn = 1.0. 
 

 
Fig. 4. Temperature profiles for different values 

of magnetic parameter when e = 0.01, 
Br = 0.01, l = 50.0, q= -10.0. 

 
Figure 5 depicts the temperature profiles for 
different values of  . An increase in   results in a 
decrease in a thermal boundary layer and hence in 
the Nusselt number. This phenomenon holds even 
for non-zero values of the temperature ratio 
parameter. 
 

 
Fig. 5. Temperature profiles for different values 
ofmixed convection parameter when , e = 0.01, 

Br = 0.01, q = -10.0, Mn =1.0 
 

Temperature profiles for different values of the 
viscosity parameter r  and the variable thermal 

conductivity parameter   are shown graphically in 
Figures 7(a) and 7(b). From the graphical 
representation we see that the effect of increasing 
values of viscosity parameter is to decrease the 
temperature. This is because of the fact that the 
increase in r results in an increase in the thermal 

boundary layer thickness within the channel. From 
these graphs we also notice that the temperature 
distribution is lower throughout the channel in the 
absence of   and increases with by increasing 
values of . 
 



K. V. Prasad et al. / JAFM, Vol. 8, No. 4, pp. 693-701, 2015.  
 

700 

 
Fig. 6. Temperature profiles for different values 

of Brinkmann number when e = 0.01, 
 Mn = 1.0,q =-10.0, l = 50.0. 

 
The profiles of the temperature distribution for 
different values of the Brinkmann number Br  are 
shown in Figure 6. It is to be noted that the effect of 
the increasing values of Br  is to decrease the 
temperature distribution.   

 
Fig. 7. Temperature profiles for different values 

of variable thermal conductivity parameter  
(a) q = - 10.0 , and (b) q = -1.5, when  

(b) Mn = 10.0,Br = 0.01, l = 50.0. 
 
The impact of all physical parameters on the skin 
friction coefficient and Nusselt number may be 
analyzed from Table 2. It is of interest to note that 
the effects of the variable viscosity parameter and 
the mixed convection parameter are to increase the 
skin friction and to decrease the Nusselt number. 
Quite opposite is true with the magnetic parameter.  

6. CONCLUSIONS 

This study provides theoretical results for a class of 
MHD mixed convection flow of a viscous fluid 
between parallel plates maintained at constant 
temperatures. The temperature dependent transport 
properties of the fluid namely, the viscosity, the 
density and the thermal conductivity are used. The 
coupled, non-linear non-dimensional equations 
subjected to appropriate conditions are solved 
numerically by a second order finite difference 
scheme known as Keller-Box method, which is 

found to be accurate and stable for a wide range of 
the values of the parameters. Some of the important 
findings are: 
 
 An increase in the magnetic parameter reduces 

the flow in the channel. This is true even in the 
presence of temperature dependent transport 
properties; 

 The effect of increasing mixed convection 
parameter is to increase the velocity in the 
channel and hence produces a reduction in the 
skin friction; 

 An increase in the variable thermal 
conductivity parameter is to enhance the 
temperature in the channel and this 
phenomenon is true even with the variable 
viscosity parameter;  

 The effect of viscosity parameter is to reduce 
the Nusselt number. However,  this effect is 
found to be minimum for the non-zero values 
of the magnetic parameter; and    

 Of all the parameters, the variable thermo-
physical transport property has the strongest 
effect on the drag, heat transfer characteristics, 
the stream-wise velocity and the temperature 
field.  
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