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ABSTRACT 

The rarefaction effects on the catalytic decomposition of NH3 in ruthenium–coated planar microchannels is 
numerically simulated in the Knudsen number range 0.015-0.03. A colocated finite–volume method is used to 
solve the governing equations. A concentration jump model derived from the kinetic theory of gases is 
employed to account for the concentration discontinuity at the reactive walls. A detailed surface reaction 
mechanism for ammonia decomposition on ruthenium along with a multi-component species diffusion model 
are used to study the effects of concentration jump coupled with velocity slip and temperature jump on the 
walls. The velocity-slip, temperature-jump and concentration-jump boundary conditions have miscellaneous 
effects on flow, temperature and species concentration fields. The results suggest that the velocity-slip 
boundary condition only slightly influences the species distribution at the edge of the Knudsen layer as well 
as inside the channel, while the temperature-jump boundary condition affects the heat and mass transfer 
characteristics the most. The concentration-jump effect, on the other hand, can counter balance the 
temperature-jump effects in some cases. 

Keywords: Ammonia decomposition; Heterogeneous reactions; Velocity slip; Temperature jump; 
Concentration jump; Microchannel. 

NOMENCLATURE 

Ai pre-exponential factor 
cp,k specific heat capacity 
 ௞௝ tensor of ordinary diffusion coefficientsܦ
௞ܦ

் thermal diffusion coefficients 
Ei activation energy 
h mixture enthalpy 
hk enthalpy of species k 
݄௙,௞

଴  standard enthalpy of formation 
H channel height 
I identity tensor 
۸࢑ mass diffusion flux 
kads,i rate constant of reaction i 
L channel length 
m reaction order 

ሶ݉ሬሬԦᇱᇱ mass flux 
Ng total number of gas phase species 
Ns total number of surface species 
p pressure 
Pe Peclet Number 
Re Reynolds Number 
Rk gas constant 
 ሶ௞ production rate of gas phase speciesݏ
 ሶ௡         production rate of surface speciesݏ

t time 
T temperature 
Ts temperature of the gas at the edge of  

  Knudsen layer 
us velocity of the gas at the edge of Knudsen 

  layer 
V mass-averaged velocity vector 
wk molar mass of species k 
ഥݓ  mixture molar mass 
Xk mole fraction of species k 
Yk mass fraction of species k 
Zn site fraction of species n 

 ҧ specific heat ratioߛ
 ௜ sticking coefficient of adsorption reaction iߛ
 accommodation coefficient ߠ
 thermal conductivity ߣ
 viscosity ߤ
 density ߩ
 ௡ number of surface sites occupied by surfaceߪ

species n 
Γ surface site density 
Φ viscous dissipation 
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1. INTRUDUCTION 

In order to meet the increased power demand for 
micro-devices in almost every field of engineering, 
scaling down of conventional power supplies to 
micro-heat engines, micro fuel cells, micro-turbines 
and combustors has been proposed as an efficient, 
safe and reliable energy delivery method for Micro-
Electro-Mechanical-Systems (MEMS). Due to high 
energy density of hydrocarbons compared to 
Lithium batteries and higher operational cycles, 
microburners have been studied in recent years as 
heat and energy sources for portable devices (Ahn 
et al. 2005, Fernandez-Pello 2002, Maruta 2011, 
Miesse and Masel 2004 and Yin et al. 2004). The 
energy is either utilized by thermoelectrics for 
electric power generation or through endothermic 
reactions such as fossil fuel steam reforming or 
ammonia decomposition for hydrogen production 
for fuel cells. The push towards reducing emission 
levels from hydrocarbon combustion has resulted in 
an interest in hydrogen production to power fuel 
cells. To avoid anode catalyst poisoning in Proton 
Exchange Membrane Fuel Cells (PEMFC), the 
hydrogen feed should be carbon monoxide free (less 
than 50 ppm). Conventional steam reforming and 
water gas-shift reactions could be employed to 
produce carbon-monoxide-free hydrogen from 
hydrocarbons in industrial scales. However, the 
process costs as well as transportation and storage 
costs make the on-site production of hydrogen an 
attractive option for hydrogen supply of fuel cells. 
Hydrogen production from a single step process 
such as ammonia decomposition is quite attractive 
especially in small-scale devices. Ammonia has 
been produced and stored in liquid form for a long 
time and issues about production, transportation, 
handling and storage are well established. Although 
even small traces (as low as 13 ppm) of ammonia 
can degrade PEM fuel cell performance, it is shown 
that the platinum catalyst of the fuel cell is not 
poisoned by ammonia; but rather the decrease in 
performance is because H+ions are replaced 
by NH4

+within the fuel cell anode catalyst layer 
(Uribe et al. 2002). Also, higher purity of available 
commercial ammonia makes it a better candidate 
for hydrogen production compared to methanol 
(Choudhary et al. 2001). Therefore, the availability, 
relatively easy decomposition with no need for 
added oxygen or steam and narrow explosion limits 
make ammonia a good candidate as a hydrogen 
carrier especially for portable devices. Scaling 
down the conventional reactors for hydrogen 
production is one approach. However, due to 
thermal and radical quenching at the walls, gas 
phase reactions are suppressed in gaps smaller than 
1 ~ 2 millimeters (Fernandez-Pello 2002). 
Catalytic-wall reactors could also be employed to 
enhance reactions.  
 
Microstructured reactors benefit from high process 
intensification, a wide reaction range up to 
explosion limits, reactor safety, faster process 
development and distributed production which 
make them suitable for highly endothermic and 
exothermic chemical reactions. As the push for 

further miniaturization continues, modeling such 
systems becomes more and more complicated, since 
new physical phenomena should be taken into 
account. One of the complications in dealing with 
micro-scale devices is that the common continuum 
assumption can break down as the characteristic 
length scale of these devices approaches the mean 
molecular free path. In such a case, the number of 
inter-molecular collisions decreases and eventually 
there comes a stage in which the number of 
collisions between molecules are rare compared to 
the number of collisions with the surrounding walls, 
in which case each molecule acts independently to 
bring forth the gas properties (Kennard 1938). This 
makes the gas lose its intimate contact with solid 
bodies such that the gas “slips” over the surface, 
and in the case of heat or mass transfer, a 
temperature or concentration jump is observed 
between the surface and the adjacent gas layer. In 
the slip flow regime, the continuum equations can 
still be employed but proper velocity slip and, 
temperature and concentration jump boundary 
conditions should be specified. 
 
The effects of velocity slip and temperature jump 
on flow and heat transfer characteristics of non-
reacting flows have been extensively studied in 
microchannels (Niazmand et al. 2010, Morini 2004, 
Renksizbulut et al. 2006, van Rij et al. 2009 and Yu 
and Ameel 2001). However, non-equilibrium 
transport in reacting flows still remains to be 
studied in-depth. In the case of multi-species 
transport, another important effect analogous to 
temperature jump should be taken into account, i.e., 
the concentration jump. There is very limited work 
on the concentration jump and its effects on 
catalytic reactions and the available literature has 
mainly focused on the temperature jump and 
velocity slip effects. The investigation of the 
concentration jump was initially performed by 
Kramersand Kistemaker (1943) based on the work 
of Maxwell on velocity slip and temperature jump. 
Concentration jump not only affects the rate of 
reaction and local species concentration, but also 
velocity slip and temperature jump in both reacting 
and non-reacting systems. Many rate-limiting 
adsorption/desorption reactions are very sensitive to 
local temperatures and hence the proper modeling 
and computation of temperature along with the local 
species concentration is vital for an accurate 
prediction of the behaviour of such systems. 
Therefore, all of these non-equilibrium effects 
should be considered simultaneously in the 
simulation of microreactors. This is even more 
pronounced in catalytic reactions since all the 
reactions take place on the wall. The effect of 
temperature jump on the performance of reactive 
systems was investigated and verified 
experimentally by Shankar and Glumac (2003) 
using low-pressure catalytic combustion systems. 
The concentration jump phenomenon has been 
detected in simulations of reacting gas mixtures by 
Bird (1994) and Papadopoulos and Rosner (1996). 
Xu and Ju(2005 and 2006) derived a concentration 
slip model and investigated the rarefaction effects 
on the rate of catalytic reactions in the numerical 
modeling of hydrogen and methane oxidation. In 
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case of multi-species transport, an important effect 
analogous to temperature-jump should be taken into 
account, i.e., the concentration-jump. In the present 
work, proper velocity slip, temperature jump and 
concentration jump boundary conditions, proposed 
by Qazi Zadeet al. (2008), are employed at the wall. 
In a reacting mixture, these boundary conditions 
can be expressed as: 
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                                                                             (11) 
where the Newtonian viscous stresses are defined 
as: 
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The accommodation coefficient ߠ is equal to zero 
for specular reflection at the wall and equal to 1 for 
diffuse reflection (Chapman and Cowling 1970). 
This coefficient decreases for high temperatures and 
rough surfaces and typically can range between 0.1 
to 1.0. In the present work, the surface 
accommodation coefficient is set equal to 1.0 for all 
species. In the derivation of Eq. (9), it is assumed 
that the velocity distribution of the molecules 
reflected from the surface does not depend on the 
species sticking coefficient or the local surface 
coverage of species. 
 
In the absence of mass accumulation (e.g. etching 
or deposition) on an impermeable wall, the 
conservation of mass requires the diffusion mass 
flux of each gas phase species to be balanced by its 
production/destruction rate due to heterogeneous 
reactions ݏሶ௞ on the wall as: 

௞ݓሶ௞ݏ ൌ ۸௞ · ݇     ෝܖ ൌ 1, 2, ڮ , ௚ܰ 
(13)

The rate of production/depletion of gas species ݏሶ௞  
depends on the molar concentration of species on the 
catalytic wall, not at the edge of the Knudsen layer. 
The relation between these values is dictated by the 
concentration jump boundary condition, i.e. Eq. (9). 

On the other hand, the diffusion flux at the edge of 
the Knudsen layer into the gas-phase depends on the 
concentration gradients outside the Knudsen layer. 
This is shown schematically in Fig. 2 where a typical 
wall control volume is shown with respect to the 
Knudsen layer. The production rate of surface 
species ݏሶ௡, on the other hand, is governed by: 
డ௓೙

డ௧
ൌ

௦ሶ೙
୻

௡ߪ െ
௓೙

୻

డ୻

డ௧
         ݊ ൌ 1, 2, ,  ڮ ௦ܰ             (14) 

The second term on the right hand side of the above 
equation represents the change in the total number 
of available sites. In the present work, this term is 
dropped since due to the employed surface reaction 
mechanism scheme, the total number of available 
sites remains conserved as the reaction takes place 
on the walls. At steady state, the left hand side of 
this equation will also be zero which makes the net 
production rate of surface species ݏሶ௡ equal to zero. 
However, the transient term in Eq. (14) is retained 
to facilitate the convergence of the system of 
equations (Mazumder and Lowry 2001). Surface 
species site fractions ܼ௡, by definition, should also 
satisfy the constraint ∑ ܼ௡

ேೞ
௡ୀଵ ൌ 1. 

Equations (12) and (13) form a set of stiff non-
linear Differential Algebraic Equations (DAE) 
which is generally handled using the Newton 
method. The details about the numerical treatment 
of these equations are discussed by Coltrin et al. 
(1991) and Mazumder and Lowry (2001). 

3. NUMERICAL 
IMPLEMENTATION 

The formulation presented in Eqs. (1-4) is an 
elliptic model where the axial diffusion terms are 
retained. These equations were discretized using the 
finite volume method. A non-staggered (colocated) 
arrangement was employed for the solution of the 
flow field following the Rhie and Chow (1983) 
formulation. Implementing the Pressure Weighted 
Interpolation Method (PWIM), the control volume 
face velocities are related to nodal pressure values. 
A deferred correction scheme is also used to 
improve the upwind approximation in descretizing 
the advection terms. After each step in the solution 
of gas phase species, the flux matching boundary 
condition (13) and the surface species production 
rate (14) equations are solved on every wall 
element. The connection between the molar 
concentration of species on the wall and at the edge 
of the Knudsen layer is established utilizing the 
concentration jump boundary condition. In each 
iteration, the molar concentration of species at the 
wall required for the calculation of the 
heterogeneous production rate ݏሶ௞ in Eq. (13) are 
written in terms of the molar concentration of 
species at the edge of the Knudsen layer using Eq. 
(9). This way, Eqs. (13) and (14) will form a closed 
set of ௚ܰ ൅ ௦ܰ equations to solve for the molar 
concentration of species at the edge of the Knudsen 
layer and surface coverage of species at the wall. 
This set of non-linear DAEs are solved using the 
SUNDIALS code (Hindmarsh et al. 2005). 
 
The solution to this set of equations yields the  
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