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ABSTRACT 

In this paper, we have analyzed the effect of time periodic temperature modulation on convective stability in 
anisotropic porous cavity. The cavity is heated from below and cooled from above. A weakly non-linear 
stability analysis is done to find Nusselt number governing the heat transport. The infinitely small 
disturbances are expanded in terms of power series of amplitude of modulation. Analytically the non-
autonomous Ginzburg- landau amplitude equation is obtained for the stationary mode of convection. The 
effects of various parameters like Vadasz number, mechanical and thermal anisotropic parameters, amplitude 
of oscillations, frequency of modulation and aspect ratio of the cavity on heat transport is studied and plotted 
graphically. It is observed that the heat transport can also be controlled by suitably adjusting the external and 
internal parameters of the system. 

Keywords: Temperature modulation; Anisotropic porous cavity; Ginzburg- landau amplitude equation. 

NOMENCLATURE 

Latin Symbols 
aspect ratio of the porous cavity, H/L  ݎܣ density 
Da Darcy number ்ߙ coefficient of thermal expansion 
݃ gravitational acceleration, ሺ0,0, െ݃ሻ ߰ Stream function 
H height of cavity  dynamic viscosity 
K permeability of the porous domain ߥ kinematic viscosity, ߩ/ߤ଴ 
L length of porous layer ߝ oorosity 

Nu Nusselt number ߟ thermal anisotropic parameter 
Pݎ Prandtl number, ܭ/ߥ୸ ߬ rescaled time 

,ݑvelocity of the fluid ሺ ݍ ,ݒ  ଵߜ ሻݓ
amplitude of temperature 
modulation 

ܴܽ଴ Critical Rayleigh number ߗ frequency of modulation 

Ra 
Rayleigh number, 

   ఈ೅ ሺ௱்ሻ௚H௄౰

ఌఔ఑T౰
்݇ thermal diffusivity 

ܶ temperature  perturbation parameter 
time ݐ ߦ  mechanical anisotropic parameter 

Va Vadasz number 
Other symbols 

Δܶ temperature difference between the walls * non-dimensional value
pressure ݌  b basic state
Δܶ temperature difference between the walls , perturbed state 

1. INTRODUCTION

There are many practical applications where one 
has to deal with the temperature gradients 

depending on space as well as time. This is known 
as temperature modulation. Most of the researchers 
had studied temperature gradient constant across the 
fluid layer which does not ideally cope with real 
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applications. Temperature modulation gives better 
mechanism to control convective flows. An 
excellent review of the problems and their 
applications related  to classical Rayleigh- Benard 
convection is presented in books of Ingham and Pop 
(2005), Vafai (2000) and Nield and Bejan (2006). 
Horton and Rogers (1945) first studied convection 
currents in porous medium. Venezian (1969) was 
the first to investigate the effect of  modulation on 
the onset of thermal convection with small 
amplitudes on convective instability in a viscous 
fluid layer. He performed linear stability analysis 
using perturbation expansions series of amplitude of 
oscillations. He obtained the shift in critical 
Rayleigh number and showed that convection can 
be controlled by suitably adjusting the modulation 
frequency. Gershuni et al. (1970) studied similar 
problem on temperature profiles following 
rectangular law. Rosenblat and Herbert (1970) 
investigated thermal instability for low frequency 
temperature modulation. Rosenblat and Tanaka 
(1971) studied the effect of thermal modulation on 
the onset of Raleigh–Benard convection using 
Galerkin technique and investigated the stability of 
the system using Floquet theory. Roppo et al. 
(1984) first studied the non linear problem of 
thermal instability under temperature modulation. 
They noticed that stable hexagons are produced 
near the critical Rayleigh number due to modulation 
effect. Vadasz (1998) studied the coriolis effect on 
gravity driven convection in a rotating porous layer 
heated from below. Malashetty and Basavraja 
(2004) studied effect of thermal modulation on the 
onset of double diffusive convection in a horizontal 
anisotropic porous layer. Shu et al. (2005) gave the 
comparison of experimental and numerical 
simulation for natural convection in a cavity under 
modulated thermal gradients and gravity. Bhadauria 
(2006) investigated the effect of temperature 
modulation in vertical magnetic field by Galerkin 
technique. Bhadauria (2007) studied temperature 
modulation for double diffusive convection in 
porous medium with temperature modulation. 
Bhadauria and Suthar (2009) studied non linear 
thermal instability with temperature modulation 
using Lorenz model. They made a comparative 
study of critical Rayleigh number for different 
temperature profiles. Siddheshwar et al. (2012) 
investigated the heat transport by stationary 
magneto convection in  Newtonian liquid under 
temperature or gravity modulation using Ginzburg 
Landau model. Siddheshwar and Bhadauria (2012) 
analytically studied the non linear double diffusive 
convection in a porous medium under 
temperature/gravity modulation. Siddeshwar et al. 
(2013) studied the synchronous and asynchronous 
boundary temperature modulations of Benard-
Darcy convection. Bhadauria et al. (2013) studied 
the effect of time periodic thermal boundary 
condition and internal heating on heat transport in a 
porous medium. They concluded that the heat 
transport can be controlled by adjusting different 
intrinsic and extrinsic parameters of the system.  
 
Anisotropy in porous media is generated due to 
asymmetric geometry of porous matrix. The 
phenomenon is observed in industries and nature. It 

is useful in study of extraction of metals from ores 
where a mushy layer is formed during solidification 
of alloys. 
 
The quantity and structure of resulting solid can be 
controlled by influencing the heat and mass 
transport process. Process such as sedimentation, 
compaction, frost action and reorientation of the 
solid matrix are responsible for creation of 
anisotropic natural porous medium. Fiber materials 
and insulating materials are some examples of 
artificial anisotropic porous medium. Ephere (1975) 
was the first to study the onset of convection in a 
horizontal porous layer with anisotropic thermal 
conductivity. Kvernvold and Tyvand (1979) studied 
the non linear thermal convection in anisotropic 
porous media. Malashetty and Basavaraj (2002) 
studied Rayleigh Benard convection with 
temperature/ gravity modulation in a fluid saturated 
anisotropic porous medium. Malashetty and Swamy 
(2007) studied the effect of rotation on the onset of 
convection in a horizontal anisotropic porous layer. 
Vanishree (2010) studied the combined effect of 
temperature and gravity modulation on onset of 
convection in anisotropic porous medium. 
Vanishree and Siddheshwar (2010) studied the 
effect of rotation on thermal convection in 
anisotropic porous medium with temperature 
dependent viscosity. Other researchers who studied 
thermal convection in anisotropic porous medium 
are Nilsen and Storesletten (1990), Tyvand and 
Storesletten (1991), Degan et al. (1995), Govinder 
(2006), Malashetty and Heera (2006), Malashetty 
and Begum (2011). Sarvanam and Sivkumar (2011) 
studied thermo-vibration instability in fluid 
saturated anisotropic porous medium. Bhadauria et 
al. (2011) natural convection in a rotating 
anisotropic porous layer with internal heat 
generation and Om et al. (2011) studied rotating 
Brinkman-Lapwood convection with modulation 
effect. Bhadauria (2012) studied double diffusive 
convection in a saturated anisotropic porous layer 
with internal heat source. Mishra and Kumar (2013) 
studied the weakly non linear stability analysis of 
heat transport in anisotropic porous cavity under G-
jitter and concluded that heat transport can be 
controlled by suitably adjusting the parameter of the 
system. Mishra and Kumar (2014) investigated the 
chaotic convection in couple stress liquid saturated 
in porous cavity and found that their exist a 
proportional behavior between Rayleigh number 
and couple stress parameter.   
  
In this paper, we have investigated the effect of 
time periodic temperature modulation on convective 
instability in anisotropic porous cavity. The cavity 
is heated from below and cooled from above. The 
amplitude of temperature modulation is taken to be 
very small. A weakly non-linear stability analysis is 
done to find Nusselt number governing the heat 
transport. Analytically the Ginzburg- landau 
amplitude equation is obtained for the stationary 
mode of convection. 
 
The effects of various parameters like Vadasz 
number, mechanical and thermal anisotropic 
parameters, amplitude of oscillations, frequency of 
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modulation and aspect ratio of the cavity on heat 
transport is studied and analyzed graphically. It is 
observed that the heat transport can also be 
controlled by suitably adjusting the external and 
internal parameters of the system.   

2 PROBLEM FORMULATIONS 

We consider an anisotropic porous cavity of depth 
H and width L with stress free boundaries which is 
heated from below and cooled from above. The X-
axis is taken along the lower boundary and the Z-
axis is vertically upward. The lower surface is held 
at temperature ଴ܶ ൅ᇞ ܶ   while the upper surface is 
taken at ଴ܶ. A uniform positive adverse temperature 
gradient ᇞ ܶ  is maintained between the lower and 
upper surfaces. The extended Darcy model which 
includes the time derivative term is employed in the 
momentum equation. The continuity and 
momentum equations governing the motion of an 
incompressible fluid are given by 
.׏ ݍ ൌ 0,                                                                       ሺ1ሻ 
1
ߝ

൬
ݍ߲
ݐ߲

൅
1
ߝ

ሺݍ. ൰ݍሻ׏ ൌ െ
1

௢ߩ
݌׏ ൅

ߩ
௢ߩ

݃ െ .ܭߥ  ሺ2ሻ   ݍ

߲ܶ
ݐ߲

൅ ሺݍ. ሻܶ׏ ൌ .׏ ሺ்݇ܶߘሻ,                                     ሺ3ሻ 

ߩ ൌ ଴ሾ1ߩ െ ሺ்ܶߙ െ ଴ܶሻሿ,                                         ሺ4ሻ 
where  ݍ is the velocity of fluid in porous medium,  
 is the ܭ ,is the fluid pressure,  ε is the porosity ݌ 

permeability tensor ܭ௫
ିଵ ሺଓ̂ଓ̂ ൅ ଔ̂ଔ̂ሻ ൅ ௭ܭ

ିଵ ቀ൫෠݇ ෠݇൯ቁ, 

்݇ is the thermal diffusivity tensor             
 ்݇௫ሺଓ̂ଓ ො ൅ ଔ̂ଔ̂ሻ +்݇௭൫ ෠݇ ෠݇൯,  ܶ is the temperature,  ߥ is 
the kinematic viscosity. 
 
Time-periodic boundary temperature 

We assume that the externally imposed boundary 
temperatures oscillates with time. According to the 
relations used by Venezian (1969),  

 ܶ ൌ ଴ܶ ൅  
∆ܶ
2

 ሾ1 ൅ ଶߜଵ cosሺݐߗሻሿ ܽݖ ݐ ൌ 0,       

ܶ ൌ ଴ܶ െ  
∆ܶ
2

 ሾ1 െ ଶߜଵ cosሺݐߗ ൅ .ݖ ݐܽ ሻሿ׎

ൌ  ሺ5ሻ                                     ܪ
Here ߗ is the modulation frequency  and ׎ is phase 
angle . The quantity ଶߜଵ is the amplitude of 
modulation, where   and ߜଵ both are small resulting 
in the modulation to be of small amplitudes. 
Assuming the basic state to be quiescent. The 
quantities at the basic state are given by 
௕ݍ ൌ ሺ0,0,0ሻ,    ݌ ൌ ,ݖ௕ሺ݌ ,ሻݐ ܶ ൌ ௕ܶሺݖ,    ሻܽ݊݀ݐ
ߩ  ൌ ,ݖ௕ሺߩ  ሻ,                                                               ሺ6ሻݐ
which satisfy the following equations, 
డఘ್

డ௭
ൌ െߩ௕݃,                                                                 ሺ7ሻ  

డ்್

డ௧
ൌ  ்݇௭  

డమ்್

డ௭మ ,                                                          ሺ8ሻ 

௕ߩ ൌ ଴ሾ1ߩ െ ሺ்ܶߙ െ ଴ܶሻሿ .                                      ሺ9ሻ 
 

According to the Venezian, we can write the non-
dimensionlized basic temperature as,  

௕ܶሺݖ, ሻݐ ൌ ଴ܶ ൅ 1 െ ݖ ൅ ଶߜଵܨሺݖ,  ሻ                  ሺ10ሻݐ

Where    
,ݖሺܨ ሻݐ ൌ ܴ݁ൣ൛ܣሺߣሻ݁ఒ௭ ൅  ,ሻ݁ିఒ௭ൟ݁ି௜ఆ௧൧ߣሺെܣ

ሻߣሺܣ ൌ
ଵ

ଶ

൫௘ష೔ି׎௘షഊ൯

൫௘ഊି௘షഊ൯
; ߣ     ൌ ሺ1 െ ݅ሻටఆ

ଶ
.               ሺ11ሻ  

Now superimpose the small perturbations at the 
basic state as 
ݍ ൌ ௕ݍ ൅ , ′ݍ ܶ ൌ ௕ܶ ൅ ܶ ′, ݌ ൌ ௕݌ ൅ ,′݌
ߩ ൌ ௕ߩ ൅  ሺ12ሻ                                                             , ′ߩ

where primes denote the quantities at the perturbed 
state and subscript “b” refers to the basic state.  

Putting Eq. (12) in Eqs. (1)−(4) and using solution 
of basic state Eq. (6), the perturbed equations are 
obtained as 

.׏ ′ݍ ൌ 0,                                                                     ሺ13ሻ 

1
ߝ

ቆ
′ݍ߲

ݐ߲
൅

1
ߝ

൫ݍ′. ቇ′ݍ൯׏ ൌ 

     െ
1

଴ߩ
′݌׏ ൅ ்ܶߙ݃ ′ െ .ܭ ߥ  ሺ14ሻ                              ,′ݍ

߲ܶ ′

ݐ߲
൅ ൫ݍ′. ൯ܶ׏ ′ ൅ ݓ ′ ߲ ௕ܶ

ݖ߲
 

ൌ ்݇௫׏ଵ
ଶܶ ′ ൅ ்݇௭

߲ଶܶ ′

ଶݖ߲ .                                         ሺ15ሻ 

Now performing the  non-dimensionalisation in 
Eqs. (14) – (15) using the transformations 

′ݍ ൌ
௞೅೥

ு
,כݍ ′݌ ൌ

ఓ௞೅೥

௄೥
,כ݌ ܶ ′ ൌ ሺ∆ܶሻܶכ,   

ሺݔ, ,ݕ ሻݖ ൌ ,כݔሺܪ ,כݕ  ,ሻכݖ

ݐ  ൌ
ଶܪ

௭்ܭ
ߗ      כݐ ൌ

்݇௭

ଶܪ  כߗ

Eliminating pressure term by taking curl of Eq. (14) 
and introducing the stream function defined as  

 ሺݑ, ,ݒ ሻݓ ൌ ሺ
డఅ

డ௭
, 0, െ

డఅ

డ௫
ሻ,  we get  

ቈ
1

ܸܽ
߲
ݐ߲

ቆ
߲ଶ

ଶݔ߲ ൅
߲ଶ

ଶቇݖ߲ ൅ ቆ
߲ଶ

ଶݔ߲ ൅
1
ߦ

߲ଶ

ଶቇ቉ݖ߲     ߖ

൅ ܴܽ
߲ܶ
ݔ߲

ൌ
1

ܸܽ
 
߲ሺ ߖ, ሻߖଶ׏

߲ሺݔ, ሻݖ
,                                ሺ16ሻ 

ቈ
߲
ݐ߲

െ ቆߟ
߲ଶ

ଶݔ߲ ൅
߲ଶ

ଶቇ቉ݖ߲ ܶ

ൌ
ߖ߲
ݔ߲

߲ ௕ܶ

ݖ߲
൅

߲ሺߖ, ܶሻ

߲ሺݔ, ሻݖ
 .                                             ሺ17ሻ 

Where ܸܽ ൌ ܴܽ ,is Vadsaz number ܽܦ/ݎܲߝ ൌ
  ఈ೅ሺ∆்ሻ௚ு௄ೋ

ఌఔ఑೅೥
 is the Rayleigh number and ܽܦ ൌ

 ଶ is the Darcy number. Assuming boundariesܪ/௭ܭ 
are stress free and isothermal, therefore the non-
dimensionalised boundary conditions for the 
perturbed quantities are given by 

ߖ ൌ
߲ଶߖ
ଶݖ߲ ൌ ݖ  ݐܽ  0 ൌ ݖ  ݀݊ܽ  0 ൌ 1,                ሺ18ሻ 

ܶ ൌ ݖ  ݐܽ  1 ൌ 0  ܽ݊݀  ܶ ൌ ݖ  ݐܽ  0 ൌ 1,            ሺ19ሻ 

߲ܶ
ݔ߲

ൌ ݔ  ݐܽ  0 ൌ 0  ܽ݊݀  ൌ  ሺ20ሻ                            .ݎܣ

Now rescaling time ߬ ൌ ଶݐ to keep the time 
variation slow. Let ߗ ൌ

ఠ

మ. The Eqs. (16) and (17) 

can be written as  

ቆ
ଶ

ܸܽ
߲

߲߬
ଶ׏ ൅ క׏

ଶቇ ߖ ൅ ܴܽ
߲ܶ
ݔ߲

               

ൌ
1

ܸܽ
 
߲ሺ ߖ, ሻߖଶ׏

߲ሺݔ, ሻݖ
 ,                                                 ሺ21ሻ 
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൤ଶ ߲
߲߬

െ ఎ׏
ଶ൨ ܶ                   

ൌ ሼെ1 ൅ ଶߜଵܨሺݖ, ߬ሻሽ
ߖ߲
ݔ߲

൅
߲ሺߖ, ܶሻ

߲ሺݔ, ሻݖ
.                                                                  ሺ22ሻ 

Where ׏క
ଶൌ

డమ

డ௫మ ൅
ଵ

క

డమ

డ௭మ,     ׏ఎ
ଶൌ ߟ

డమ

డ௫మ ൅
డమ

డ௭మ.  

3. AMPLITUDE EQUATION 
(GINZBURG- LANDAU 
EQUATION) AND HEAT 
TRANSPORT 

Introduce the following asymptotic equations in the 
Eqs. (21) and (22) 
ܴܽ ൌ ܴܽ଴ ൅ ଶܴܽଶ ൅ ڮ

ߖ ൌ ߖଵ ൅ ଶߖଶ ൅ ڮ
ܶ ൌ  ଵܶ ൅  ଶ

ଶܶ ൅    ڮ
ቑ                                   ሺ23ሻ 

where ܴܽ଴ is the critical Rayleigh number at which 
convection sets in without modulation. Put Eq. (23) 
in Eqs. (21) and (22). 

At lowest order,  equations are 

൦
క׏

ଶ ܴܽ଴
߲

ݔ߲
߲

ݔ߲
െ׏ఎ

ଶ
൪  ൤  

ଵߖ

ଵܶ
 ൨  ൌ ቂ0

0
ቃ                            ሺ24ሻ 

This is corresponding to linear stability equations 
for stationary anisotropic porous convection and 
solution of the above equations can be written as 

,ݔଵሺߖ ,ݖ ߬ሻ ൌ ሺ߬ሻܣ sin ቀ
గ௫

஺௥
ቁ ሻݖߨሺ݊݅ݏ

ଵܶሺݔ, ,ݖ ߬ሻ ൌ
ି஺௥

గሺఎା஺௥మሻ
ሺ߬ሻ cosܣ ቀ

గ௫

஺௥
ቁ sinሺݖߨሻ

ቑ  ሺ25ሻ                                                                                                             

where critical Rayleigh number for anisotropic 
porous convection in the absence of temperature 
modulation is given by 

ܴܽ଴ ൌ
ߦଶሺߨ ൅ ߟଶሻሺݎܣ ൅ ଶሻݎܣ

ଶݎܣߦ   .                         ሺ26ሻ 

At the second order, we have, 

቎
క׏

ଶ ܴܽ଴
డ

డ௫
డ

డ௫
െ׏ఎ

ଶ
቏ ൤

ଶߖ

ଶܶ
൨ ൌ ൤

ܴଶଵ
ܴଶଶ

൨                                   (27) 

ܴଶଵ ൌ
1

ܸܽ
 ሺ߲ߖଵ , ଵሻߖଶ׏

߲ሺݔ, ሻݖ
ൌ 0,                                ሺ28ሻ 

ܴଶଶ ൌ  
డሺఅభ, భ்ሻ

డሺ௫,௭ሻ
 ൌ

ିగ

ଶሺఎା஺௥మሻ
ሾܣሺ߬ሻሿଶ  sinሺ2ݖߨሻ.  ሺ29ሻ   

We obtain second order solution as  
ଶߖ ൌ 0

ଶܶ ൌ െ
ሾܣሺ߬ሻሿଶ

ߟሺߨ8 ൅ ଶሻݎܣ
sinሺ2ݖߨሻ

ቑ                        ሺ30ሻ 

The horizontally-averaged Nusselt number ܰuሺ߬ሻ 
for the anisotropic porous convection is given by  

ܰuሺ߬ሻ ൌ  
ቂ2ݎܣ ׬ ሺ1 െ ݖ ൅ ଶܶሻ௭݀ݔ

஺௥
௫ୀ଴ ቃ

௭ୀ଴

ቂ2ݎܣ ׬ ሺ1 െ ݔሻ௭݀ݖ
஺௥

௫ୀ଴ ቃ
௭ୀ଴

 .       ሺ31ሻ 

Now substituting Eq. (27) in Eq. (28) and solving 
the integration, we get   

 Nuሺτሻ ൌ 1 ൅
ሾAሺτሻሿమ

ସሺηାA୰మሻ 
. 

At the third order solution, we have  

቎
క׏

ଶ ܴܽ଴
డ

డ௫
డ

డ௫
െ׏ఎ

ଶ
቏ ൤

ଷߖ

ଷܶ
൨ ൌ ൤

ܴଷଵ
ܴଷଶ

൨                                ሺ32ሻ 

ܴଷଵ ൌ െܴܽଶ   
߲ ଵܶ

ݔ߲
 െ

1
ܸܽ

 ߲ሺߘଶ ߖଵ ሻ

߲߬
,                  ሺ33ሻ 

ܴଷଶ ൌ
ଵߖ߲

ݔ߲
߲ ଶܶ

ݖ߲
െ

߲ ଵܶ

߲߬
൅ ,ݖሺܨଵߜ   ߬ሻ

ଵߖ߲

ݔ߲
.          ሺ34ሻ 

Substituting ߖଵ , ଵܶ, ଶܶ from Eqs. (25) and (30) in 
Eqs. (33)-(34), we get 

ܴଷଵ ൌ ቈ
െܴܽଶ

ߟ ൅ ଶݎܣ ሺ߬ሻܣ  ൅
ଶݎܣଶሺߨ ൅ 1ሻ

ଶݎܣ ܸܽ

ܣ݀
݀߬

቉,     ሺ35ሻ 

ܴଷଶ   

ൌ ൤
ݎܣ

ߟሺߨ ൅ ଶሻݎܣ
ܣ݀
݀߬

െ
ߨ

ߟሺݎܣ4 ൅ ଶሻݎܣ
ଷሺ߬ሻܣ cosሺ2ݖߨሻ

൅
ߨ

ݎܣ
,ݖሺܨଵߜ ߬ሻܣሺ߬ሻ൨ cos ቀ

ݔߨ
ݎܣ

ቁ sinሺݖߨሻ.             ሺ36ሻ 

 

Adjoin of Eq. (21) is obtained. The solutions of 
adjoin so obtained are as    

,ݔ෡ଵሺߖ ,ݖ ߬ሻ ൌ െܣሺ߬ሻ sin ቀ
ݔߨ
ݎܣ

ቁ sinሺݖߨሻ

 ෠ܶଵሺݔ, ,ݖ ߬ሻ ൌ െ
ݎܣ

ߟሺߨ ൅ ଶሻݎܣ
ሺ߬ሻ cosܣ ቀ

ݔߨ
ݎܣ

ቁ sinሺݖߨሻ
ൢ 

                                                                                ሺ37ሻ 

where ߖ෡ଵ,  ෠ܶଵ denotes solutions of adjoins. 
 
The solvability condition for the third order solution 
is given by The solvability condition for the third 
order solution is given as 

׬ ׬ ሾΨ෡ଵ
஺௥

௫ୀ଴
ଵ

௭ୀ଴   ܴଷଵ ൅  ܴܽ଴ ෠ܶଵܴଷଶሿ݀ݖ݀ݔ ൌ 0.      ሺ38ሻ  

Now substituting Eqs. (35)-(37)  into the Eq. (38), 
we get the autonomous Ginzburg- Landau equation 
for stationary instability with a time periodic 
coefficient in the form 

ቈ
ଶݎܣଶሺߨ ൅ 1ሻ

ଶݎܣܸܽ ൅ ܴܽ଴
ଶݎܣ

ߟଶሺߨ ൅ ଶሻଶ቉ݎܣ
ሺ߬ሻܣ݀

݀߬

െ
ሼܴܽଶ െ 2ܴܽ଴ߜଵܫሺ߬ሻሽ

ߟ ൅ ଶݎܣ ሺ߬ሻܣ ൅
ܴܽ଴

8ሺߟ ൅ ଶሻଶݎܣ ଷሺ߬ሻܣ

ൌ 0,                                                                              ሺ39ሻ 
 

where ܫሺ߬ሻ ൌ ׬ ,ݖሺܨ ߬ሻ sinଶሺݖߨሻଵ
଴             ሺ40ሻ  

The solution of Eq. (40) is obtained using fourth 
order Runge-Kutta method numerically subject to 
the initial condition ܣሺ0ሻ ൌ ܽ଴, where ܽ଴ is a 
chosen initial amplitude of convection. Here 
ܴܽଶ ൌ ܴܽ଴ is taken to keep the parameters to be 
minimum. 

4. RESULTS AND DISCUSSIONS 

In this paper, we have studied the effect of 
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Figure.1(a): Effect of Vadasz number             Figure.1(b): Effect of Thermal anisotropic parameter 

 

Figure.1(c): Effect of Mechanical anisotropic parameter        Figure.1(d): Effect of Amplitude of modulation 
 

Figure.1(e): Effect of Frequency of modulation                         Figure.1(f): Effect of Aspect ratio 
 

Fig. 1. In-phase modulation (׎ ൌ ૙), Graph of Nusselt number (Nu) with respect to rescaled time ሺ࣎ሻ 
for different intrinsic and extrinsic parameters of the system as  ܉܄ ൌ ૚, ࣁ ൌ ૙. ૞, ࣈ ൌ ૙. ૞, ૚ࢾ ൌ ૙. ૚,

࣓ ൌ ૛, ܚۯ ൌ ૚. 
 

temperature modulation on thermal instability in 
anisotropic porous cavity. A weakly non-linear 
instability analysis is done to study the heat transfer 
under different regimes. We have considered only 
small amplitude temperature modulation. The effect 
of different parameters Vadasz number (Va), 
thermal anisotropic parameter (ߟ), mechanical 
anisotropic parameter (ߦ), amplitude of temperature 
modulationሺߜଵሻ, frequency of modulation (߱) and 
aspect ratio (ݎܣ) on heat transfer with respect to 
rescaled time is done. Each parameter is one by one 
changed keeping others constant and nature of heat 
transfer is observed. The Values of different 
intrinsic and extrinsic parameters of the system are 
taken  Va ൌ 1, ߟ ൌ 0.5, ߦ ൌ 0.5, ଵߜ ൌ 0.1, ߱ ൌ
2, Ar ൌ 1  from Bhadauria et al. (2013), so that it 
has physical significance. The numerical values of 
Nusselt number is obtained from the Eq.(31) by 
solving the autonomous amplitude Ginzburg-
Landau Eq. (40). The graphs of Nusselt number 
with respect to rescaled time  ߬ is presented in the 
fig.(1), fig.(2) and  fig.(3). The figures show that the 
temperature modulation destabilizes the onset of 

convection. The results obtained are in line with 
Bhadauria et al. (2013). 
 
It is observed that the value of Nusselt number 
starts with 1 remains constant for some time shows 
conduction state, then increases with time shows 
convection state and further increasing time 
becomes constant, reaches to steady state in general.  
The temperature modulation has following three 
cases: 
 
1. In-phase modulation (׎ ൌ 0) 
2. Out-phase modulation (׎ ൌ  (ߨ
3. Only lower boundary modulation phase ሺ׎ ൌ
െ݅∞ሻ  
 
4.1   In-Phase Modulation 

The results are in line with non modulated case. 
From fig.1 (a), we observe that as the Vadasz 
number (Va) increases from 0.5 to 1.5, the Nusselt 
number (Nu) increases in conduction and 
convection state. After some time the Nusselt  
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              Figure.2(a): Effect of Vadasz number                            Figure.2(b): Effect of Thermal  anisotropic 

parameter 
 
 

 
Figure.2(c): Effect of Mechanical anisotropic parameter        Figure.2(d): Effect of Amplitude of modulation 
 
 

 
     Figure.2(e): Effect of Frequency of modulation                               Figure.2(f): Effect of Aspect ratio 
 
Fig. 2. Out-phase modulation (׎ ൌ ࣊), Graph of Nusselt number (Nu) with respect to rescaled time ሺ࣎ሻ 
for different intrinsic and extrinsic parameters of the system as  ܉܄ ൌ ૚, ࣁ ൌ ૙. ૞, ࣈ ൌ ૙. ૞, ૚ࢾ ൌ ૙. ૚,

࣓ ൌ ૛, ܚۯ ൌ ૚. 
 

number becomes constant independent of Vadasz 
number reaching to steady state. So, effect of 
porosity i.e. Vadasz number and heat transfer are 
same in nature for the smaller values of time and 
becomes constant in steady state. From fig.1(b), we 
observe that as the thermal anisotropic parameter 
 increases from 0.5 to 1.5, the Nusselt number (ߟ)
(Nu) slightly varies in convection state otherwise 
remains constant as the time passes. Thus increase 
in the thermal anisotropic parameter has negligible 
effect on heat transport. From fig.1(c), we observe 
that as mechanical anisotropic parameter (ߦ) 
increases from 0.5 to 1.5,  the Nusselt number (Nu) 
decreases in conduction and convection state. After 
some time the Nusselt number becomes constant 
independent of mechanical anisotropic parameter. 
So, effect of  mechanical  anisotropic parameter 
and heat transport are opposite in nature for the 
smaller values of time and becomes constant in 
steady state. From fig.1 (d), we observe that when 
amplitude of temperature modulation ሺߜଵሻ 
increases from 0.1 to 0.5, magnitude of Nusselt 
number (Nu) remains almost constant. So the effect 

of increase in amplitude of temperature modulation 
is negligible on heat transport. From fig.1 (e), it is 
observed that as the frequency of modulation (߱) 
increases from 1.5 to 15, the magnitude of Nusselt 
number (Nu) remains almost constant and the effect 
of modulation on heat transfer is negligible. From 
fig.1 (f), it is observed that as the aspect ratio (Ar) 
of the anisotropic porous cavity increases from 0.5 
to 50, the Nusselt number (Nu) decreases in 
conduction and convection state. After some time 
the Nusselt number becomes constant independent 
of Aspect ratio. So, the heat transport decreases in 
conduction as well as convection state but after 
some time becomes constant in steady state. 
 

4.2   Out-Phase Modulation Case 

From fig.2 (a), we observe that as the Vadasz 
number (Va) increases from 0.5 to 1.5, the Nusselt 
number (Nu) increases in conduction and 
convection state. After some time the Nusselt 
number becomes oscillatory in nature independent 
of Vadasz number and reaches to steady state. So, 
effect of porosity i.e. Vadasz number and heat 
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           Figure.3(a): Effect of Vadasz number                              Figure.3(b): Effect of Thermal anisotropic 

parameter 
 

 
       Figure.3(c): Effect of Mechanical anisotropic                    Figure.3(d): Effect of Amplitude of modulation 

 Parameter 
 
 

Figure.3(e): Effect of Frequency of modulation                             Figure.3(f): Effect of Aspect ratio 
 

Fig. 3. Only lower boundary modulation phase ሺ׎ ൌ െ࢏∞ሻ, Graph of Nusselt number (Nu) with respect 
to rescaled time ሺ࣎ሻ for different intrinsic and extrinsic parameters of the system as  ܉܄ ൌ ૚, ࣁ ൌ ૙. ૞,

ࣈ ൌ ૙. ૞, ૚ࢾ ൌ ૙. ૚, ࣓ ൌ ૛, ܚۯ ൌ ૚. 
 
transport are same in nature for the smaller values 
of time and becomes oscillatory in steady state. 
From fig.2 (b), we observe that as the anisotropic 
parameter (ߟ) increases from 0.5 to 1.5, the Nusselt 
number (Nu) slightly varies in convection state 
otherwise remains constant but oscillatory as the 
time passes. Thus increase in the thermal 
anisotropic parameter has negligible effect on heat 
transport. From fig.2(c), we observe that as 
mechanical anisotropic parameter (ߦ) increases 
from 0.5 to 1.5,  the Nusselt number (Nu) 
decreases in conduction and convection state. 
After some time the Nusselt number becomes 
oscillatory in nature independent of mechanical 
anisotropic parameter. So, effect of  mechanical  
anisotropic parameter and heat transport are 
opposite in nature for the smaller values of time 
and becomes almost same but oscillatory in steady 
state. From fig.2 (d), we observe that when 
amplitude of temperature modulation ሺߜଵሻ 
increases from 0.1 to 0.5, magnitude of Nusselt 
number (Nu) increases in convection state. In 
steady state the heat transport is oscillatory in 

nature. Further the amplitude of oscillations 
increases with increase in amplitude of 
temperature modulation. From fig.2 (e), it is 
observed that as the frequency of modulation (߱) 
increases from 1.5 to 15, the magnitude of Nusselt 
number (Nu) increases in conduction and 
convection state. Afterwards in steady state the heat 
transport is oscillatory in nature. Further the 
amplitude of oscillations increases with increase in 
frequency of modulation.  From fig.2 (f), it is 
observed that as the aspect ratio (ݎܣ) of the 
anisotropic porous cavity increases from 0.5 to 50, 
the Nusselt number (Nu) decreases in conduction 
and convection state. After some time the Nusselt 
number becomes oscillatory (almost same) 
independent of aspect ratio (ݎܣ). So, the heat 
transport decreases in conduction as well as 
convection state but after some time becomes equal 
in steady state. 
 

4.3 Only Lower Boundary Modulation 
Phase 

From fig.3 (a), we observe that as the Vadasz 
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number (Va) increases from 0.5 to 1.5, the Nusselt 
number (Nu) increases in conduction and 
convection state. After some time the Nusselt 
number becomes oscillatory in nature independent 
of Vadasz number and reaches to steady state. So, 
effect of porosity i.e. Vadasz number and heat 
transport are same in nature for the smaller values 
of time and becomes oscillatory in steady state.  
From fig.3 (b), we observe that as the anisotropic 
parameter (ߟ) increases from 0.5 to 1.5, the Nusselt 
number (Nu) slightly varies in convection state 
otherwise remains constant but oscillatory as the 
time passes. Thus increase in the thermal 
anisotropic parameter has negligible effect on heat 
transport. From fig.3(c), we observe that as 
mechanical anisotropic parameter (ߦ) increases 
from 0.5 to 1.5,  the Nusselt number (Nu) decreases 
in conduction and convection state. After some time 
the Nusselt number becomes oscillatory in nature 
independent of mechanical anisotropic parameter. 
So, effect of  mechanical  anisotropic parameter and 
heat transport is opposite in nature for the smaller 
values of time and becomes almost same but 
oscillatory in steady state. From fig.3 (d), we 
observe that when amplitude of temperature 
modulation ሺߜଵሻ increases from 0.1 to 0.5, 
magnitude of Nusselt number increases in 
convection state. In steady state the heat transport is 
oscillatory in nature. Further the amplitude of 
oscillations increases with increase in amplitude of 
temperature modulation. From fig.3 (e), it is 
observed that as the frequency of modulation (߱) 
increases from 1.5 to 15, the magnitude of Nusselt 
number slightly increases in conduction and 
convection state. Afterwards in steady state the heat 
transport is oscillatory in nature. Further the 
amplitude of oscillations increases with increase in 
frequency of modulation. From fig.3 (f), it is 
observed that as the aspect ratio (ݎܣ) of the 
anisotropic porous cavity increases from 0.5 to 50, 
the Nusselt number (Nu) decreases in conduction 
and convection state. After some time the Nusselt 
number becomes oscillatory (almost same) 
independent of aspect ratio. So, the heat transport 
decreases in conduction as well as convection state 
but after some time becomes equal in steady state. 

5. CONCLUSIONS  

 We conclude that by properly adjusting the 
different parameters in model, we can control the 
heat transfer. The results obtained are in line with 
Bhadauria et al. (2013).The observations of authors 
are as follows: 
 
For In Phase Modulation, the heat transfer increases 
with increases in Va, ,ଵߜ  ߱   while remains almost 
constant with increase in ߦ, ,ߟ  in conduction as ݎܣ
well as convection state. In steady state there is no 
effect of any of the six parameters on heat transfer. 
For Out Phase Modulation, the heat transfer 
increases with decrease in Va, ,ߦ ,ଵߜ ߱, Ar and 
remains almost same with increase in ߟ in 
conduction and convection state. The heat transfer 
is oscillatory in steady state. For Lower Boundary 
Modulation the nature of heat transfer is similar to 

that out phase modulation but varies in magnitude 
of heat transfer, amplitude of oscillations and wave 
length of oscillations. In all cases the heat transfer 
increases from IMP, LBM to OPM. So, authors 
conclude that heat transfer can be controlled by 
suitably adjusting the individual parameters as per 
the requirement. 
 
Nature of heat transfer in steady state as time passes 
is as 

Increase 
in para.\ 
moduln. 

In phase 
modulation 

Out phase 
modulation 

Lower 
boundary 
modulation 

Va Constant Oscillatory oscillatory* 
ߟ Constant Oscillatory oscillatory* 
ߦ Constant Oscillatory oscillatory* 
߱ Constant Oscillatory oscillatory* 
ଵߜ Constant Oscillatory oscillatory* 
Ar Constant Oscillatory oscillatory* 

*The amplitude of oscillations increases but wave 
length shortens comparatively. 
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