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ABSTRACT 

 The present study addresses the mixed convection flow of non-Newtonian nanofluid over a stretching surface 
in presence of thermal radiation, heat source/sink and first order chemical reaction. Casson fluid model is 
adopted in the present study. Magnetic field contribution is incorporated in the momentum equation whereas 
the aspects of nanoparticles are considered in the energy and concentration equations. Convective boundary 
conditions for both heat and mass transfer are utilized. Similarity transformations are employed to reduce the 
partial differential equations into ordinary differential equations. Series solutions of the resulting problem are 
obtained. Impacts of all the physical parameters on the velocity, temperature and concentration fields are 
analyzed graphically. Numerical values of different involved parameters for local skin friction coefficient, 
local Nusselt and Sherwood numbers are obtained and discussed. 

Keywords: Casson nanofluid; Mixed convection flow; Thermal radiation; Magnetic field; Chemical reaction; 
Heat source/sink.  

NOMENCLATURE 

u, v and w velocity components M Hartman number 

yp yield stress of fluid R radiation parameter 

ek  mean absorption coefficient bN Brownian motion parameter 
c  specific heat of nanoparticles 

BD brownian diffusion coefficient T thermal expansion coefficient 

fT  and fC hot fluid temperature 

and concentration 
  electrical conductivity 

xGr  The local Grashof number   density of fluid 

Pr Prandtl number  kinematic viscosity

tN thermophoretic parameter   density of nanoparticles 

0B applied magnetic field   mixed convection parameter
g gravitational acceleration β casson fluid parameter 

Q  heat generation/absorption C concentration expansion 

coefficient 

h and h heat and mass transfer 
coefficients 

  thermal diffusivity 

N concentration buoyancy   kinematic viscosity
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s  Stefan-Boltzmann constant 1  heat source/sink parameter 

1  Heat transfer Biot number 2  Mass transfer Biot number 

 
 

1. INTRODUCTION 

Now a days, the energy efficiency is an extremely 
important topic in view of thermal conductivity 
enhancement amongst the researchers. For this 
purpose the researchers considered the involvement 
of nanoparticles in the base fluid. Originally 
Masuda et al. (1996) reported the liquid dispersions 
of submicron particles or nanoparticles. After that, 
first time nanofluid term is used by Choi (1995). In 
comparison to the base fluids, thermal conductivity 
of nanofluid is too high that's why these have been 
used in many energetic systems such as cooling of 
nuclear systems, radiators, natural convection in 
enclosures etc. The model proposed by Buongiorno 
(2006) studies the Brownian motion and the 
thermophoresis on the heat transfer characteristics. 
Recently, the analytical solutions for the laminar 
axisymmetric mixed convection boundary layer 
nanofluid flow past a vertical cylinder is obtained 
by Rashidi et al. (2012a). Stagnation point flow of 
nanofluid near a permeable stretched surface with 
thermal convective condition is provided by Alseadi 
et al. (2012). Mustafa et al. (2013) discussed the 
boundary layer flow of nanofluid over an 
exponentially stretching sheet with convective 
boundary conditions. Rashidi et al. (2014b) 
presented the analytical solutions of transport 
phenomena in nanofluid adjacent to a nonlinearly 
porous stretching sheet. Sheikholeslami and Ganji 
(2013a) studied the heat transfer of Cu-water 
nanofluid flow between the parallel plates. 
Turkyilmazoglu (2013) studied the unsteady mixed 
convection flow of nanofluids over a moving 
vertical flat plate with heat transfer. Sheikholeslami 
et al. (2013b) determined free convection flow of 
nanofluid. Hayat et al. (2014) presented the mixed 
convection peristaltic flow of 
magnetohydrodynamic (MHD) nanofluid in 
presence of Brownian motion and thermophoresis. 
Casson fluid model is one of the base fluids which 
exhibits yield stress. However such fluid behaves 
like a solid when shear stress less than the yield 
stress is applied and it moves if applied shear stress 
is greater than yield stress. Examples of Casson 
fluid include jelly, soup, honey, tomato sauce, 
concentrated fruit juices, blood and many others. In 
fact several substances like protein, fibrinogen and 
globin in an aqueous base plasma, human red cells 
form a chain like structure, known as aggregates or 
rouleaux. If the rouleaux behaves like a plastic solid 
then there exists a field stress that can be identified 
with the constant yield stress in Casson fluid by 
Dash et al. (1996). Recently, Mukhopadhyay 
(2013a) provided the boundary layer flow of Casson 
fluid over a non-linearly stretching sheet. Some of 
the recent studies about flow of Casson fluid are 
[Shehzad et al. (2013), Mukhopadhyay  and 
Vajravelu  (2013b), Hayat et al. (2012a)]. 
 
Mixed convective flows along with thermal 

radiations are commonly encountered in many 
environmental and scientific developments, for 
instance, in aeronautics, fire research, heating and 
cooling of channels, etc. Thus it is of great worth to 
study the radiative convective flow. Makinde 
(2005) discussed the transient free convection 
interaction with thermal radiation of an absorbing 
emitting fluid along moving vertical permeable 
plate. Hayat et al. (2010) explored the MHD 
radiative mixed convection boundary layer 
stagnation point flow through a porous medium. No 
doubt the MHD flow has gained considerable 
interest due to its fundamental importance in the 
industrial and technological applications such as in 
coating of metals, crystal growth , electromagnetic 
pumps, MHD generators and reactor cooling. The 
Lorentz force interacts with the buoyancy force in 
governing the flow and temperature fields. The 
effect of Lorentz force is known to reduce the 
velocities. Heat and mass transfer characteristics in 
the magnetohydrodynamic (MHD) viscous flow 
over a permeable stretching surface is studied by 
Turkyilmazoglu (2011). Also Motsa et al. (2012) 
obtained the solutions for flow of upper- convected 
Maxwell fluid over porous stretching sheet in 
presence of magnetic field by using successive 
Taylor series linearization method. 
 
In several natural processes the fluids experiencing 
exothermic or endothermic chemical reactions. 
Hence it is important to discuss the effects of heat 
source or sink. Occurrence of heat source or sink 
may change the temperature distribution in the fluid 
which disturbs the particle deposition rate in 
systems such as nuclear reactors, electronic chips, 
and semiconductor wafers. Hayat et al. (2012b) 
presented the radiative flow of Jeffery fluid in a 
porous medium with power law heat flux and heat 
source. Recently, Kandasamy et al. (2011) 
discussed the combined effect of thermal diffusion 
and diffusion thermo in free convective heat and 
mass transfer flow over a porous stretching surface 
in the presence of thermophoresis particle 
deposition and heat source/sink. The researchers at 
present are also very keen to discuss the 
significance of convective boundary conditions by 
Aziz (2009) in the flows under various aspects. 
 
The present study deals with the convective 
boundary conditions in the mixed convection flow 
of nanofluid over a stretching sheet. Problem 
formulation is made in presence of thermal 
radiation, heat source/sink and first order chemical 
reaction. Casson fluid is taken as a base fluid. 
Boundary layer partial differential equations are 
reduced into set of ordinary differential equations 
by using appropriate transformations. Convergent 
solutions of the resulting problems are obtained by 
using homotopy analysis method [Liu et al. (2013), 
Hayat et al. (2013), Abbasbandy et al. (2013), 
Zheng et al. (2012), Rashidi et al. (2012b), 
Turkyilmazoglu (2012), Rashidi et al. (2014)]. 
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Impacts of all embedding parameters are analyzed 
graphically for the temperature, concentration and 
flow fields. Numerical values of skin-friction 
coefficient, local Nusselt and Sherwood numbers 
for different parameters are calculated and 
analyzed. 

2. MATHEMATICAL MODELING 

Consider the mixed convection boundary layer flow 
of Casson nanofluid over a stretching surface with 
heat source/ sink. Flow is considered in presence of 
an applied magnetic field, thermal radiation and 
first order chemical reaction. Convective heat and 
mass conditions are taken at surface of the sheet. 
The rheological equation of state for an isotropic 
and incompressible flow of a Casson fluid is [12, 
14, 15]: 

                    (1) 

In above expression   ij ije e   and  ije   is the  

( , )thi j   component of the deformation rate,     the 

product of the component of deformation rate with 

itself, c  a critical value of this product based on 

the non-Newtonian model, B  the plastic dynamic 

viscosity of non- Newtonian fluid, and yp  the yield 

stress of fluid. The velocity field is taken as  
[ ( , ), ( , ),0],V u x y v x y                                      (2) 

where u  and v  denote the velocity components in 
the x  - and y  -directions. 

The governing equations for flow can be put into 
the forms: 

0,
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                          (6) 

where   is the Casson fluid parameter, T  the 

thermal expansion coefficient, C  the 

concentration expansion coefficient,   the 

electrical conductivity, 0B  the magnitude of 

applied magnetic field,   the density of fluid, g  

the gravitational acceleration, ( / ) B    the 

kinematic viscosity, 
B

  the dynamic viscosity,   

the thermal diffusivity, T  the fluid temperature, 

s  the Stefan-Boltzmann constant, ek  the mean 

absorption coefficient, pc  the specific heat of fluid, 

  the density of nanoparticles, c  the specific 

heat of nanoparticles, Q  the uniform volumetric 

heat generation/absorption, C  the concentration 
field and BD  the Brownian diffusion coefficient. 

The boundary conditions can be expressed as 
follow: 

( ) ,  0,

 ( ), 

( ) at 0,

w

f

f

u U x cx v

T
k h T T

z
C

D h C C y
z



  


  




   


                        (7) 

0,  0,

,   as , 

 
  

u v

T T C C y
                           (8) 

where subscript w  corresponds to the wall 

condition, h  the heat transfer coefficient, h  the 
concentration transfer coefficient, fT  the hot fluid 

temperature and fC  the hot fluid concentration. By 

using similarity transformations 

,  ( ), ( ),

( ) ,  ( ) ,   

 

   

 
 

 f f

c
y u cxf v c f

T T C C

T T C C

   


   
                (9) 

equation (1) is identically satisfied and Eqs. (2)-(8) 
give: 

21
(1 ) ( )

( ) 0,

f ff f

N Mf


  

    

   
                           (10) 

 2

1

4
(1 ) Pr Pr

3
Pr 0,

b tR f N N   

 

      

 
             (11) 

0,     t

b

N
Scf Sc

N
                            (12) 

1

2

0,   1,  (1 (0)),

 (1 (0)),  at 0,

     
    

f f   
   

                     (13) 

0,   0,  0 as ,    f                      (14) 

where   is the mixed convection parameter, xGr  

the local Grashof number, N  the concentration 
buoyancy parameter, M  the Hartman number, R  
the radiation parameter, Pr  the Prandtl number, 

bN  the Brownian motion parameter which is the 

irregular jiggling sort of movement exhibited by a 
small particle suspended in a fluid, tN  the 

thermophoretic parameter which is observed in 
mixtures of mobile particles where the different 
particle types exhibit different responses to the 
force of a temperature gradient, 1  the heat 
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source/sink parameter, Sc  the Schmidt number,   

the chemical reaction parameter, 1  the heat 

transfer Biot number and 2  the mass transfer Biot 

number. These can be defined in the forms 
3

2 2
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Non-dimensional local skin friction coefficient, 
local Nusselt and Sherwood numbers are  

 1/21
Re 1 1/ (0),

2
  f xC f                        (16) 

1/2/ Re (0), xNu                                         (17) 
1/2/ Re (0), xSh                                          (18) 

in which Re x  
cx  is the local Reynold number. 

3. SERIES SOLUTIONS 

Initial guesses and auxiliary linear operators for 
series solutions are chosen in the forms 
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with the following properties 
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where iC  ( 1 7) i  are the arbitrary constants. 

Zeroth order deformation problems are  
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where p  is an embedding parameter, , f    and 

  are the non-zero auxiliary parameters and ,fN  

N  and N  are the nonlinear operators. Taking 
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The convergence of above series strongly depends 
upon  f , g ,   and .  Considering that  f  , 
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The final solution expressions can be expressed as 
follows: 

1 2 3( ) ( ) ,    m mf f C C e C e                 (36) 

7 8( ) ( ) ,   m m C e C e                          (37) 

9 10( ) ( ) ,   m m C e C e                        (38) 

where the special solutions are ,mf  
mg  , 

m  and 

m  . 

4. CONVERGENCE ANALYSIS 
AND DISCUSSION 

It is obvious that the series solutions  (33) (35)  

consist of the auxiliary parameters , f    and 

 . These auxiliary parameters are very important 

in order to adjust and control the convergence of the 
series solutions. We have sketched the   curves 

at 18th  order of approximations to determine the 
convergence region where the   curves become 
parallel to horizontal axis. Appropriate range of 
auxiliary parameters , f    and   are 

0.9 0.25,    f  1.2 0.2     and 

1.2 0.10     (see Fig.1). Figs.  1 1a c  are 

drawn to predict the best values for auxiliary 
parameters. From these Figs. we noticed that the 
optimal values are 0.7.     f    Table 1 

concludes that the series solutions converge in the 
whole region of   when 0.7.     f     
 

Effects of Casson fluid parameter   , Hartman 

number M  , mixed convection parameter   and 
concentration buoyancy parameter N  on the 
velocity profile ( )f   are analyzed in the Figs. 2-5. 

Fig. 2 reveals that the velocity profile ( )f   and 
momentum boundary layer thickness decrease with 
an increase in Casson parameter .  Impact of 

Hartman number M  on the velocity profile ( )f   

is displayed in Fig. 3. With an increase in M  the 
velocity profile ( )f   decreases. 

 
Fig. 1. H-curves for the function f(), () 

 and (). 
 

 
Fig. 1a. Residual error for f(). 

 

 
Fig. 1b. Residual error for (). 

 

 
Fig. 1c. Residual error for (). 

 
Also momentum boundary layer thicknesses is a 
decreasing functions of M  . This is due to the 
reason that with an increase in M  the Lorentz force 
increases which resist the flow. Fig. 4 is plotted to 
analyze the influence of mixed convection 
parameter   on the velocity profile ( )f   in both 
assisting and opposing flows. It is observed that the 
velocity profile ( )f   and momentum boundary 

layer thickness increase when 0  (assisting 
flow) while opposite behavior is noted for 0  
(opposing flow). 
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Table 1 Convergence of series solutions for 
different order of approximations when  
0.5, Pr 1.0, 0.7,Sc 1 0.2,   t bN N  

1 2 0.3     N M R    and  

0.7.    f    

order of (0) (0) (0)

approximations

1 0.64200 0.21531 0.21408

5 0.62230 0.18139 0.19317

10 0.61302 0.16441 0.19295

15 0.60972 0.15770 0.19523

20 0.60859 0.15522 0.19657

25 0.60829 0.15450 0.19710

30 0.60828 0.15440 0.1972


   f  

2

35 0.60831 0.15446 0.19722

40 0.60831 0.15446 0.19722

 

 

 
Fig. 2. Variation of  on f(). 

 

 
Fig. 3. Variation of M on f(). 

 

 
Fig. 4. Variation of  on f(). 

It is examined that the momentum boundary layer 
thickness and velocity profile ( )f   increase with 

an increase in N  (see Fig. 5). 
 

 
Fig. 5. Variation of N on f(). 

 
Figs. 6-16 are displayed to see the impacts of 
different parameters on the temperature ( )   and 

concentration ( ).  Figs. 6 and 7 show the variation 

of thermophoretic parameter tN  on the temperature 

( )   and concentration ( ).   As thermophoresis 
causes the small particles to be driven away from a 
hot surface towards a cold one thats why 
temperature ( )   and concentration profiles ( )   
increase with an increase in thermophoretic 
parameter .tN  

 

 
Fig. 6. Variation of Nt on (). 

 

 
Fig. 7. Variation of Nt on (). 

 
 Also the associated boundary layer thicknesses are 
increasing functions of .tN  Figs. 8 and 9 are 

plotted to see the variation of Brownian motion 
parameter bN  on the temperature ( )   and 

concentration ( ).   Thermal boundary layer 
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thickness and temperature ( )   enhance when  bN  

increases. This is due to the reason that Brownian 
motion is a zig zag motion in which the kinetic 
energy of the particles increases which in results 
shows an increase in particle collision. It is also 
noticed that the concentration ( )   and associated 
boundary layer thickness reduces with an 
enhancement in .bN  Fig. 10 exhibits the effect of 

Prandtl number Pr  on the temperature ( ).   Both 
conduction and convection happen in fluids. As 
heat transfer through both processes reduces the 
temperature difference, they can be considered as 
competing against each other in transferring heat. 
There are many different types of fluids, such as air, 
water, oil, or mercury. The rates of conduction and 
convection vary in different fluids. Sometimes, 
conduction dominates. Other times, convection 
dominates. The Prandtl number is a parameter that 
can be used to roughly determine which process 
will win. 
 

 
Fig. 8. Variation of Nb on (). 

 

 
Fig. 9. Variation of Nb on (). 

 

 
Fig. 10. Variation of Pr on (). 

As Pr  is inversely proportional to thermal 
diffusivity so due to an increase in Pr  the thermal 
diffusivity decreases which reduces both the 
thermal boundary layer thickness and temperature 

( ).   Variation of Schmidt number Sc on the 

concentration profile ( )   is seen in Fig. 11. With 

an increase in Sc  the mass diffusivity reduces 
which in turn decreases the concentration boundary 
layer thickness. Influence of heat source/sink 
parameter 1  on the temperature ( )   is analyzed 

in Fig. 12. Thermal boundary layer thickness and 
temperature ( )   are increasing functions of 

1 0  (internal heat source) while reverse is 

observed in case of 1 0  (internal heat sink). 

 
Fig. 13 is designed to see the influence of thermal 
radiation R  on the temperature ( ).   It is noticed 

that temperature ( )   enhances due to an increase 

in radiation parameter R .  
 

 
Fig. 11. Variation of Sc on (). 

 

 
Fig. 12. Variation of 1 on (). 

 

 
Fig. 13. Variation of R on (). 



T. Hayat et al. / JAFM, Vol. 8, No. 4, pp. 803-813, 2015.  

810 

It is because of the fact that for larger R  the mean 
absorption coefficient ek  decreases which enhances 

the divergence of the radiative heat flux. Hence, the 
rate of radiative heat transfer to the fluid will rise 
and consequently the fluid temperature increases. 
Figs. 14 and 15 are drawn to see the effects of heat 
transfer Biot number 1  and mass transfer Biot 

number 2  on the temperature ( )   and 

concentration ( )   respectively. With an 

enhancement in heat transfer Biot number 1  , the 

thermal boundary layer thickness and temperature 
( )   increase. Also the associated boundary layer 

and concentration ( )   are increasing functions of 

mass transfer Biot number 2.  

 
Fig. 16 exhibits the effect of generative/destructive 
chemical reaction   on the concentration ( ).   It 
is found that the associated boundary layer 
thickness and concentration profile ( )   enhance 

with generative chemical reaction ( 0)  while 
opposite behavior is noted for destructive chemical 
reaction ( 0)  . 
 

 
Fig. 14. Variation of 1 on (). 

 

 
Fig. 15. Variation of 2 on (). 

 
Tables 2-4 are prepared to explore the impacts of 
Casson fluid parameter ,  thermophoretic 

parameter ,tN  Brownian motion parameter bN  , 

mixed convection parameter ,  concentration 

buoyancy parameter N  , heat transfer Biot number 

1  and mass transfer Biot number 2  on skin-

friction coefficient and local Nusselt and Sherwood 
numbers. With an enhancement in tN   and   , the 

Skin-friction coefficient and local Nusselt and 

Sherwood numbers decrease. Also with an increase 
in 1  and bN  the skin-friction coefficient and 

Sherwood number increases while local Nusselt 
number reduces. In case of assisting flow ( 0)  

and with an enhancement in ,N  the local Nusselt 
and Sherwood numbers enhance. The skin-friction 
coefficient reduces while reverse is the impact in 
case of opposing flow ( 0).  Sherwood number 
rises with an increase in mass transfer Biot number 

2  while skin-friction coefficient and local Nusselt 

number decrease with an increase in 2.  

 

 
Fig. 16. Variation of  on (). 

 
Table 2 Numerical values of local Nusselt 

number (0)  and Sherwood number (0)  

for different values of parameters ,  ,t bN N  

when 

1 1 20.0, 0.3, 0.2,      R M N   
Pr 1.0, 0.7Sc  and 0.7    f    . 

(0) (0)

0.5 0.2 0.2 0.15271 0.12054

0.7 0.15204 0.11910

0.9 0.15150 0.11758

0.5 0.2 0.15271 0.12054

0.4 0.15195 0.096142

0.6 0.15106 0.071520

0.5 0.2 0.2 0.15271 0.12054

0.4 0.15186 0.13368

0.6 0.15100 0.13815

  t bN N  

 

CONCLUSIONS 

The present investigation discusses the mixed 
convection flow of nanofluid over a stretching 
surface in presence of heat source/ sink and first 
order chemical reaction. Main findings of present 
study are mentioned below. 
a) Momentum boundary layer thickness and 

velocity profile ( )f   enhance with the 

increase in   and M  while these are reduced 

via N . 
b) In case of assisting flow 0  both the 

velocity profile ( )f   and momentum 
boundary layer thickness shoot up while 
reverse behavior is observed in case of 
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opposing flow 0.   
c) With an enhancement in thermophoretic 

parameter tN  the temperature ( )   and 

concentration profiles ( )   increase. 

d) Influence of Brownian motion parameter  bN   

on the thermal boundary layer thickness and 
temperature ( )   is qualitatively opposite to 
that of concentration boundary layer thickness 
and concentration profile ( )   . 

e) Thermal boundary layer thickness reduces 
with an increase in Prandtl number Pr  and 
internal absorption parameter 1 0  while it 

increases with the increase in thermal radiation 
R , internal heat generation 1 0  and heat 

transfer Biot number 1.   

f) Concentration profile ( )   and associated 
boundary layer thickness are increasing 
functions of mass transfer Biot number 2  and 

generative chemical reaction 0  while 
reverse behavior is noted for Schmidt number 
Sc  and destructive chemical reaction 0.   

g) Skin-friction coefficient and local Nusselt and 
Sherwood numbers reduce through 
enhancement in Casson fluid parameter   and 

thermophoretic parameter .tN   

h) Rise in Brownian motion parameter bN  

increases the skin-friction coefficient and 
Sherwood number while it decreases the local 
Nusselt number. 

i) In assisting flow 0  the skin-friction 
coefficient decreases while opposite behaviors 
found for opposing flow 0.   
 

Table 3 Numerical values of local Nusselt 
number (0)  and Sherwood number (0)  

for different values of parameters 1,  2 ,  ,  

N  when 1 0.0, 0.2,    t bR M N N  

0.5, Pr 1.0,  0.7Sc  and 0.7    f    

. 

1 2 (0) (0)

-0.5 0.3 0.2 0.2 1.5201 0.11969

0.0 0.15248 0.12014

0.3 0.15271 0.12054

0.6 0.15302 0.12144

0.3 0.0 0.15261 0.12032

0.3 0.15271 0.12054

0.6 0.15302 0.12078

0.3 0.3 0.2 0.15271 0.12054

0.4 0.24602 0.10535

0.6 0.30822 0

  N    

.095273

0.3 0.3 0.2 0.1 0.15304 0.069638

0.3 0.15255 0.15995

0.5 0.15224 0.21584

  

 
 
 

j) Enhancement in concentration buoyancy 
parameter N , heat transfer Biot number 1  

and mass transfer Biot number 2  reduces the 

skin-friction coefficient. 
k) Local Nusselt and Sherwood numbers are 

increasing functions in case of assisting flow 
0  and decreasing functions for opposing 

flow 0.   

 
Table 4 Numerical values of skin-friction 

coefficient  11 (0)  f  for different values of 

parameters ,  1, , ,t bN N   ,2  ,  N  when 

1 0.0, Pr 1.0,   R M  0.7Sc  and 

0.7.    f    

 

 1
1 2 1 (0)

0.5 0.2 0.2 0.3 0.3 0.2 0.2 1.6532

0.7 1.4797

0.9 1.3741

0.5 0.2 1.6532

0.4 1.6368

0.6 1.6204

0.5 0.2 0.2 1.6532

0.4 1.6598

0.6 1.6613

0.5 0.2 0.2 -0.5 0.3 0.2 0.2 1.8689

0.0 1.7321

0.3 1.6532

0.6 1.5770

0.3 0.0 1.6863

0.3

 t bN N N f   

1.6532

0.6 1.6207

0.5 0.2 0.2 0.3 0.3 0.2 1.6532

0.4 1.6152

0.6 1.5893

0.5 0.2 0.2 0.3 0.3 0.2 0.1 1.6598

0.3 1.6484

0.5 1.6413

  

Also the associated boundary layer thicknesses are 
increasing functions of .tN   
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