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ABSTRACT 

In this paper, the Shallow Water Equations (SWEs) are solved by the Smoothed Particle Hydrodynamics 
(SPH) approach. The proposed SWE-SPH model employs a novel prediction/correction two-step solution 
algorithm to satisfy the equation of continuity. The concept of buffer layer is used to generate the fluid 
particles at the inflow boundary. The model is first applied to several benchmark water flow applications 
involving relatively large bed slope that is typical of the mountainous regions. The numerical SWE-SPH 
computations realistically disclosed the fundamental flow patterns. Coupled with a sediment morph-dynamic 
model, the SWE-SPH is then further applied to the movement of sediment bed load in an L-shape channel and 
a river confluence, which demonstrated its robust capacity to simulate the natural rivers.  

Keywords: SWE; SPH; Two-step solution; Prediction/correction; Sediment transport; Buffer layer; 
Mountainous region. 

1. INTRODUCTION

Most areas in the southwest region of China are 
located in the mountainous regions. Numerous 
natural hazards such as the landslide initiated by the 
earthquake and the storm rain can block the natural 
river and as these rivers are located over 
complicated mountainous topographies with 
relatively large bed slope, disastrous flooding can 
unpredictably occur involving large water surface 
variations and cause damages of property and losses 
of life to the local residents. Thus the study of these 
mountainous flows has both theoretical and 
practical significance. 

Numerical models provide an effective approach to 
study a wide range of such flooding flows due to 
their economic costs and good efficiencies to 
predict the flow under different conditions without 
the need of large physical space and heavy labor 
work. For example, Xia et al. (2010) combined the 
hydrodynamic and sediment models and studied the 
dam break flows over a mobile bed. Other good 
numerical work has also been done by Mehdizadeh 
et al. (2008) and Souza et al. (2010). However, most 
traditional numerical methods are based on the 
Eulerian grid approach and solved by the 
FDM/FEM/FVM schemes. These kinds of approach 
can meet serious issues when they are applied to the 
flows over mountainous region due to the critical 

requirement imposed by the treatment of advection 
term in the Navier-Stokes equations and the dry/wet 
boundaries.  

The Smoothed Particle Hydrodynamics (SPH) is a 
pure mesh-free numerical technique and its 
potentials to the hydrodynamic applications are 
fully explored by Monaghan (1992). SPH is a 
Lagrangian particle method that does not require the 
grid to evaluate the spatial derivatives. It is a quite 
simple but robust technique to treat the large 
deformation of free surfaces and multi-interfaces. A 
number of researchers have successfully applied the 
SPH to complicated benchmark physics as 
evidenced in Liu and Liu (2003). Until now, two 
kinds of SPH solution algorithms are widely used in 
the coastal and river hydraulics, i.e. weakly 
compressible SPH and incompressible SPH, 
depending on the different pressure solution 
techniques. Also most SPH simulations are carried 
out in the vertical 2D plane and the full Navier-
Stokes equations have also been solved by SPH. 

Quite recently the SPH solutions of the Shallow 
Water Equations (SWEs) are gaining increasing 
attention. This is due to the fact that most natural 
flow hazards happen over a relatively large space 
and the practical interest is to interpret these flow 
characteristics in the horizontal plane rather than the 
detailed information along the flow depth. In this 
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sense, the vertical 2D or 3D SPH solutions based on 
the Navier-Stokes equations are computationally 
very demanding. Thus the SPH solutions of SWEs 
are expected to provide a more robust tool in view 
of the practical engineering interest. Since the 
concept of SWE-SPH was originally proposed by 
Wang and Shen (1999) in 1D dam break flow, it has 
been successfully applied in more complicated 2D 
dam break flows (De Leffe et al., 2010), open 
channel flows (Chang and Chang, 2013) and 
flooding simulations (Vacondio et al., 2012). Most 
existing SWE-SPH solutions are based on the 
variational approach proposed by Rodriguez-Paz 
and Bonet (2005) and adopted a one-step solution 
algorithm, that is to say, the particle columns are 
advected to their next positions using a single-step 
time integration. Thus the numerical scheme is fully 
explicit. In this sense, computational time steps 
must be strictly controlled to maintain the 
computational stability and accuracy. To improve 
the numerical performance of the SWE-SPH, which 
finds its potentials in practical engineering fields, in 
this work we will propose a two-step 
prediction/correction solution scheme for the SWE-
SPH, similar to the two-step semi-implicit 
incompressible SPH solutions of Shao and Lo 
(2003), although the nature of numerical scheme is 
still explicit. The advantage of this new SWE-SPH 
solution algorithm is that slightly larger time steps 
can be used, as the continuity of the fluid system is 
imposed at the second step. Generally speaking, the 
overall computational efficiency has been 
improved.      
 
To tentatively test the proposed SWE-SPH model in 
horizontal 2D flows, the model is first applied to 
two benchmark water flow applications, including 
the dam break flow passing over a horizontal 
rectangular channel and through a steep U-shaped 
channel. Then by further combining with the 
sediment morph-dynamic equations, the sediment 
bed load movement and bed deformation are 
investigated for an L-shape channel as well as a 
mobile bed river confluence. All of the tests are 
carried out under relatively larger bed slopes to 
represent the practical mountainous river 
bathymetries. Although only qualitative validations 
and analysis are carried out, the model applications 
indicated that the proposed SWE-SPH can provide a 
promising solution technique for the simulation of 
flows over large and complicated areas.   

2. GOVERNING EQUATIONS 

The fundamental principles of the SWE-SPH model 
are to represent the fluid system as discrete particle 
columns, in comparison with the circular shape of 
particles used in a vertical 2D or 3D SPH 
framework. The proposed SWE-SPH is based on a 
2-D plan projection of the domain, in which the 
flow velocity through the height of vertical column 
is uniform and the instantaneous spatial variation of 
the column height is small. Following this, in a SPH 
discretisation of the resulting 2-D plan domain, 
each particle represents a column of fluid of a 
certain height. The continuum is discretised with a 

system of Lagrangian particles, in which each 
particle represents a column of water of height h  
with constant mass m , which moves over the 
computational domain. The unknowns of the 
problem are the spatial positions of every particle 
column at each time step and the height of the water 
column.  
 
Thus the continuity and momentum equations are 
represented in the following forms as: 

0
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where h  = flow depth or height of particle column; 
t  = time; u  = horizontal velocity vector; g  = 

gravitational acceleration; z  = bed elevation; and 
n  = roughness of bed. 
 
To further consider the fact that the channel bottom 
is composed by a sediment layer whose 
characteristic is given by ),,( tyxzb

 laying on a 

non-erodible foundation (Jaan et al., 2014), the 
sediment motion due to the bed load transport can 
be modeled by the following morph-dynamic 
formulation as: 
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where )1/(1 n  and n  = porosity of sediment 

layer; 
bxq  and 

byq  represent the sediment transport 

rate, which depends on the local hydraulic 
conditions. 
 
Most of the bed load transport formulas relate the 
bed load transport rate with the flow shear stress. 
However, an alternative approach, the Grass 
formula, which simply links the bed load transport 
to the flow velocities, has been adopted in many 
sediment transport models due to its simplicity and 
effectiveness. Another distinctive advantage of this 
formula is that in an engineering river, velocity 
measurement is much more readily available than 
the shear stress. For these reasons, it is also used in 
present work: 
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where A  and m  are the empirical parameters 
determined by the properties of sediment grain; u  
and v  = two velocity components. 

3. TWO STEP SOLUTION 
METHOD 

The SPH concept has been widely used in coastal 
hydrodynamics in recent years and thus the basic 
principles are not interpreted here. More detailed 
information can be found in Monaghan (1992) and 
Liu and Liu (2003). In the framework of SPH 
algorithms, the interpolation and first derivative 
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operators of a variable )( Ixf  can be represented in 

a general way as: 
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where I  and J  indicate the reference and 
neighboring particle columns, respectively; X  = 
particle column position; V  = volume of particle 
column; and W  = SPH kernel function represented 
by 
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where ra /  = relative distance between two particle 
columns. 
 
The two-step SWE-SPH solution procedures are 
carried out as follows: 
 
Step 1：This is the so-called prediction approach, 
in which only the topographical and bed resistance 
forces in Equation (2) are used and temporary 
particle column velocity and position are obtained 
as 
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where superscript n  and *  refer to the previous and 
intermediate time step values, respectively; and t  
= time step.   
 
Step 2: This is the so-called correction step, in 
which the corrected particle column height h  is 
used to update the intermediate column velocities 
and positions computed from Equations (9) - (10). 
This process satisfies the fluid incompressibility 
condition that is similar to the two-step ISPH 
solution method of Shao and Lo (2003). The 
procedure follows: 
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where 1n  refers to the new time step values. 
 
Step 3: This is actually the computational procedure 
between Step 1 and 2. The updated flow depth h  to 
correct the particle column velocity and position is 
derived from the mass conservation or fluid 
continuity as represented in Equation (1), which can 
also be conceptually represented as 

 2
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where 
0h  and 

0r  are the original particle column 

height and influence radius at the beginning of the 
computation, which can be evaluated from the 
initial particle arrangement. During the computation 
we will have  
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h h r W a r  is an implicit 

function and can only be solved through the 
iterative method as below: 
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Finally, the column height is updated by the 
following 
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The above process is repeated, until the solution of 
the computed water column height is converged. 
 
In the above SWE-SPH computations, the time step 
should satisfy the stability criterion as imposed by 
the so-called Courant condition as 

II

I
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gh
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which implies that the particle column movement 
within a certain time step should be a fraction of the 
influence radius under the actions of flow velocity 
and wave celerity.   
 
According to Rodriguez-Paz and Bonet (2005), the 
coefficient 

FLC  is generally less than 10% in their 

test cases. By using the proposed semi-implicit 
SWE-SPH solution scheme in this work we found it 
can be as large as 50%. 

4. BOUNDARY TREATMENT 

The following shallow water boundary conditions 
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are used in the SWE-SPH model. 
 
Upstream inflow boundaries: A buffer zone is 
used to treat the inflow open boundary, in which 
three layers of the particles are arranged: The first 
row of velocity particles, the second row of pressure 
correction particles and the third row of buffer 
particles. The first row of particles ensures the 
correct flow input rate into the computational 
domain and the second row reduces the numerical 
dissipation of flow velocity at the inflow boundary, 
while the third row prevents the numerical noise 
arising from the addition of new particles and acts 
as a buffer zone for the interpolation. A schematic 
setup of the inflow zone particles is shown in Fig. 1 
and the SPH computed uniform flow at the inlet 
boundary is compared with the FLUENT result in 
Fig. 2. This shows the proposed inflow boundary 
treatment works well. 
 

 
Fig. 1. Treatment of inflow boundary using three 

layers of particle. 

 

 
Fig. 2. Uniform inflow computed by SWE-SPH 

and FLUENT (upper: SWE-SPH; lower: 
FLUENT). 

 

Moving dry/wet boundaries: A major advantage 
of the SPH approach over the classic finite volume 
or finite difference method in the shallow water 
flow simulation is due to its automatic treatment of 
the moving boundary conditions following the 
particle column movement. Thus no additional 
algorithm is needed to track the edge of dry/wet 
boundaries.  
 
Solid walls: Special treatment must be made near 
the vicinity of solid walls in order for the motion of 
the adjacent fluids to be modeled correctly. The 
wall boundary conditions in SPH can be modeled 
either by the fixed dummy particles (Koshizuka et 
al., 1998) or moving mirror particles (Cummins and 
Rudman, 1999). In this work, the former is used for 

the simplicity of the algorithm. 

5. SWE-SPH MODEL TEST IN 
WATER FLOWS 

In this section, the proposed SWE-SPH model is 
applied to two benchmark flow tests, i.e. dam break 
flows over a horizontal bed and through a U-shaped 
channel over relatively steep slope. 
 
5.1  Dam Break Flow Over a Horizontal 

Bed 

An ideal rectangular channel that is 6 m long and 1 
m wide is horizontally placed as shown in Fig. 3. 
The roughness of the channel bed is n  = 0.01. The 
initial water reservoir is 2 m long and the upstream 
and downstream water levels are 1.0 m and 0.0 m, 
respectively. The dam break is assumed to happen 
instantaneously. 
 

 
Fig. 3. Schematic setup of dam break flow over a 

horizontal bed. 
 
Following the SWE-SPH numerical simulations, the 
computed particle snapshots and free surface 
profiles at time t  = 0.4 s after the dam break are 
shown in Fig. 4 (a) and (b), respectively. As a 
comparison, the analytical solutions of SWE and 
the numerical results from vertical 2D SPH (Shao 
and Lo, 2003) are also shown in Fig. 4 (b). It shows 
that the SWE-SPH results matched the analytical 
solutions very well but there are some 
disagreements with the 2D SPH computations. This 
is because the latter was based on the solutions of 
fully incompressible Navier-Stokes equations and 
the propagation speed of pressure wave is infinite. 
In contrast, in the SWE-SPH modeling, the pressure 
wave propagates in a finite speed depending on the 
flow depth. As a result, the vertical 2D SPH 
predicted a faster free surface propagation with 
lower surface height. It is not surprising that the 
SWE-SPH computations closely matched the 
analytical solutions, as both ignored the vertical 
variations of flow variables and averaged the flow 
parameters along the depth.  

 
Fig. 4 (a). SWE-SPH computed particle 

snapshots of dam break flow at time t  = 0.4 s. 
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Fig. 4.(b). SWE-SPH (SW-SPH) computed water 
surface profiles, compared with vertical 2D SPH 

(IC-SPH) results and analytical solutions. 
 

5.2  Dam Break Flow in an U-shaped 
Channel  

In this test, a dam break flow occurs in an U-shaped 
channel that is 5 m long for both the upstream and 
downstream sections and 1 m wide. The radius of 
the inner and outer circular bend is 1 m and 2 m, 
respectively. The bed slope of the channel is 0.01 
and roughness is 0.0136. It is assumed three 
cylinders are located inside the channel each with a 
radius of 0.1 m. The inflow discharge is 0.2 m3/s 
and the free outflow condition is imposed at the 
downstream outlet. 
 
Following the SWE-SPH computations, the dam 
break flow velocity fields at time t  = 3.0 s and 9.0 s 
are shown in Fig. 5. It is shown that as the flows 
interact with the cylinder barriers, the free surfaces 
are elevated and the disturbances are generated to 
propagate in the upstream direction in the form of 
disturbance wave. 
 
In addition, the particle snapshots and locally 
enlarged velocity fields near the cylinder at time t  
= 21 s are shown in Fig. 6, which also demonstrated 
that the unstable flow patterns are produced behind 
the barrier and the complicated flow circulations are 
observed. 

6. SWE-SPH MODEL TEST IN 
SEDIMENT FLOWS 

To further test the SWE-SPH model capacity to 
compute the movable bed sediment transport in an 
L-shaped channel with pre-arranged sediment 
layers, the numerical test reported by Castro Diaz et 
al. (2009) is used. The detailed computational 
setups including the initial and boundary conditions 
can be found in the original work of Castro Diaz et 
al. (2009). 
 
So this is not repeated here. According to their 
recordings, the water density is 1000 kg/m3, the 
sediment density 2600 kg/m3 and sediment grain 
size 0.001 m. The Manning’s coefficient is 0.0196, 
the non-dimensional critical shear stress 0.047 and 
sediment porosity 0.4. 
 

 
 

 
Fig. 5. SWE-SPH computed flow velocity field in 

U-shape channel at t  = 3.0 s (upper) and 9.0 s 
(lower). 

 

 
 

 
Fig. 6. SWE-SPH computed particle snapshot 
(upper) and local velocity field (lower) in U-

shape channel at t  = 21 s. 
 
Following the SWE-SPH computations, the 
evolution of the sediment layers in the L-shaped 
channel is shown in Fig. 7, at time t  = 400 s, 900 s 
and 1200 s, respectively. 
 
It is shown that the computed sediment bed 
evolutions are generally consistent with the Finite 
Volume solutions of Castro Diaz et al. (2009), 
especially the maximum erosion location and 
amplitude are adequately captured. To initially 
validate this, the FVM result of Castro Diaz et al. 
(2009) at time t  = 900 s is shown in Fig. 7 (d) for a 
comparison. It is observed that the main erosion 
area concentrates near the region within X  = (2, 4) 
and Y  = (0, 1).  
 
Here it should be mentioned that Castro Diaz et al. 
(2009) used the Meyer-Peter formula for sediment 
transport in their model while the Grass model is 
used in present study. 
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Fig. 7. SWE-SPH computed sediment bed 

evolutions at t  = 400 s (first), 900 s (second), 
1200 s (third), compared with FVM solutions of 

Castro Diaz et al. (2009) at t  = 900 s (last figure). 

7. SWE-SPH MODEL APPLICATION 
IN CASE STUDY 

The channel confluences are widely found in 
hydraulic engineering fields. A large number of 
studies have found that the dynamics of open-
channel flow at river confluences depend on the 
channel geometry and flow parameters such as the 
cross-sectional area, bed slope, angle of river 
junction, discharge ratio, downstream Froude 
number and hydraulic roughness, etc. In the 
numerical simulations, two-dimensional flow 
models that take into account the flows in the main 
and transverse directions have been widely used in 
the last decade. Examples of different hydraulic 
models for studying the complex river flow 
configurations can be found in Biron et al. (2002) 
and Duan and Nanda (2006). However, the flow 
and sediment motions at the river confluence and in 
the main river considering the tributary effect are 
very complicated, especially in case of the torrential 
river confluence. Here we will apply the proposed 
SWE-SPH scheme to simulate the flow and 
sediment transport in a torrential river confluence 
caused by the upstream dam break.  

 
The study area belongs to a tributary of the Liusha 
River, which is a typical mountainous river with 
steep bed slope. Natural disasters due to the 
torrential river confluence are often reported which 
caused damages of property and losses of life. Quite 
a few field investigations and numerical simulations 
have been carried out in this river and its tributaries 
in order to understand the flow regimes. A 
schematic view of the simulation area is shown in 
Fig. 8. The main river inlet flow discharge is 136.5 
m3/s and its bed slope is 0.02. The tributary river 
inlet flow discharge is 24.5 m3/s and its bed slope is 
0.04. The free outflow boundary condition is 
imposed at the downstream outlet. The water 
density is 1000 kg/m3, sediment density 2600 
kg/m3, sediment porosity 0.4, Manning’s coefficient 
0.014 and CFL parameter 0.5.  
 

 
Fig. 8. Simulation area of river confluence in 

Liusha River tributary 
 
According to the local hydrological station survey, 
the sediment properties in this area are shown in 
Table 1 as blow: 
 

Table 1 Sediment gradation distributions 
Sediment gradation distributions (mm) 

Gravel Shingle Sand 

>60
60~
40

40~
20 

20~
10

10~
2 

2~ 
0.5 

0.5~ 
0.25 

0.25~ 
0.075 

0.075~
0.005

% % % % % % % % % 

 15.5 38.5 20 14 8 2 1.5 0.5 

 
Based on the SWE-SPH computations, the flow 
velocity fields and sediment bed load transports are 
shown in Figs. 9 and 10 (a) – (d), respectively, at 
different time instants at t  = 20 s, 40 s, 80 s and 
120 s. Fig. 9 shows that due to the relatively steep 
bed slope of the river channel, the upstream dam 
break flow demonstrates the characteristics of large 
flow velocity and shallow water depth, i.e. 2.5 ~ 3.5 
m/s above. It is also observed that the tributary river 
entered the main flow with high speed and the flow 
path generated a meandering pattern. After the two 
rivers converged, the flow velocity further increased 
to over 4.5 m/s in the main flow. The SWE-SPH 
simulations realistically disclosed the flow patterns 
which are difficult to deal with by the traditional 
grid methods due to frequent variations of the 
wet/dry boundary and difficult tasks to treat the 
advection term. Also, the SWE-SPH effectively 
reduced the computational load as only the area 
covered by the particles was considered in the 
simulation. 
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Fig. 9. SWE-SPH computed flow velocity 

contours of river confluence at time t   (a) 20 s, 
(b) 40 s, (c) 80 s and (d) 120 s (from up to down). 
 
Further examining the corresponding sediment 
transport patterns as shown in Fig. 10, it shows that 
the sediment transport rate is high where the flow 
velocity is high. When the flow velocity is small, 
there is almost no sediment bed load transport. One 
important phenomenon disclosed is that significant 
sediment movement is produced downstream of the 
river confluence where the two flows converge and 
it is concluded that the river bed should undergo 
severe erosions in this section, which should be 
given adequate attention in the engineering practice 
and effective measures should be taken to protect 
the river bed. The capacity of SWE-SPH to simulate 
practical mountainous rivers is fully demonstrated. 

Figs. 9 and 10 also indicate that the flow and 
sediment motions nearly reach the equilibrium stage 
as there is almost no obvious difference observed 
between the last two figures at time t  = 80 s and 
120 s. 
 

 

 

 

 
Fig. 10. SWE-SPH computed sediment transport 
contours of river confluence at time t   (a) 20 s, 

(b) 40 s, (c) 80 s and (d) 120 s (from up to down). 

8. CONCLUSIONS 

In this paper, we have presented a shallow water 
SPH formulation for the simulation of dam break 
flows and sediment bed load transport in 
mountainous rivers. The proposed model, which is 
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based on the two-step solution method, is able to 
simulate many kinds of shallow water cases which 
are commonly found in the engineering 
applications. The simulation results indicated that 
the numerical technique is robust and accurate to 
disclose useful flow and sediment information. 
Although only qualitative validations have been 
carried out, the proposed SWE-SPH algorithms 
could provide a promising trend to develop the next 
generation of simple and effective SPH models for 
practical interest. All of the computations in this 
study were finished within several minutes by using 
dual U9600 CPU 1.6G and RAM 3G laptop 
computer.   
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