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ABSTRACT 

Unsteady hydromagnetic natural convection flow of a viscous, incompressible, electrically conducting and 
temperature dependent heat absorbing fluid confined within a parallel plate rotating vertical channel in porous 
medium is investigated. Fluid flow within the channel is induced due to impulsive movement of one of the 
plates of the channel. Exact solution for the governing equations for fluid velocity and fluid temperature are 
obtained by Laplace transform technique. The expressions for the shear stress at the moving plate due to 
primary and secondary flows and those of rate of heat transfer at the moving and stationary plates are also 
derived. In order to gain some physical insight into the flow pattern, asymptotic behavior of the solution for 
fluid velocity and fluid temperature are analyzed for small and large values of time. The numerical values of 
primary and secondary fluid velocities and fluid temperature are displayed graphically whereas those of shear 
stress at the moving plate and rate of heat transfer at both the moving and stationary plates are presented in 
tabular form for various values of pertinent flow parameters. 
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NOMENCLATURE 

0B uniform magnetic field 

pc specific heat at constant pressure 

g acceleration due to gravity  

rG Thermal Grashof number 

h distance between the plates 

Tk thermal conductivity of the fluid 

1K  permeability of porous medium 

1K  permeability parameter
2K  rotation parameter

m Hall current parameter 
2M magnetic parameter 

p fluid pressure 

rP Prandtl number 

0Q heat absorption coefficient 

t time 
T   fluid temperature 

0U characteristic velocity    

u fluid velocity in x -direction  

w  fluid velocity in z -direction 

  coefficient of thermal expansion 

 uniform angular velocity 
  electrical conductivity 
  fluid density  
 kinematic coefficient of viscosity

e  cyclotron frequency

e  electron collision time

  heat absorption parameter

1. INTRODUCTION

Natural convection flow in a vertical channel is 
investigated extensively in the past due to its varied 
and wide applications in science and engineering, 
namely, design of passive solar system for energy 
conversion, design of heat exchanger using liquid 

metal coolants, chemical devices, cooling of nuclear 
reactors, cooling of electronic equipments, 
geothermal reservoirs etc. Keeping in view this fact, 
several researchers, namely, Greif et al. (1971), 
Miyatake and Fujii (1972), Aung (1972), Kim et al. 
(1990), Lee and Yan (1994) and Campo et al. 
(2006) investigated natural convection flow in a 
vertical channel under different conditions whereas 
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Haddad (1999), Weidman and Medina (2008), Jana 
et al. (2011) and Das et al. (2011) studied natural 
convection flow through a fluid saturated porous 
medium within a vertical channel considering 
different aspects of the problem.  
 
Theoretical/experimental investigation of unsteady 
natural convection flow of a viscous and 
incompressible fluid within a vertical channel is of 
great importance because transient fluid flow is 
expected at the start-up time of so many 
engineering devices, namely, generators, 
accelerators, flow meters, pumps, nuclear reactors 
etc. Taking into account this fact, several 
researchers investigated transient natural convection 
flow of a viscous and incompressible fluid in a 
parallel plate vertical channel under different initial 
and boundary conditions. Mention may be made of 
the research studies of Singh (1988), Joshi (1988), 
Paul et al. (1996), Singh et al. (1996) and Mandal et 
al. (2012). Recently, Jana et al. (2014) investigated 
oscillatory mixed convection flow of a viscous and 
incompressible fluid in a porous medium between 
two infinitely long vertical walls heated 
asymmetrically. In their study, oscillatory free and 
forced convection are generated by time varying 
gravitational field and applied periodic pressure 
gradient respectively.  
 
Investigation of the problems of hydromagnetic 
flow with and without heat transfer in porous and 
non-porous media assumes significance due to its 
applications in various areas of science and 
technology such as MHD generator flow which 
includes disk systems (Yamasaki et al., 1988), 
magneto-thermo-acoustic generators (Vogin and 
Alemany, 2007), solar pond MHD generators 
(Kabakov and Yantovsky, 1993), hypersonic 
ionized boundary layers (Macheret et al., 2004), 
liquid metal processing (Bég et al., 2009), particle 
deposition in electrically conducting systems 
(Zueco et al., 2009), metallurgy, chemical and 
petroleum industries etc. 
 
Keeping in view this fact, several researchers 
investigated hydromagnetic natural convection flow 
in a vertical channel considering different aspects of 
the problem. Mention may be made of the research 
studies of Yu (1965), Gupta and Gupta (1974), 
Datta and Jana (1976), Meric (1977) and Jha 
(2001). 
 
Unsteady hydromagnetic Couette flow in a rotating 
environment has varied and wide applications in 
geophysics, astrophysics and in so many areas of 
fluid engineering viz. rotating hydromagnetic 
generators, vortex type MHD power generators, 
turbo machines, material processing etc. Keeping in 
view this fact Seth et al. (1982, 2011), Chandran et 
al. (1993), Singh et al. (1994), Hayat et al. (2004a, 
2004b, 2004c), Das et al. (2009) and Sarkar et al. 
(2012) investigated unsteady hydromagnetic 
Couette flow of a viscous, incompressible and 
electrically conducting fluid in a rotating system 
considering various aspects of the problem. Ghosh 
et al. (2013) studied oscillatory hydromagnetic free 
and forced convection flow of a viscous, 

incompressible and electrically conducting fluid in 
a rotating channel in the presence of oblique 
magnetic field. 
 
It is well known that in an ionized fluid, where 
density is low and/or magnetic field is strong, the 
effects of Hall current become significant as 
mentioned by Cowling (1957). Also, both Hall 
current and rotation induce secondary flow in the 
flow-field. Therefore, it seems to be significant to 
compare and contrast the effects of these two 
agencies and also to study their combined effects on 
the flow-field. Hall effects on fluid flow find 
applications in MHD power generation, MHD 
accelerators, nuclear power reactors, MHD pumps, 
underground energy storage system etc. Taking into 
account this fact, Jana and Datta (1980), Ghosh 
(2002), Ghosh and Pop (2004), Singh and Kumar 
(2010), Guchhait et al. (2011), Seth and Singh 
(2013), Seth et al. (2012), Jha and Apere (2012), 
Chauhan and Rastogi (2012) and Chauhan and 
Agrawal (2012) studied effects of Hall current on 
MHD Couette flow in a rotating system considering 
different physical aspects of the problem. 
 
It is observed that there is considerable temperature 
difference between the surface of the solid and 
ambient fluid in so many fluid flow problems of 
physical interest. This prompted many researchers 
to consider temperature dependent heat source 
and/or sink which may have strong influence on 
heat transfer characteristics. The research studies 
related to convective flow of heat generating and/or 
absorbing fluid is of much significance in several 
physical problems, namely, convection in Earth’s 
mantle (McKenzie et al., 1974), post accident heat 
removal (Baker et al., 1976), fluids undergoing 
exothermic and/or endothermic chemical reaction 
(Vajrvelu and Nayfeh, 1992), fire and combustion 
modeling (Delichatsios, 1988), development of 
metal waste from spent nuclear fuel (Westphal et 
al., 1994), applications in the field of nuclear 
energy (Crepeau and Clarksean, 1997) etc. Taking 
into consideration this fact Jha (2003) and Jha and 
Ajibade (2009, 2010) investigated transient free 
convective flow of heat generating/absorbing fluid 
within a vertical channel considering different 
aspects of the problem.  
 
Aim of the present investigation is to study 
unsteady hydromagnetic natural convection Couette 
flow with Hall effects of a viscous, incompressible, 
electrically conducting and temperature dependent 
heat absorbing fluid through a uniform porous 
medium confined within a rotating vertical channel 
in the presence of uniform transverse magnetic 
field. Fluid flow within the channel is induced due 
to impulsive movement of one of the plates of the 
channel. Fluids as well as channel rotate in unison 
with uniform angular velocity about an axis normal 
to the planes of the plates of the channel. This study 
may have applications in science and engineering, 
namely, thermo-nuclear engineering, geophysical 
and astrophysical fluid dynamics, geothermal power 
extraction, plasma aerodynamics, extraction of oil 
and gases from reservoirs, MHD power generation 
and manufacturing processes. 
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2. FORMULATION OF THE 

PROBLEM AND ITS SOLUTION 

Consider unsteady natural convection flow of a 
viscous, incompressible and electrically conducting 
heat absorbing fluid confined within parallel 
vertical plates 0y   and y h  of infinite extent in 

x and z  directions.  x  –axis is taken in upward 
direction along one of the plates and y –axis is 
normal to the planes of the plates. The channel is 
filled with a homogeneous porous material and the 
porous medium is saturated with heat absorbing 
fluid. A uniform transverse magnetic field 0B is 

applied in a direction which is parallel to y  –axis. 
The fluid and channel rotate in unison with uniform 
angular velocity   about y  –axis. Initially (i.e., at 

time 0t  ), fluid and plates of the channel are 
assumed to be at rest and at uniform temperature hT . 

At time 0t  , the plate 0y  starts moving with 

uniform velocity 0U  in x –direction and its 

temperature is raised or reduced to wT  while the 

plate y h  is kept fixed and is maintained at hT . 

Figure 1 shows the geometrical configuration of the 
problem.  

 
Fig. 1. Geometry of the problem. 

 
It is assumed that no external electric field is 
applied in the flow-field so that the effect of 
polarization of fluid is neglected i.e., electric 

field (0,0,0)E 


. The induced magnetic field 
produced by fluid motion is neglected in 
comparison to the applied one. This is justified 
because magnetic Reynolds number is very small 
for liquid metals and partially ionized fluids which 
are used in industrial processes (Cramer and Pai, 
1973). Since plates of the channel are of infinite 
extent in x  and z  directions and are electrically 
non-conducting, all the physical quantities except 
pressure depend on y and t only. 

Thus, the equation of continuity . 0q 


and 

solenoidal relation for magnetic field . 0B 


 
imply that  

( ,0, )q u w 


 and 0,(0, 0),B B


                          (1) 

where u and w  are fluid velocities in x  and z  

directions respectively. 

With the assumptions made above, the governing 
equations for unsteady hydromagnetic natural 
convection flow of a viscous, incompressible and 
electrically conducting heat absorbing fluid with 
Hall effects in a rotating system, under Boussinesq 
approximation, are given by 
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where  ,  ,  , 1K , g ,  , T  , e em   , e , 

e , Tk , pC , 0 andQ p are, respectively, kinematic 

coefficient of viscosity, electrical conductivity, fluid 
density, permeability of porous medium, 
acceleration due to gravity, coefficient of thermal 
expansion, fluid temperature, Hall current 
parameter, cyclotron frequency, electron collision 
time, thermal conductivity, specific heat at constant 
pressure, heat absorption coefficient and fluid 
pressure including centrifugal force. 
 

Initial and boundary conditions for the fluid flow 
problem are specified as

    

 

0 : 0, at 0 ,ht u w T T y h                    (6a) 
00 : , 0, at 0,wt u U w T T y                  (6b) 

0, at .hu w T T y h                       (6c) 

In order to non-dimensionalize Eqs. (2), (3) and (5), 
we introduce the following non-dimensional 
variables and parameters: 
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where 2 2
1, , , , andr rG K K M P   are, respectively, 

thermal Grashof number, permeability parameter,  
rotation parameter (reciprocal of Ekman number), 
magnetic parameter (square of Hartman number),  
Prandtl number and heat absorption parameter. 

With the help of (7), Eqs. (2), (3) and (5), in non-
dimensional form, assume the following form: 
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Initial and boundary conditions (6a)-(6c), in non-
dimensional form, are given by  

0 : 0, 0 at 0 1,t u w T                  (11a)  

0 : 1, 0, 1 at 0,t u w T                       (11b)  

0, 0 at 1.u w T                        (11c) 

Equations (8) and (9) are combined and expressed 
in compact form which is given below: 
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Initial and boundary conditions (11a)-(11c), in 
compact form, are given by 
 

0 : 0, 0 at 0 1,t F T                            (14a) 

0 : 1, 1 at 0,t F T                               (14b) 

0, 0 at 1.F T                               (14c) 

Exact solution for fluid temperature ( , )T t and 

fluid velocity ( , )F t is obtained by Laplace 
transform technique and is expressed in the 
following form after simplification, 
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Expressions for ( 1,2,...,8),i i  ( 1,2,...,4),i i 
 

and ( 1,2,...,4)i i   are provided in Appendix I. 

3. SOLUTION IN CASE OF UNIT 

PRANDTL NUMBER 

It is noticed that the solution (16) for fluid velocity 
is not valid for fluids with unit Prandtl number. 
Since Prandtl number rP  is a measure of the 

relative strength of momentum diffusivity to 
thermal diffusivity of the fluid, fluid flow problem 
with 1rP  corresponds to those fluids for which 

thicknesses of both the momentum and thermal 
boundary layers are of same order of magnitude. 
There are some fluids of physical interest which 
belong to this category (Cebeci, 2002). Substituting 

1rP  in Eq. (10) and following the same procedure 

as adopted in above analysis, exact solution for 
fluid temperature ( , )T t  and fluid velocity ( , )F t  
is obtained and presented below: 
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4. SHEAR STRESS AT THE 

MOVING PLATE 

The expressions for shear stress x due to primary 

flow and shear stress z due to secondary flow at 

the moving plate 0   are presented in the 
following form. 
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Expressions for ( )( 1,2,...,8)i k i   and  
( )( 1,2,...,4)i k i   are prescribed in Appendix II. 

5. RATE OF HEAT TRANSFER AT 

THE PLATES 

The expressions for rate of heat transfer at the 

moving plate 0   i.e., 
0

T

 

 
  

 and rate of heat 

transfer at the stationary plate 1   i.e., 

1

T

 

 
  

are presented below: 
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6. ASYMPTOTIC BEHAVIOR OF 

THE SOLUTION 

We shall now discuss asymptotic behavior of the 
solution (15) and (16) for small as well as large 
values of time t to gain some physical insight into 
the flow pattern. 
 
6.1 Case-I: When Time t is Small            

(i.e. t << 1) 

The expressions for fluid temperature ( , ),T t  

primary fluid velocity ( , )u t  and secondary fluid 

velocity ( , )w t , which are obtained from the 
analytical solution (15) and (16) for small values of 
time t, are given by 
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It is evident from the expressions (22) to (24) that 
for small values of time t, i.e. at the initial stage, 
there arise double boundary layers of thicknesses 

 O t and  rO t P  adjacent to the moving plate 

0  due to initial impulsive movement of the 

plate. The boundary layer of thickness  O t  may 

be identified as classical Rayleigh boundary layer 
whereas boundary layer of thickness 

 rO t P may be recognized as modified Rayleigh 

boundary layer which may be viewed as classical 
Rayleigh boundary layer modified by thermal 
diffusion. The fluid temperature ( , )T t  is 
considerably affected by thermal diffusion and heat 



G. S. Seth et al. / JAFM, Vol. 8, No. 4, pp. 767-779, 2015.  
 

772 

absorption. The primary velocity ( , )u t is 
independent of rotation whereas secondary fluid 
velocity ( , )w t  is unaffected by permeability of the 
medium and heat absorption. However, both the 
primary and secondary fluid velocities are 
considerably affected by magnetic field, Hall 
current, thermal buoyancy force and thermal 
diffusion. In the absence of Hall current, i.e., 
when 0m  , secondary fluid velocity ( , )w t is 
unaffected by magnetic field. Up to this stage, there 
are no inertial oscillations in the flow-field. 
 
6.2 Case-II: When Time t is Large           

(i.e. t >>1) 

The expressions for fluid temperature ( , ),T t  

primary fluid velocity ( , )u t  and secondary fluid 

velocity ( , )w t , which are obtained from the 
analytical solution (15) and (16) for large values of 
time t, are given by 
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Expressions for ( 1,2,...,14)i i 
 are prescribed in 

Appendix III. 

It is evident from the expression (25) that for large 
values of time t, fluid temperature ( , )T t is in 
quasi-steady state. Steady state fluid temperature is 
confined within a boundary layer of thickness 

  1

rO P


which may be identifies as thermal 

boundary layer. The thickness of this boundary 
layer decreases on increasing either rP or   or 

both. For large values of time t, fluid temperature 
( , )T t approaches to steady state in the 

dimensionless time of  1O  . It is also noticed 

from expression (25) that there exist no inertial and 
spatial oscillations in the temperature field. 

It is revealed from the expressions (26) and (27) 
that for large values of time t, flow-field is in quasi-
steady state. Steady state flow, represented by 

( )su  and ( )sw  , is confined within double 

boundary layer of thicknesses  1O    

and   1

.rO P


 The boundary layers of thickness 

 1O   may be recognized as modified Ekman-

Hartmann boundary layer. It is noticed from the 
expressions (13) and (37) that,  increases on 

increasing either 2K or 2M  and decreases on 
increasing either m  or 1K . Thus, we may conclude 

that the thickness of modified Ekman-Hartmann 
boundary layer decreases on increasing either 2K or 

2M and it increases on increasing either m or 1K . 

It is also observed from (28) and (29) that steady 
state flow exhibits spatial oscillations in the flow-
field excited by Hall current, magnetic field, 
rotation and permeability of the medium. 

It is evident from expressions (30) to (35) that 
unsteady state flow, represented by ( , )tu t  and 

( , )tw t  is divided into two regions, viz.  region I 

and region II. Region I is described by 

1
( , )tu t and

1
( , )tw t whereas region II is 
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represented by 
2
( , )tu t  and

2
( , )tw t . It is also 

revealed from expressions (30) to (35) that unsteady 
state flow exhibits inertial oscillations in the flow-
field excited by Hall current, rotation and thermal 
diffusion. The inertial oscillations in the region I 
damp out effectively in dimensionless time of 

1
1( )O m whereas those in region II damp out 

effectively in dimensionless time of  1O   when 

final steady state is developed. It is evident from 
(13) that 1m increases on increasing 2M and it 

decreases on increasing either m or 1K . This 

implies that, magnetic field tends to reduce time of 
decay of inertial oscillations in region I whereas 
Hall current and permeability of the medium have 
tendency to enhance time of decay of inertial 
oscillations in this region. Heat absorption tends to 
reduce time of decay of inertial oscillations in 
region II. In the absence of rotation, Hall current 
and thermal diffusion there are no inertial 
oscillations in the flow-field. This implies that, 
either rotation or Hall current or thermal diffusion 
or all of them together generate inertial oscillations 
in the flow-field for large values of time t. 

7. RESULTS AND DISCUSSION 

To highlight the influence of heat absorption and 
time on fluid temperature the numerical values of 
fluid temperature T, computed from the analytical 
solution (15), are displayed graphically versus 
channel width variable  in Figs. 2 and 3 for 
various values heat absorption parameter   and 

time t  taking Prandtl number 0.71rP  (ionized air). 

It is perceived from Figs. 2 and 3 that fluid 
temperature T decreases on increasing   whereas it 
increases on increasing t. This implies that heat 
absorption has a tendency to reduce fluid 
temperature whereas fluid temperature is getting 
enhanced with the progress of time. It is worthy to 
note from Fig. 3 that fluid temperature T attains 
steady state when 0.6t  . 
 
In order to analyze the effects of magnetic field, 
Hall current, rotation, permeability of the porous 
medium, thermal buoyancy force, heat absorption 
and time on the flow-field, numerical values of the 
primary fluid velocity u and secondary fluid 
velocity w, computed from the analytical solution 
(16), are depicted graphically versus channel width 
variable  in Figs. 4 to 10 for various values of 

magnetic parameter 2 ,M Hall current parameter 

,m  rotation parameter 2K , permeability parameter 

1,K thermal Grashof number ,rG
 
heat absorption 

parameter   and time t  taking Prandtl number 

0.71rP  . Figure 4 describes the effect of magnetic 

field on the primary fluid velocity u and secondary 
fluid velocity w. It is revealed from Fig. 4 that u and 
w decrease on increasing 2M which implies that 
magnetic field has retarding influence on the fluid 
flow in both the primary and secondary flow  
 

 
Fig. 2. Temperature profiles when t= 0.5. 

 

 
Fig. 3. Temperature profiles when  = 3. 

 

 
Fig. 4. Primary and secondary velocity  

profiles when 
m = 0.5, K2 =2, K1 = 0.2, Gr = 4,  = 3 and t = 0.5. 

 
directions. This is due to the fact that the 
application of a magnetic field to an electrically 
conducting fluid gives rise to a force, called Lorentz 
force, which has the tendency to resist the fluid 
motion.Figure 5 depicts the influence of Hall 
current on the primary fluid velocity u and 
secondary fluid velocity w. It is evident from Fig. 5 
that u and w increase on increasing m . It is widely 
known that, in an ionized fluid whose density is low 
and/or applied magnetic field is strong, Hall current 
appears in the flow-field which acts perpendicular 
to both electric and magnetic fields i.e. Hall current 
acts in the direction of primary flow and also it 
induces secondary flow in the flow-field. Keeping 
in view this fact, we may conclude that Hall current 
tends to accelerate fluid flow in both the primary 
and secondary flow directions. Figure 6 illustrates 
the effect of rotation on the primary fluid velocity u 
and secondary fluid velocity w. It is noticed from 
Fig. 6 that u decreases on increasing 2K whereas w 
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increases on increasing 2K . 

 

 
Fig. 5. Primary and secondary velocity 

profiles when 
M2 = 10, K2 =2, K1 = 0.2, Gr = 4,  = 3 

and t = 0.5. 
 

 
Fig. 6. Primary and secondary velocity 

profiles when 
M2 = 10, m = 0.5, K1 = 0.2, Gr = 4,  = 3 

and t = 0.5. 
 

This implies that rotation tends to retard fluid flow 
in the primary flow direction whereas it has reverse 
effect on the fluid flow in the secondary flow 
direction. This is due to the fact that Coriolis force 
has a tendency to suppress fluid flow in the primary 
flow direction to generate fluid flow in the 
secondary flow direction. 
 
Figure 7 demonstrates the effect of permeability of 
the porous medium on the primary fluid velocity u 
and secondary fluid velocity w. It is perceived from 
Fig. 7 that u and w increase on increasing 1K . This 

is due to the fact that an increase in permeability of 
resistance of the porosity of the medium which in 
turn accelerates the fluid flow in both the primary 
and secondary flow directions. Figure 8 shows the 
influence of thermal buoyancy force on the primary 
fluid velocity u and secondary fluid velocity w. It is 
observed from Fig. 8 that u and w increase on 
increasing rG . Since rG

 
presents the relative 

strength of thermal buoyancy force to viscous force, 
an increase in thermal buoyancy force leads to an 
increase in rG . This implies that thermal buoyancy 

force tends to accelerate fluid flow in both the 
primary and secondary flow directions. Figure 9 
depicts the effects of heat absorption on the primary 
fluid velocity u and secondary fluid velocity w. It is 

noticed from Fig. 9 that u and w decrease on 
increasing   

 
Fig. 7. Primary and secondary velocity 

profiles when 

M2 = 10, m = 0.5, K2 = 2, Gr = 4,  = 3 
and t = 0.5. 

 

 
Fig. 8. Primary and secondary velocity 

profiles when 

M2 = 10, m = 0.5, K2 = 2, K1 = 0.2,  = 3  
and t = 0.5. 

 

 
 

Fig. 9. Primary and secondary velocity 
profiles when 

M2 = 10, m = 0.5, K2 = 2, K1 = 0.2, Gr = 4 
and t = 0.5. 

 
which implies that heat absorption has the tendency 
to retard fluid flow in both the primary and 
secondary flow directions. This is justified because 
fluid is becoming cooler due to heat absorption 
which is clearly evident from Fig. 2. Figure 10 
demonstrates the effect of time t on the primary 
fluid velocity u and secondary fluid velocity w. It is 
evident from Fig. 10 that u and w increase on 
increasing t. This implies that fluid flow in both the 
primary and secondary flow directions is getting 
accelerated with the progress of time. It is evident 
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from Eq. (8) that fluid velocity also depends on 
fluid temperature and fluid temperature is getting 
enhanced with the progress of time. Due to this 
reason fluid velocity is getting enhanced with the 
progress of time. It is interesting to note from Fig. 
10 that the fluid flow in both the primary and 
secondary flow directions attains steady state 
when 0.6t  . 
 

 
Fig. 10. Primary and secondary velocity 

profiles when 

M2 = 10, m = 0.5, K2 = 2, K1 = 0.2, Gr = 4 
and  = 3. 

 
The numerical values of shear stress at the moving 
plate 0   due to primary flow i.e., x and the 

shear stress at the moving plate 0   due to 

secondary flow i.e., z , computed from the 

analytical expression (19), are presented in tabular 
form in Tables 1 to 4 for various values of 

2 2
1, , , , , andrM m K G K t whereas those of rate of 

heat transfer at the moving plate i.e.,   0
T





   

and  at the stationary plate i.e.,   1
T





  , 

calculated from the analytical expressions (20) and 
(21), are provided in Table 5 for different values of 

and t taking 0.71.rP 
 

  

Table 1 Shear stress at the moving plate when 

M = 0.5, K1 = 0.2, Gr = 6,  = 3 and t = 0.5 

 
2

2

K

M




 2 4 6 

 

x  

10 2.71554 2.92491 3.16575 
15 3.32803 3.62788 3.69657 
20 3.86330 4.01042 4.17698 

 

z  

10 1.24210 1.77784 2.22581 
15 1.33815 1.80714 2.23045 
20 1.42618 1.84758 2.23605 

 
It is evident from Table 1 that both the primary 
shear stress x  and secondary shear stress z  

at the 

moving plate increase on increasing either 
2M or 2K . This implies that magnetic field and 

rotation tend to enhance both the primary and 
secondary shear stress at the moving plate. It is 
revealed from Table 2 that primary shear stress 

x decreases whereas secondary shear stress z  

increases on increasing m.
 
This implies that Hall 

current tends to reduce primary shear stress at the 

moving plate whereas it has reverse effect on 
secondary shear stress at the moving plate. 
 

Table 2 Shear stress at the moving plate when 

M2 = 10, K1 = 0.2, Gr = 6,  = 3 and t = 0.5 

 
2K

m




2 4 6 

 

x  

0.5 2.71554 2.92491 3.16575 
1.0 2.33287 2.61422 2.91097 
1.5 2.01010 2.34066 2.67768 

 

z  

0.5 1.24210 1.77784 2.24581 
1.0 1.55333 2.09900 2.55743 
1.5 1.63136 2.20243 2.66718 

 
It is observed from Table 3 that x decreases 

whereas z  increases on increasing either 1 orrG K . 

This implies that, thermal buoyancy force and 
permeability of the medium tend to reduce primary 
shear stress at the moving plate whereas these 
agencies have reverse effect on secondary shear 
stress at the moving plate 
 

Table 3 Shear stress at the moving plate when 

M2 = 10, m = 0.5, K2 = 4,  = 3 and t = 0.5 
 

1

r

K

G




0.2 0.5 0.8 

 

x  
4 3.25474 2.88517 2.79067 
6 2.92491 2.54116 2.44305 
8 2.59508 2.19715 2.09544 

 

z  
4 1.69529 1.87268 1.92389 
6 1.77784 1.97153 2.02755 
8 1.86040 2.07038 2.13122 

 

It is noticed from Table 4 that x increases and z  

decreases on increasingwhereas x decreases and 

z  increases on increasing .t  This implies that heat 

absorption tends to enhance primary shear stress at 
the moving plate whereas it has a reverse effect on 
secondary shear stress at the moving plate. As time 
progresses, primary shear stress at the moving plate 
is getting reduced whereas secondary shear stress at 
the moving plate is getting enhanced. 
 

Table 4 Shear stress at the moving plate when 
M2 = 10, m = 0.5, K2 = 4, K1 = 0.2 and Gr = 6

 

 t






 0.3 0.5 0.7 

 

x  
1 2.87340 2.86937 2.86913 
3 2.92619 2.92491 2.92484 
5 2.97046 2.97041 2.97039 

 

z  
1 1.79655 1.80338 1.80374 
3 1.77404 1.77784 1.77798 
5 1.75530 1.75732 1.75737 

 
It is evident from Table 5 that rate of heat transfer at 
the moving plate i.e.,   0

T





   increases 

whereas rate of heat transfer at the stationary plate 
i.e.,   1

T





   decreases on increasing  . 

  0
T





   decreases whereas   1

T





   
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increases on increasing t. This implies that heat 
absorption tends to enhance rate of heat transfer at 
the moving plate whereas it has a reverse effect on 
the rate of heat transfer at the stationary plate. As 
time progresses, rate of heat transfer at the moving 
plate is getting reduced whereas rate of heat transfer 
at the stationary plate is getting enhanced. 
 

Table 5 Rate of heat transfer at the moving and 
stationary plates

 

 t






 

0.1 0.3 0.5 

0

T

 

 
  

 
1 1.65348 1.24752 1.22726 
3 1.93497 1.63638 1.62640 
5 2.19970 1.97829 1.97333 

1

T

 

 
  

 
1 0.47716 0.86943 0.88970 
3 0.41885 0.70663 0.71661 
5 0.36824 0.58109 0.58604 

8. CONCLUSION 

An investigation of unsteady hydromagnetic natural 
convection flow of a viscous, incompressible, 
electrically conducting and heat absorbing fluid 
within a parallel plate rotating vertical channel in 
porous medium is carried out. Significant findings 
of the problem are mentioned below: 
 
 Magnetic field and heat absorption have 

retarding influence on the fluid flow in both the 
primary and secondary flow directions. 

 Hall current, permeability of porous medium 
and thermal buoyancy force have tendency to 
accelerate fluid flow in both the primary and 
secondary flow directions. 

 Rotation tends to retard fluid flow in the 
primary flow direction whereas it has reverse 
effect on the fluid flow in the secondary flow 
direction. 

 Fluid flow in both the primary and secondary 
flow directions is getting accelerated with the 
progress of time. It is interesting to note that 
fluid flow in both the primary and secondary 
flow directions attain steady state when 0.6t  . 

 Heat absorption has tendency to reduce fluid 
temperature whereas fluid temperature is getting 
enhanced with the progress of time. Fluid 

temperature attains steady state when 0.6t  . 

 Magnetic field and rotation have the tendency to 
enhance both the primary and secondary shear 
stress at the moving plate. 

 Hall current, permeability of porous medium 
and thermal buoyancy force tend to reduce 
primary shear stress at the moving plate whereas 
these agencies have reverse effect on the 
secondary shear stress at the moving plate. 

 Heat absorption tends to enhance both the 
primary shear stress and rate of heat transfer at 
the moving plate whereas it has a reverse effect 
on the secondary shear stress at the moving 
plate and rate of heat transfer at the stationary 
plate.  

 As time progresses, primary shear stress at the 
moving plate and rate of heat transfer at the 
moving plate are getting reduced whereas 
secondary shear stress at the moving plate and 
rate of heat transfer at the stationary plate are 
getting enhanced. 
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