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ABSTRACT 

This paper presents entropy generation analysis for stagnation point flow in a porous medium over a 
permeable stretching surface with heat generation/absorption and convective boundary condition. We have 
used Von Karman transformations to transform the governing equations into ordinary differential 
equations.Thevelocity, temperature and concentration profiles obtained using the Homotopy Analysis 
Method. The HAM is a valid mathematical tool for most of non-linear problems in science and engineering. 
Finally we have computed the entropy generation number. The effect of the Prandtl number, Brinkman 
number, Reynolds number, suction/injection parameter, Biot number, Lewis number, Brownian motion 
parameter, thermophoresisparameterand constant parameters on velocity, concentration and temperature 
profiles are analyzed. Moreover the influences of the Reynolds number and Brinkman number on the entropy 
generation are presented.The entropy generation number increases with increasing the Brinkman and 
Reynolds number. 

Keywords: Stagnation point flow; Stretching surface; Convective boundary Conditions; Heat 
generation/absorption; Entropy analysis. 

NOMENCLATURE 

A ration of rates to free stream  
velocity and stretching velocity 

u , v dimensionless velocity in x,y 

Br Brinkman number eu free stream velocity

BD Brownian diffusion coefficient 
subscripts 

TD  thermophoretic diffusion coefficient w conditions on the wall 

wf suction/injection parameter 

h heat transfer coefficient 
wv > 0 suction velocity 

k thermal conductivity wv < 0 injection velocity 

1K  permeability parameter  Biot number 

Le Lewis number  density 

Nb Brownian motion parameter  Kinematic viscosity

GN Entropy generation number  > 0
 < 0

heat / sink source parameter

Nt thermophoresis parameter  dimensionless temperature difference

Pr Prandtl number  thermal diffusivity

0Q dimensional heat generation/ 
absorption coefficient 

 and   constant parameter
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Re  Reynolds number   free stream conditions 

wu  stretching velocity   
 

 
 

1. INTROUDUCTION 

Flow and heat transfer cause to a stretching surface 
in a motionless or moving fluid is significantly 
important in number of industrial manufacturing 
processes that contains both metal and polymer 
sheets. An interesting fluid mechanical application 
has been seen in the processes of the polymer 
extrusion, where the object on passing between two 
closely placed vertical solid blocks is stretched in a 
region of fluid-saturated porous medium. The liquid 
is meant to cool the stretching sheet whose property 
depends greatly on the rate at which it is cooled and 
stretched in porous medium. The fluid mechanical 
properties desired for the outcome of such a process 
depends mainly on the rate of cooling and the 
stretching rate. It is important that proper cooling 
fluid is selected and flow of the cooling liquid due 
to the stretching sheet can be controlled so as to 
achieve to the desired properties for the output. The 
quality of the last product depends on the heat 
transfer rate in the stretching surface. The 
temperature distribution, thickness and width 
reduction are function of draw ratio and stretching 
distance. 

Detailed flow and thermal analyses are frequently 
needed in many engineering applications, 
containing process developments and optimizations. 
The engineering utilization of the second law, 
known as exergy analysis, has been used for the 
minimization of entropy generation to find optimal 
engineering system designs. Mahian et al.(2012) 
and had been a main part of the rmodynamic 
analysis of industrial equipments especially in 
power industries. Entropy generation define the 
level of irreversibilities accumulating during a 
process. As a result, entropy production can be used 
as a criterion to determine the performance of 
engineering devices. Cengel and Boles (2006). 
Entropy analysis of flow and heat transfer systems 
is important as it identifies the factors which are 
responsible for the loss of useful energy. This 
energy loss can affect the efficiency of the 
thermally designed system. By reducing the factors 
that create entropy, the performance of the system 

can be enhanced Buttand Ali (2014).For example, a 
review of entropy generation in natural and mixed 
convection for energy systems was presented by 
Oztop and Al-Salem(2012). Several sources are 
responsible for entropy generation such as heat 
transfer and viscous dissipation (Bejan 1982, 1996). 
More recently the second law analyses emphasizing 
on the entropy generation and its minimization have 
been used to variant transport process Bejan (1982). 
[Bejan1996, 1980] was the first person who 
formulated the analysis of entropy generation ,has 
found a variety of applications such as the 
estimation of heat exchangers, two-phase flows, 
fuel cells and among many others. In during the last 
30 years entropy generation minimization (EGM) 
has been the subject of several investigations(Nag 
and Mukherjee 1987, 1989; Bejan and Ledezma 

1996; Lin and Lee 1997; Sasikumar and Balaji 
2002a,b).Rashidiet al.(2014) studied the analysis of 
entropy generation in an MHD flow over a rotating 
porous disk with variable physical properties. In 
another research Rashidiet al.(2013)investigated the 
entropy generation in steady MHD flow due to a 
rotating porous disk in a nanofluid. Recently, 
second-law analysis of fluid flow and heat transfer 
across a flat plate has been conducted by Malvandi 
et al.(2012). Although some increasing/decreasing 
trends for governing parameters were observed, 
they could not find any optimum case in which the 
entropy generation is minimized. Then, the effects 
of adding nanoparticles to the fluid on entropy 
generation were investigated analytically by 
Malvandi et al.(2013). Their results showed that 
more entropy generates in boundary layer with 
increasing the solid volume fraction. In another 
studySelame and Vedat(1990)studied the entropy 
productionin boundary layers. Malvandi et al. 
(2013)considered the influences of velocity ratio – 
which represents the ratio of the wall velocity to the 
free stream fluid velocity on a moving plate. Their 
outcomes indicated that focusing on the velocity 
ratio as a pivotal parameter, entropy generation can 
be minimized. Butt et al. (2012)investigated the 
Entropy generation in hydrodynamic slip flow over 
a vertical plate with convective boundary. Makinde 
(2011)studied second law analysis for variable 
viscosity hydromagnetic boundary layer flow with 
thermal radiation and newtonian heat. 

The homotopy analysis method (HAM) is used to 
obtain approximate analytical solutions for the 
transformed nonlinear equations under the 
prescribed boundary conditions. The HAM 
solutions, in comparison with numerical solutions 
(fourth-order Runge-Kutta shooting quadrature), 
admit excellent accuracy by Rashidi et al. (2012). 

In fluid mechanics problems, stagnation-point is the 
point in the flow field where local velocity of the 
fluid becomes zero. Where the fluid is brought to be 
at rest because of a force exerted by the objectJafar 
et al.(2012), this point occurs at the surface of the 
object. (Ariel 1994a,b; and Attia 2003a.b) 
developed the problems of stagnation point flow. In 
the last several decades many investigations have 
been discussed for flow in the close of a stagnation 
point. The first person who studied two dimensional 
stagnation point flow over a flat plate was Hiemenz 
(1911), then this work extended to the axisymmetric 
cases with heat transfer characteristics by (Homann 
1936; Eckert 1942). Rashidi et al. (2011) presented 
a new analytical solution of stagnation point flow in 
a porous medium. Chamkha and Issa (2000) studied 
the hydromagnetic flow over a semi-infinite 
permeable flat surface with heat generation/ 
absorption and thermophores is effects. Parametric 
analysis of entropy generation in off-centered 
stagnation flow towards a rotating disc was 
investigated by Rashidiet al. (2011). Mahapatra and 
Gupta (2001) analyzed two dimensional steady, 
stagnation point flow of an electrically conducting 
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fluid over a flat stretching sheet. Layeket al. 
(2007)solved numerically stagnation point flow 
problem over a heated permeable stretching sheet 
with heat generation/absorption. Ramachandran et 
al. (1988) studied two dimensional laminar mixed 
convection stagnation flows. MHD stagnation point 
flow and heat transfer through a porous space 
bounded by a permeable surface was presented by 
Hayat et al. (2009). Ishak et al. (2008) investigated 
numerical solution of steady stagnation point flow 
over a vertical sheet with suction/blowing. Sharma 
and Singh (2008) analyzed the numerical study of 
two dimensional magneto hydrodynamic (MHD) 
steady laminar stagnation point flow of a viscous 
incompressible electrically conducting fluid of 
variable thermal conductivity over a stretching 
surface. Kumaran et al.(2009) was studied two 
dimensional stagnation point flow in a porous 
medium. The problem of boundary-layer unsteady 
mixed convection flow of stagnation point on a 
heated vertical plate through a porous medium was 
investigated by Hassanien and Alarabi (2009). 
Rashidi and Mohimanian Pour (2010) demonstrated 
the analytic approximate solutions for unsteady 
boundary-layer flow and heat transfer due to a 
stretching sheet by the HAM. In another study, 
Rashidi and Erfani (2011) discussed the modified 
differential transform method for investigating nano 
boundary-layers over stretching surfaces. Kechil 
and Hashim (2009) discussed the problem of two 
dimensional steady laminar MHD forced flow over 
a flat plate through porous medium. Mohamed et al. 
(2013)discussed the numerical investigation of 
stagnation point flow over stretching sheet with 
convective boundary condition. Mustafa et al. 
(2011) discussed the steady two dimensional 
stagnation point flow towards a stretching sheet in a 
nanofluid. 

In more recent years the international research 
community has shown great interest in investigating 
nanofluids to be used as heat transfer fluids or 
coolants. Several review researches are available in 
this field with regards to thermal increases(Das et 
al. 2006; Saidur et al. 2011).Nanofluid is a fluid 
which the solid nanoparticles with the length scales 
of nanometers are suspended in a conventional heat 
transfer fluid. It has been showed that the addition 
of highly conductive particles can greatly increase 
the thermal conductivity of the pure ordinary fluid. 
For instance, it was reported that the effective 
thermal conductivity of an ethylene–glycol-based 
nanofluid which includes nano size copper particles 
with diameters less than 10 nm increased by up to 
40 at 0.3 % vol. of dispersed particles Eastman et al. 
(2001).Alsaedi et al.(2012) investigated the 
stagnation-point flow of nanofluid near a permeable 
stretching surface. Hamad and Ferdows (2012) 
analyzed a stagnation-point flow over a permeable 
stretching sheet in porous medium with heat 
generation or absorption effects in a nanofluid. The 
problem of steady stagnation-point flow and heat 
transfer of viscous fluid over a shrinking sheet in a 
porous medium was investigated by Rosaliet al. 
(2011). 
 
The similarity solution for two-dimensional and 

axisymmetric bodies in a porous medium was 
considered by Nakayama and Koyama (1987). 
Cheng and Minkowycz (1977) solved similarity 
solutions for free convective heat transfer from a 
vertical plate in a fluid saturated porous medium. 
Aldosset al. (1993) considered solutions for mixed 
convection in porous media. All these studies were 
concerned with Newtonian fluid flows. Non-
Newtonian fluids display a nonlinear relationship 
between shear stress and shear rate. The analytic 
approximate solution for steady flow over a rotating 
disk in porous medium with heat transfer by the 
HAM was applied by Rashidi et al. (2012). Chen 
and Chen (1988) obtained similarity solutions for 
free convection of non-Newtonian fluids over 
vertical surfaces in porous media. The aim of this 
paper is study the entropy generation analysis on 
the stagnation point flow in a porous medium over a 
permeable stretching surface with convective 
boundary conditions in the presence of heat. 

2.  MATHEMATICAL 
FORMULATION 

In two-dimensional Cartesian coordinate system 
(x,y), we test the boundary-layer flow of nano fluid 
near to a stagnation point towards a permeable 
stretching surface at y = 0. The fluid saturates the 
porous medium 0.y > Thex-axis is consider in the 
direction of along the plate and the y-axis is normal 
to the plate with velocity components ߥ,ݑ in these 

directions, respectively. We define wc  as the value 

of nanoparticle fraction at the surface. Ambient 
values of temperature and nanoparticle fraction are 
considered as T and c , there is no slip between 

the ordinary fluid and suspended nanoparticles. 
Further, the boundary-layer flow is considered in 
presence of heat source. Fig. 1 presents the 
geometry of the problem. 
 

 
Fig. 1. Problem definition. 

 
Under the boundary-layer approximations, the flow 
is governed by the following equations: 
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(3)

 
2 2

2 2
.T

B

C C C D T
u v D

x y y T y

   
  

                           
(4)

  
With the following boundary conditions 

   , , , at 0,w w w w
T

u u x cx v v k h T T C C y
y


       

  
  0 as  ,eu u x ax v T T C C y        

                                                                                
(5)

 
where ( )wu x shows the stretching velocity and 

( )eu x  is the free stream velocity, is the kinematic 

viscosity, k is the permeability of porous medium, 

BD is the Brownian diffusion coefficient,  is the 

density of the ordinary fluid, TD is the 

thermophoretic diffusion coefficient,  the thermal 
diffusivity,  the ratio of the effective heat capacity 
of the nanoparticle material and the heat capacity of 
the ordinary fluid, 0Q the dimensional heat 

generation/absorption coefficient, , wv > 0 

corresponds to suction velocity whereas wv < 0 

shows the injection or blowing,where h is the heat 
transfer coefficient and k is the thermal 
conductivity of the ordinary fluid. 
 
Introducing the similarity transformations and 
dimensionless temperature and concentration  

   

   

, , ,

, .
w w

c
y x y x c f

T T C C

T T C C

   


    

 

 

 
 

                   

(6) 

Continuity Equation is automatically satisfied and 
Eqs. (2)-(5) are reduced in the following forms: 

          2 2
1 0f f f f A K f A            

 

(7) 

 
     

     2
0,

f
Pr

Nb Nt

    
 

    

  
   
     

 
(8) 

        0,
Nt

Le f
Nb

            
(9) 

        0 , 0 1, 0 1 0 , 1 at 0,

, 0, 0, as ,

wf f f

f A

    

  

      

    

 

 

(10) 

where pPr c k the Prandtl number, 1K cK
the permeability parameter of porous medium, 

0 pQ c c  the heat source   > 0 or sink 

  < 0 parameter, 
a

A
c

 defines the ratio of rates 

to free stream velocity and stretching velocity, 

w wf v c   the suction/ injection parameter , 

h

k c

   the Biot number , / BLe D the Lewis 

number , the Brownian motion parameter
( ) /B wNb D     , ( ) /T wNt D T T T   

the thermophoresis parameter and ݂ݓ is the 
suction/injection parameter with ݂0<ݓ showing a 

uniform suction through the wedge surface. 
 

2.1 Ham Solution 

In order to satisfy the mentioned boundary 
conditions, we select the appropriate initial 
approximations, as follows: 

( )
0( ) ( 1) 1 ,x

wf x A e f A Ax       (11) 

0( ) ,
1

xe
x








 

(12) 

0( ) .xx e   (13) 

 
The linear operators ( ),f f ( )  and ( )   are 

defined as: 
''' '' ,f f f   (14) 

'' ',     (15) 

'' ' ,     (16) 

which fulfill the following properties: 

1 2 3( ) 0,x
f c e c x c     (17) 

4 5( ) 0,xc e c
    (18) 

6 7( ) 0,xc e c
    (19) 

where , 1 7,ic i   are the arbitrary constants. 

According to Eqs. (7)-(9), the nonlinear operators 
are introduced as  

3 3
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(20) 
2
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2
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(21) 

The auxiliary functions become: 

, 1, 1.x
f sH e H H

    (23) 

The symbolic software MATHEMATICA is used to 
solve the mth order deformation equations (24)-
(26). 
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Fig. 3. Residual error of Eq. (34) using 18th-order 

HAM approximation when. 
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Aboveequationclearly denotes contributions of four 
sources of entropy generation. The first term on the 
right-hand side is the entropy generation due to heat 
transfer across a finite temperature difference; the 
second term is the local entropy generation due to 
viscous dissipation.  
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It is appropriate to determine dimensionless number 
for entropy generation rate sN . We obtained the 

entropy generation number by division of the local 

volumetric entropy generation rate genS to a 

characteristic rate of entropy generation
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where Re and Br are respectively the Reynolds 

number and the Brinkman number. is the 
dimensionless temperature difference.  and  are 
constant parameters. 

These number are given by the following 
relationships 
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3. RESULTS AND DISCUSSION 

The nonlinear ordinary differential Eqs.(7)-(9) 
subject to the boundary conditions (10) are solved 
numerically for some values of different 
parameters. The aim of this section is to analyze the 
effects of various physical parameters on the 
velocity, temperature, nanoparticle concentration 
fields and entropy generation. Figs. 4-7 showed that 
by increasing suction  0wf >  the fluid velocity

'f , concentration profile  and temperature profile 

 decreases, respectively, whereas the entropy 
generation number increases. Fig.8 presents the 

effects of 1k  on 'f . 
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decreases in fluid motion. Figs.9-11 presented the 
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Fig. 6. Influence of wf  on  . 

 

 

Fig. 7. Influence of ࢝ࢌ on GN
. 

 

 

Fig. 8. Influence of 1k  on 'f . 
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Fig. 9. Influence of 1k on  . 
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increasing of Le  results in a decrease in the 
concentration profile. 
 

 
Fig. 12. Influence of A  on 'f . 

 

 
Fig. 13. Influence of A  on  . 

 

 
Fig. 14. Influence of A on   
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with increasing the Brinkman number.Fig. 
28demonstrates the effect of  Brinkman number on 
the  entropy generation number . An increase in the 
entropy generation produced by fluid friction and 
joule dissipation occurs with increasing the value of 
the Brinkman number. 
 

 
Fig. 17. Influence of   on  . 

 

 
 

Fig. 18.Influence of Nb  on  . 

 

 
Fig. 19. Influence of Nb  on . 
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this study and the results of previously published 
data. It is apparently seen that the HAM is very 
powerful and efficient technique in finding 
analytical solutions for wide classes of nonlinear 
partial differential equations.The effects of physical 
flow parameters such as heat sink /source 
parameter,Reynoldsnumber,Prandtl number and 
Brinkman number on the velocity, temperature, 
nanoparticle concentration fields and entropy 
generation were shown and discussed. It is found 
that by increasing Brinkman number and Reynolds 
number the entropy generation is increases. The 
equation of entropy generation over a permeable 
stretching surface was derived. 
 

 
Fig. 23. Influence of   on . 

 

 

Fig. 24. Influence of   on . 
 

 
Fig. 25. Influence of Pr  on . 

 
Fig. 26. Influence of Pr  on . 

 

 
Fig. 27. Influence of Re  on GN
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Fig. 28. Influence of Br  on GN

. 

REFERENCES 

Aldoss, T. K., T. S. Chen and B. F. Armaly (1993). 
Nonsimilarity solutions for mixed convection 
from horizontal surfaces in aporous medium-
variable wall temperature. International 
Journal of Heat and Mass Transfer 36, 471–
477. 

 
Alsaedi, A., M. Awais and T. Hayat (2012). Effects 



(
)

0 2 4 6

0.2

0.4

0.6

0.8

1

 = 0.1
 = 0.3
 = 0.5
 = 0.7
 = 0.9



(
)

0 2 4 6

0.1

0.2

0.3

0.4

0.5

0.6  = 0.1
 = 0.3
 = 0.5
 = 0.7
 = 0.9



(
)

0 2 4 6

0.05

0.1

0.15

0.2 Pr=0.71
Pr=1
Pr=2
Pr=3



(
)

0 2 4 6

0.2

0.4

0.6

0.8

1

Pr=0.71
Pr=1
Pr=2
Pr=3



N
G

0 0.5 1 1.5 2
0

20

40

60

80

100

120
Re=1
Re=2
Re=3
Re=5
Re=10



N
G

0 0.5 1 1.5 2
0

20

40

60

80

100

120
Br=1
Br=2
Br=3
Br=5
Br=10



M.M. Rashidi et al. / JAFM, Vol. 8, No. 4, pp. 753-765, 2015.  
 

763 

ofheat generation/absorption on stagnation 
point flowofnanofluid over a surface with 
convective boundaryconditions. Commun. 
NonlinearSci.Number.Simul 17,4210- 4223. 

 
Ariel, P. D. (1994a). Stagnation Point Flow 

withSuction: an Approximate Solution. J. 
Appl. Mech. 61, 976-978.  

 
Ariel, P. D. (1994b). Hiemenz Flow in 

Hydromagnetics. ActaMech 103, 31–43. 
 
Attia, H. (2003a). Hydromagnetic Stagnation Point 

Flow with Heat Transfer over a Permeable 
Surface.Arab. J. Sci. Eng. 28, 107–112. 

 
Attia, H. (2003b). Homann magnetic flow and heat 

transfer with uniform suction or injection. Can. 
J. Phys. 81, 1223–1230. 

 
Bejan, A. (1980). Second law analysis in heat 

transfer, Energy. 
 
Bejan, A. (1982). Second-law Analysis in Heat 

Transfer and Thermal Design. Adv. 
HeatTransfer 15, 1–58. 

 
Bejan, A. (1996). Entropy Generation 

Minimization. CRC Press, Boca Raton, New 
York. 

 
Bejan, A. and G. A. Ledezma (1996). 

Thermodynamic optimization of cooling 
techniques for electronic packages.Int. J. Heat 
Mass Transfer 39, 1213–1221. 

 
Butt, A. S., S. Munawar, A. Ali and A. Mehmood 

(2012). Entropy generation in hydrodynamic 
slip flow over a vertical plate with convective 
boundary.Journal of Mechanical Science and 
Technology 26 (9), 2977-2984. 

 
Butt, A. S. and A. Ali (2014). Entropy analysis of 

magnetohydrodynamic flow and heat transfer 
over a convectively heated radially stretching 
surface.Journal of the Taiwan Institute of 
Chemical Engineers 858, 1-7. 

 
Cengel, Y. A. and M. A. Boles (2006). 

Thermodynamics an Engineering Approach. 
Fifth ed., McGraw-Hill. 

 
Chamkha, A. J. and C. Issa (2000). Effects of heat 

generation/ absorption and thermophoresis on 
hydromagnetic flow with heat and mass 
transfer overa flat surface. Int. Journal of 
Number.Methods Heat Fluid Flow 10, 432–
449. 

 
Chen, H. T. and C. K. Chen (1988). Free convection 

of Non-Newtonian Fluids along a vertical plate 
embedded in a porous medium.Transactions of 
ASME. Journal of Heat Transfer 110, 257–
260. 
 

Cheng, P. and W. J. Minkowycz (1977). Free 
convection about a vertical Flat plate 

embedded in a porous medium with 
application to heat transfer from a dike. 
Journal of Geophysical Research 82, 2040–
2049. 

 
Das, S. K., S. U. S. Choi and H. E. Patel (2006). 

Heat Transfer in Nanofluids-A Review, Heat 
Transfer Eng. 27, 3–19. 
 

Eastman, J. A. , S. U. S. Choi., S. Li., W. Yu and L. 
J. Thompso (2001). Anomalously increased 
effective thermal conductivities of ethylene 
glycol based nanofluids containing copper 
nanoparticles.Applied Physical Letter 78, 718–
720. 
 

Eckert, E. R. G. (1942). Die Berechnungdes 
Wärmeubergangs in der laminaren 
Grenzschich tumstromten Körper. VDI- 
Forschungsheft 416, 1–23. 
 

Hamad, M. A. A. and M. Ferdows (2012). 
Similarity solution of boundary layer 
stagnation-point flowtowards a heated porous 
stretching sheet saturatedwith a nanofluid with 
heat absorption or generationand suction or 
blowing: A Lie Group Analysis. 
Commun.Nonlin.Sci. Number.Simul. 17, 132–
140. 
 

Hassanien, I. A. and T. H. Alarabi (2009). Non 
Darcy unsteady mixed convection flow near the 
stagnation point on a heated vertical surface 
embedded in a porous medium with thermal 
radiation and variable viscosity. 
Communications in Non Linear Science 
Numerical Simulation 14, 1366–1376. 
 

Hayat, T., T. Javedand and Z. Abbas (2009). MHD 
flow of a micropolar fluid near a stagnation 
point towards a nonlinear stretching surface. 
Journal of Porous Media 12, 183–195. 
 

Hiemenz, K. (1911). Die Grenzschichtaneinem in 
dengleichformingenFlussigkeitsstromeingetauc
htengradenKreiszylinder.Dinglers Polytechnic 
Journal 326, 321–324. 
 

Homann, F. (1936). Der Einfluss grosser 
Zahigkeitbei der Stromung um den Zylinder 
und um die Kugel, Z.Angew. Math. Mechanics 
16, 153–164. 
 

Ishak, A., R. Nazar and I. Pop (2008). Dual 
solutions inmixed convection flow near a 
stagnation point on avertical surface in a 
porous medium. International Journal of Heat 
and Mass Transfer 51, 1150–1155. 

 
Jafar, K., A. Ishak and R. Nazar (2012). MHD 

stagnation-point flow over a nonlinearly 
stretching orshrinking sheet. J. Aerospace 
Engg.  
 

Kechil, S. and I. Hashim (2009). Approximate 
analytical solution for MHD stagnation point 
flow in porous media. Communications in Non 



M.M. Rashidi et al. / JAFM, Vol. 8, No. 4, pp. 753-765, 2015.  
 

764 

Linear Science and Numerical Simulation 14, 
1346–1354. 
 

Kumaran,V., R. Tamizharasi and K. Vajravelu 
(2009). Approximate analytic solutions of 
stagnation point flow in a porous medium. 
Communications in Non Linear Science and 
Numerical Simulation 14, 2677–2688. 
 

Layek, G. C. ,S. Mukhopadhyay and S. A. Samad 
(2007). Heat and mass transfer analysis for 
boundary layerstagnation point flow towards a 
heated porousstretching sheet with heat 
absorption/ generationand suction / blowing. 
International Communications in Heat and 
Mass Transfer 34, 347–356. 
 

Liao, S. J. (2010). An optimal homotopy-analysis 
approach for strongly nonlinear differential 
equations.Communications in Nonlinear 
Science and Numerical Simulation 15, 2003-
16. 
 

Lin, W. W. and D. J. Lee (1997). Second law 
analysis of a pin fin array under cross flow.Int. 
J. Heat Mass Transfer 40, 1937–1945. 
 

Mahapatra, T. R. and A. S. Gupta (2001). MHD 
stagnation point flow towards a stretching 
sheet. ActaMechanica 152, 191–196. 
 

Mahian, O., S. Mahmud and I. Pop (2012). Analysis 
of First and Second Laws of Thermodynamics 
between two Isothermal Cylinders with 
Relative Rotation in the Presence of MHD 
Flow.Int. J. Heat Mass Transfer 55 (17–18), 
4808– 4816. 
 

Makindi, O. D. (2011). Second Law Analysis for 
Variable Viscosity Hydromagnetic Boundary 
Layer Flow with Thermal Radiation and 
Newtonian  Heating. Entropy 13, 1446-1464. 
 

Malvandi, A., D. D. Ganji., F. Hedayatiand E. 
Yousefi Rad (2013). An analytical study on 
entropy generation of nanofluids over a flat 
plate.Alexandria Eng. J 52(4), 595–604. 
 

Malvandi, A., D. D. Ganji., F. Hedayati., M. H. 
Kaffash and M. Jamshidi (2012). Series 
solution of entropy generation toward an 
isothermal flat plate.Therm. Sci 16(5), 1289–
1295. 

 
Malvandi, A., F. Hedayati and D. D. Ganji (2013). 

Thermodynamic optimization of fluid flow 
over an isothermal moving plate. Alexandria 
Eng. J 52 (3), 277–283. 

 
Mohamed, M. K. A., M. Z. Salleh., R. Nazar and A. 

Ishak (2013). Numerical investigation of  
stagnation point flow over stretching sheet 
with convective boundary condition.Boundary 
value problems 4, 1-10. 

 
Mustafa, M., T. Hayat., I. Pop., S. Asghar and S. 

Obaidat (2011). Stagnation-point flow of a 

nanofluid towards a stretching sheet. Int. J. 
Heat Mass Transfer 54, 5588–5594. 

 
Nag, P. K. and P. Mukherjee (1987). 

Thermodynamic optimization of convective 
heat transfer through a duct with constant wall 
temperature. Int. J. HeatMass Transfer 30, 
401–405. 

 
Nag, P. K. and P. Mukherjee (1989). Second law 

optimization of convective heat transfer 
through a duct with constant wall temperature. 
Int. J. Energy Res 13, 537–543. 

 
Nakayama, A. and H. Koyama (1987). A general 

similarity transformation for combined free 
and forced convection Flows within a Fluid-
saturated porous medium. Journal of Heat 
Transfer 109, 1041–1045. 

 
Oztop, H. F. and K. Al-Salem (2012). A review on 

Entropy Generation in Natural and Mixed 
Convection HeatTransfer for Energy Systems. 
Renewable Sustainable Energy Rev 16 (1), 
911–920. 

 
Ramachandran, N. ,T. S. Chen and B. F. Armaly 

(1988). Mixed convection in stagnation flows 
adjacent to averticalsurfaces. ASME Journal of 
Heat Transfer 110, 373–377. 

 
Rashidi, M. M. , N. Freidoonimehr., A. Hosseini., 

O. Anwar Bég and T. K. Hung (2014). 
Homotopy simulation of nanofluid dynamics 
from a non-linearly stretching isothermal 
permeable sheet with transpiration. Meccanica 
February 49( 2), 469-482. 

 
Rashidi, M. M. and E. Erfani (2011). The Modified 

Differential Transform Method for 
Investigating Nano Boundary-Layers over 
Stretching Surfaces.International Journal of 
Numerical Methods for Heat and Fluid Flow 
21 (7), 864-883. 

 
Rashidi, M. M. and S. A. Mohimanian Pour (2010). 

Analytic approximate solutions for unsteady 
boundary-layer flow and heat transfer due to a 
stretching sheet by homotopy analysis method. 
Nonlinear Analysis: Modelling and Control 15 
(1), 83–95. 

 
Rashidi, M. M. , D. D. Ganji and S. M. Sadri 

(2011). New Analytical Solution of Stagnation 
Point Flow in a Porous Medium. Journal of 
Porous Media 14(12), 1125–1135. 

Rashidi, M. M., L. Shamekhi and S. Kumar (2011). 
Parametric Analysis of Entropy Generation in 
Off-centered Stagnation Flow Towards a 
Rotating Disc. Nonlinear Engineering , in 
press. 

Rashidi, M. M., M. T. Rastegari., M. Asadi and O. 
Anwar beg (2012). A Study of Non-Newtonian 



M.M. Rashidi et al. / JAFM, Vol. 8, No. 4, pp. 753-765, 2015.  
 

765 

Flow and Heat Transfer over a Non-Isothermal 
Wedge Using the Homotopy Analysis Method. 
Chemical Engineering Communications 
199(2), 231-256. 

 
Rashidi, M. M., S. Abelman and N. Freidoonimehr 

(2013). Entropy Generation in Steady MHD 
Flow Due to a Rotating Porous Disk in a 
Nanofluid.International Journal of Heat and 
Mass Transfer 62, 515–525. 

 
Rashidi, M. M., S. Mahmud., N. Freidoonimehr and 

B. Rostami (2014). Analysis of Entropy 
Generation in an MHD Flow over a Rotating 
Porous Disk with Variable Physical 
Properties.International Journal of Exergy  

 
Rashidi, M. M. , S. A. Mohimanian pour and S. 

Abbasbandy (2011). Analytic approximate 
solutions for heat transfer of a micropolar fluid 
through a porous medium with 
radiation.Communications in Nonlinear 
Science and Numerical Simulation 16, 1874-
89. 

 
Rashidi, M. M., S. A. Mohimanian Pour, T. Hayat 

and S. Obaidat (2012). Analytic Approximate 
Solutions for Steady Flow over a Rotating 
Disk in Porous Medium with Heat Transfer by 
Homotopy Analysis Method. Computers and 
Fluids 54, 1–9. 

 
Rashidi, M. M., T. Hayat, E. Erfani and S. A. 

Mohimanian Pour (2011). Awatif A-Hendi, 
Simultaneous Effects of Partial Slip and 
Thermal-Diffusion and Diffusion-Thermo on 
Steady MHD Convective Flow due to a 
Rotating Disk. Communications in Nonlinear 
Science and Numerical Simulations 16 (11), 

4303–4317. 
 
Rosali, H., A. Ishak and I. Pop (2011). Stagnation 

point flow andheat transfer over a 
stretching/shrinking sheet in a porous 
medium.Int. Commun. Heat Mass Tran 38, 
1029–1032. 

Saidur, R., K. Y. Leong and H. A. Mohammad 
(2011). A review on applications and 
challenges of nanofluids. Renew. Sust.Energy. 
Rev. 15, 1646–1668. 

Sasikumar, M. and C. Balaji (2002a). Optimization 
of convective fin systems: a holistic 
approach.Hea andt Mass transf 39, 57–68. 

 
Sasikumar, M. and C. Balaji (2002b). A holistic 

optimization of convecting–radiating fin 
systems.ASME J. Heat and Transfer 124, 
1110–1116. 

 
Selame, A. and S. Vedat (1990). Entropy 

Production in Boundary Layers. 
Technicalnotes 4(3), 404-407. 

 
Sharma, P. R. and G. Singh (2008). Effects of 

variablethermal conductivity and heat source/ 
sink on MHDflow near a stagnation point on a 
linearly stretchingsheet. Journal of Applied 
Fluid Mechanics 2, 13–21. 

 
Turkyilmazoglu, M. (2010). Purely analytic 

solutions of magnetohydrodynamic swirling 
boundary layer flow over a porous rotating 
disk. Computers and Fluids 39, 793-799. 

 

 


