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ABSTRACT 

The pulsatile flow of blood in narrow arteries with multiple-stenoses under body acceleration is analyzed 
mathematically, treating blood as (i) single-phase Herschel-Bulkley fluid model and (ii) two-phase Herschel-
Bulkley fluid model. The expressions for various flow quantities obtained by Sankar and Ismail (2010) for 
single-phase Herschel-Bulkley fluid model and Sankar (2010c) for two-phase Herschel-Bulkley fluid model 
are used to compute the data for comparing these fluid models in a new flow geometry. It is noted that the 
plug core radius, wall shear stress and longitudinal impedance to flow are marginally lower for two-phase H-
B fluid model than those of the single-phase H-B fluid model. It is found that the velocity decreases 
significantly with the increase yield stress of the fluid and the reverse behavior is noticed for longitudinal 
impedance to flow. It is also noticed that the velocity distribution and flow rate are higher for two-phase 
Herschel-Bulkley fluid model than those of the single-phase Herschel-Bulkley fluid model. It is also recorded 
that the estimates of the mean velocity increase with the increase of the body acceleration and this behavior is 
reversed when the stenosis depth increases.  

Keywords: Blood flow; Single-phase fluid flow; Two-phase fluid flow; Body acceleration; Multiple-
stenoses; Comparative study.  

NOMENCLATURE 

B body acceleration parameter 
e pressure gradient parameter 
n power law index 
p dimensionless pressure 
Q  dimensionless flow rate 
 R z  dimensionless radius of the artery in the 

stenosed region 

  pulsatile Reynolds number ratio    

H pulsatile Reynolds number of  Herschel-
Bulkley fluid 

N pulsatile Reynolds number of  Newtonian 
fluid 

1  semi-depth of the maximum projection of 
the first stenosis in the single-phase 
Herschel-Bulkley fluid model   

2 semi-depth of the maximum projection of 
the second stenosis in the single-phase 
Herschel-Bulkley fluid model 

1P semi-depth of the maximum projection of 
the first stenosis in the peripheral layer 
region of the two-phase Herschel-Bulkley 
fluid model 

2P semi-depth of the maximum projection of 
the second stenosis in the peripheral layer 
region of the two-phase Herschel-Bulkley 
fluid model 

1C semi-depth of the maximum projection of 
the first stenosis in the core region of the 
two-phase Herschel-Bulkley fluid model 

2C semi-depth of the maximum projection of 
the second stenosis in the core region of the
two-phase Herschel-Bulkley fluid model 

Subscripts 
H Herschel 
N Newtonian fluid (used for ,u  )

PR dimensionless plug core radius 

r dimensionless radial distance  

Hu dimensionless axial velocity of Herschel-
Bulkley fluid 

Nu dimensionless axial velocity of Newtonian 
fluid 

t dimensionless time 

z dimensionless axial distance 
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  lead angle 

  shear rate 

  dimensionless longitudinal impedance to 
flow 

  angular frequency of the blood flow 

  yield stress 
  azimuthal angle 

H  dimensionless shear stress of Herschel-
Bulkley fluid 

N  dimensionless shear stress of Newtonian 
fluid 

w  dimensionless wall shear stress 

P plug core region 
w wall shear stress (used for  ) 

 
1. INTRODUCTION 

 In several circumstances of our routine life, like 
during our travel in a bus, train, car, aircraft, ship, 
even while accepting vibration therapy as a 
treatment process to cardiovascular diseases, we are 
subjected to body accelerations or vibrations 
(Chakravarty and Mandal, 1996). In some situations 
like travelling in a bus/train etc, our whole body is 
exposed to vibrations, whereas in some other 
situations like, while operating jack hammer or 
lathe machine, specific part of our body is subjected 
to accelerations (Nagarani and Sarojamma, 2008; 
El-Shehawey et al., 2000). The continuous exposure 
of high level unintended external body accelerations 
to our body causes disturbance in the blood 
circulation (El-Shahed, 2003) and this leads to 
serious diseases which may show the symptoms like 
frequent headache, abdominal pain, increase in 
pulse rate, venous pooling of blood in the 
extremities, hemorrhage in face, neck and eye-
sockets, loss of vision etc (Mustapha et al., 2008; 
Chaturani and Issac, 1995; Usha and Prema, 1999). 
Hence, the investigation on the blood flow in 
arteries under periodic body acceleration is 
important in the diagnosis and therapeutic treatment 
of health problems (Mandal et al., 2007; Mishra, 
1999; Sarojamma and Nagarani, 2002).  

Many cardiovascular diseases are known to be 
responsible for deaths of thousands of people yearly 
and the origin of most of them are closely related to 
the nature of blood circulation and the dynamic 
behavior of the blood vessel (Ang and Mazumdar, 
1995). Medical survey reveals that more than 80% 
of the total deaths of humans are due to the diseases 
of blood vessel walls (Liepsch, 2002; Rogers, 
2011). Among them, arthrosclerosis is a very 
dangerous disease that is caused due to deposition 
of cholesterol and some other substances on the 
endothelium and by the proliferation of connective 
tissues in the arterial wall (Liepsch et al., 1992). 
Once a mild stenosis is developed in the lumen of 
the artery, it causes circulatory disorder in the 
arteries (Tu and Deville, 1996). 

Several researchers studied the blood flow 
characteristics in the presence of stenoses in the 
lumen of the arteries (Ikbal et al., 2009; Sankar, 
2010a; Ismail et al., 2008). Blood behaves like a 
Newtonian fluid when it flows in larger diameter 
arteries at high shear rates. Many studies were 
carried out to analyze the steady and unsteady flow 
of blood in larger diameter arteries, treating it as 
Newtonian fluid (Liu et al., 2004; Chakravarty and 
Mandal, 2004; Sud and Sekhon, 1985). Blood 
exhibits remarkable non-Newtonian character when 

it flows through narrow diameter arteries at low 
shear rates and blood flow in narrow arteries is 
highly pulsatile, particularly in diseased state.  
Several attempts made to study the pulsatile flow of 
blood through stenosed narrow arteries, modeling it 
as a non–Newtonian fluid (Chaturani and 
Palanisamy, 1990; Siddiqui et al., 1999).  
 
Chakravarty et al. (2004) and Mishra et al. (2002) 
mentioned that when blood flows through narrow 
blood vessels, there is a peripheral layer of plasma 
and a core layer with the suspension of all the 
erythrocytes. Thus, for a realistic description of 
blood flow in narrow arteries at low shear rates, it is 
appropriate to model blood as a two-phase fluid 
model with the suspension of all the erythrocytes in 
the core region as non-Newtonian fluid and the 
plasma in the peripheral layer region as Newtonian 
fluid. Several researchers have studied the two-
phase fluid models for blood flow through stenosed 
arteries treating the fluid in the core region as a 
non-Newtonian fluid and the plasma in the 
peripheral layer region as Newtonian fluid 
(Srivastava and Saxena, 1994; Sankar, 2010b).   
 
Herschel-Bulkley (H- B) fluid is a non-Newtonian 
fluid model with yield stress which is generally 
used to model blood when it flows through narrow 
arteries (Chaturani and Ponnalagar Samy, 1985). 
Sankar and Ismail (2010) studied the pulsatile flow 
of single-phase H-B fluid model for blood flow in 
narrow arteries with single axi-symmetric stenosis 
under the influence of body acceleration. Sankar 
(2010c) mathematically analyzed the blood flow 
with single stenosis in narrow arteries under the 
influence of body acceleration, treating blood as 
two-phase H-B fluid model. The pulsatile flow of 
single-phase and two-phase H-B fluid models for 
blood flow in a narrow artery with multiple-
stenoses under periodic body acceleration was 
investigated by anyone so far, to the knowledge of 
the authors. Hence, in the present study, a 
theoretical study is taken up to compare the 
pulsatile flow of single-phase H-B fluid model and 
two-phase H-B fluid model for blood flow in a 
narrow artery with mild multiple-stenoses under the 
influence of external periodic body acceleration. In 
the first model, H-B fluid model is used to represent 
blood in the entire flow region, whereas in the 
second model, blood is treated as two-phase fluid 
flow model with the suspension of all the 
erythrocytes in the core region is modeled by H-B 
fluid and the cell-free plasma in the peripheral layer 
region is represented by Newtonian fluid. The 
asymptotic solution obtained for the flow quantities 
by Sankar and Ismail (2010) for single-phase H-B 
fluid model and Sankar (2010c) for two-phase H-B 
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fluid model are used to compute the data in new 
flow geometry (multiple-stenoses) to perform a 
comparative study among these fluid models. The 
advantageous of using two-phase H-B fluid model 
rather than single-phase H-B fluid model for blood 
flow modeling in a narrow artery are also spelt out. 
The layout of the paper is as follows. 

Section 2 formulates both the fluid model’s 
governing differential equations and boundary 
conditions and solves them to obtain asymptotic 
solution to the physiologically important flow 
quantities such as plug core radius, velocity 
distribution, flow rate, wall shear stress and 
longitudinal impedance to flow. The effects of 
various physical parameters on these flow quantities 
are analyzed and the flow quantities of different 
fluid models are compared in section 3. Some 
possible physiological applications to the present 
study are also given in section 3. The main findings 
of the study are summarized in the concluding 
section 4.               

2. MATHEMATICAL 
FORMULATION 

Consider an axially symmetric, laminar, pulsatile 
and fully developed unidirectional flow of blood 
(assumed to be viscous incompressible fluid) under 
the influence of periodic body acceleration through 
a circular artery with an axially symmetric mild 
multiple stenoses, blood is modeled as two 
nonlinear fluid models such as (i) single-phase H-B 
fluid model and (ii) two-phase H-B fluid model. In 
the single-phase H-B fluid model, blood is modeled 
as H-B fluid model in the entire flow region, 
whereas, in the two-phase H-B fluid model of 
blood, the suspension of all erythrocytes in the core 
region is treated as H-B fluid and the cell-free 
plasma in the peripheral layer region is assumed as 
Newtonian fluid. Due to the presence of the stenosis 
in the lumen of the artery wall, it is appropriate to 
treat the wall of the artery as rigid. 
 
The artery is assumed to be too long so that the 
entrance and end effects can be neglected. The 
geometries of the segment of artery with mild 
multiple stenoses for single-fluid flow and two-fluid 
flow of blood are shown in Fig.1. Cylindrical polar 
coordinates system  , ,r z  is used to analyze the 

flow. 
 
Since the size of the stenoses in the lumen of the 
artery is mild and the flow is assumed to be slow in 
a narrow artery, the radial component of velocity is 
negligibly small and can be neglected for low 
Reynolds number flow. The non-dimensional form 
of the momentum equation governing the flow is 
given below (One can refer Sankar and Ismail 
(2010) for dimensional form of the governing 
equations).  

   2 4 1 cos 4 cosH
H

u
e t B t

t
  


   


 

   2
, 0Hr r R z

r r



  


                             (1)  

 
a. Single-phase H-B fluid model 

 
b. Two-phase H-B fluid model 

Fig. 1. Geometry of segment of the narrow 
artery with multiple stenoses. 

 
2.1  Single-Phase H-B Fluid Model  

2.1.1  Governing Equations 

where H  pulsatile Reynolds number or 

Womersley number of H-B fluid model which is 

mathematically defined as 2
0 0H R   , 

(where 
1

0 0 02
n

H R A 


    , 0 0 0, , ,A R     and 

H are the constant pressure gradient of the flow, 

radius of the normal artery, angular frequency of the 
flow, blood density, viscosity coefficient having the 
dimension as that of Newtonian fluid and coefficient 
of viscosity of H-B fluid respectively (in 
dimensional form)), ,H Hu  are the shear stress 

and axial component of the velocity; e and B are the 
parameters for the pressure gradient and body 
acceleration respectively; ,t   and   are the 

parameters for time, angular frequency and phase 
angle of the flow respectively, R  is the radius of the 
artery. The non-dimensional form of the constitutive 
equation of the H-B fluid which models blood is 

 2 if and

0 if and 0

n
H H H P

H P

u R r R
r r R

   
 

      
   

 

                                                                           (2)  
where  is the non-dimensional form of the yield 
stress and PR  is the plug core radius. Eq. (2) 

signifies that normal shear flow happens in the 
regions where the shear stress exceeds the yield 
stress and plug flow (or solid like flow) occurs in 
the regions where the shear stress does not exceed 
the yield stress. The boundary conditions in the 
non-dimensional form are  

is finite at 0H r                                         (3) 

 0 atHu r R z                                           (4) 

The geometry of segment of an artery with multiple 
stenoses in dimensionless form is mathematically 
defined by 
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                                                                           (5) 
where 1 1 2 2( ) ; ( ) ;z z S Z z z S Z      1 1 1;S S Z  

1 1 1;S S Z   2 2 2;S S Z   2 2 2;S S Z   1 2,  ar

e the maximum heights of first and second stenosis 
respectively such that 1 0 1 ,R    

1 1 2 2,S Z S Z   and 
1 1 2 2,S Z S Z  are the start and 

end positions of the first and second stenosis, 

 1a t represents the time dependent changes in the 

radius of the artery. The non-dimensional volume 
flow rate  Q t  is given by 

 
( )

0

, 4 ( , , )
R z

Q z t u z r t r dr                                 (6) 

 
2.1.2 Method of Solution 

Since Eqs. (1) and (2) form a system of nonlinear 
partial differential equations, it is not possible to 
obtain an exact solution to this system of 
differential equations. Hence, perturbation method 
with pulsatile Reynolds number H  as the small 

parameter of the series expansion is employed to 
solve this system of nonlinear partial differential 
equations. Since the present study deals with 
pulsatile flow of blood and the square of the 
pulsatile Reynolds number ( 2

H ) occurs naturally in 

the non-dimensionalize form of the momentum 
equation and is very small, it is more appropriate to 

expand the unknowns Hu  and H  (appearing in 

Eqs. (1) and (2)) in the perturbation series about 
2
H . Let us expand the velocity Hu  in the 

perturbation series about the square of the pulsatile 

Reynolds number 2
H  (where 2 1H  ) as shown 

below.  
 

2
0 1( , , ) ( , , ) ( , , ) ...H H H Hu r z t u r z t u r z t          (7) 

Similarly, the shear stress  , ,H r z t , the plug 

core radius  ,pR z t , the plug core velocity  ,pu z t , 

and the plug core shear stress  ,p z t   can be 

expanded in perturbation series about 2
H . 

Applying the perturbation series expansions of 

Hu and H  in Eq. (1) and then equating the 

constant terms and 2
H  terms, one can get 

     0 2 1 cos cos ,Hr r e t B t
r

        
 

(8) 

 0
1

2
.H

H
u

r
t r r


 

 
 

                                    (9) 

Using the binomial series approximation in Eq. (2) 
and then using the perturbation series expansions of 

Hu  and H  in the resulting equation and then 

equating the constant terms and 2
H  terms, one can 

obtain 

 10
0 02 ,nH

H H
u

n
r

  
  


                             (10) 

 21
0 1 02 ( 1) .nH

H H H
u

n n
r

   
   


             (11) 

Applying the perturbation series expansions of Pu  

and P  in the boundary conditions (3) and (4), one 

can get 

0 1and are finite at 0P P r   ,                     (12)       

0 10 and 0 at 0.H Hu u r                         (13) 

Integrating Eq. (8) between 0 and 0,PR then using 

the condition that 0P  is finite at r = 0, we obtain    

 0 0P Pg t R                                                   (14) 

where      1 cos cosg t e t B      . Integrating 

Eq. (8) between 0PR and r and using Eq. (14), we 

get 

 0 .H g t r                                                      (15) 

Using Eq. (15) into Eq. (10) and then integrating it 
between r and   R R z with the help of first of the 

boundary condition (13), we obtain 

 0 2
n

Hu g t R R        

          1 21 1 1 1n nn r R q R r R       
 

(16) 

where   2q g t . The plug core velocity 0 pu  

can be obtained from Eq. (16) as 

 0 2 n
Pu g t R R          

          1 1
1 2

0 0 .1 1n
n n

P PR R q R R R
    

   

(17) 
Neglecting the terms involving 2

H and higher 

powers of H  in the perturbation series expansion 

of pR and using Eq. (14), the expression for 

0PR can be obtained as 

 
0

2
0 .

P
P g tr = R = q                               (18) 

Using Eq. (18) in Eq. (17), one can obtain 

 0 2 n
Pu = g t R R    

         2 221 1 1-
1 1n+ q R

nn+
q R q R-  

 
  

    
  (19) 

Similarly, solving Eqs. (9) and (11) with the 
boundary conditions (12) and (13) and Eqs. (14) – 
(19), the expressions for 1 1 1, ,P H Hu  and 1Pu can 

be obtained as given in Appendix A.One can obtain 
the expression for the correction in the velocity 
distribution 1Pu can be obtained from Eq. (A3) by 

replacing r by  2 2
0Pq R . The wall shear stress 

HW is a physiologically important quantity which 

plays an important role in determining aggregate 
sites of platelets (Chaturani and Ponnalagar Samy, 
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1985). The expression for wall shear stress HW  is 

given by  

   2
0 1HW H H H

r R
g t R   


                        

       1 2 21 2 2 3
n

Hg t R R D n n   

          32 2 22 1 3 3 2 2
n

n n n n n q R n n q R
          

 
                                                                             (20)   
From Eq. (6) and the expressions for velocity, the 
expression for the volumetric flow rate  ,Q z t is 

obtained as in Appendix B. The correction to the 
plug core radius

1PR can be obtained by neglecting 

the terms with 
4
H and higher powers of H  in the 

perturbation series expansion of PR  in the 

following manner. The shear stress 
2

0 1H H H H      at Pr R  is given by 

2
0 1 .

P
H H H

r R
   


   

  
                               (21) 

From the Taylor’s series expansion of 0H  and 

1H  about 0PR and 
0

0
P

H r R
 


 , we get 

   
011 .

r RPHPR g t


                                  (22) 
 

Using Eqs. (21) and (22) in the perturbation series 

expansion of PR , we obtain 

    12 2 3 2 1
n

P H g t R nDR nR q  
       

       2 22 2 2 21
n

q R n n q R q R
      

    (23) 

 

The longitudinal impedance (or resistive 
impedance) to flow in the artery is defined by 

   , .g t Q z t                                               (24) 

 
2.2  Two-Phase H-B Fluid Model 

2.2.1  Governing Equations 

For low Reynolds number slow flow of blood 
(viscous incompressible fluid) in a narrow artery 
with mild axially symmetric multiple stenoses, the 
radial component of the velocity is negligibly small 
and can be neglected. Blood is modeled as two-
phase fluid model with the suspension of all the 
erythrocytes in the core region is represented by H-
B model and the cell free plasma in the peripheral 
layer region is treated Newtonian fluid. The non-
dimensional form of the basic momentum equations 
governing the flow in the core and peripheral layer 
regions are given below respectively (One shall 
refer Sankar (2001c) for the dimensional form of 
the governing equations). 

   

 

2

1

4 1 cos 4 cos

2
if 0 ( )

H
H

H

u
e t B t

t

r r R z
r r

  




   




  


    (25)  

   2 4 1 cos 4 cosN
N

u
e t B t

t
  


   



  1
2

if ( ) ( )Nr R z r R z
r r


  


             (26) 

where N is the pulsatile Reynolds number or 

Womersley number of Newtonian fluid model in the 
peripheral layer region which is mathematically 

defined as 2
0N NR   , (where, 

0 0, , , and NA R    are the constant pressure 

gradient of the flow, radius of the normal artery, 
angular frequency of the flow, blood density and 
coefficient of viscosity of Newtonian fluid model 
respectively (in dimensional form)); ,  H Nu u  are 

the axial component of the fluid’s velocity in the 
core and peripheral layer regions; ,H N   are the 

shear stress of the fluid in the core region and 

peripheral layer region; H , e , B , ,t   and   are 

already defined in section 2.1.1. R and 1R are the 

radius of the artery with the peripheral layer region 
and core region respectively. The non-dimensional 
form of the constitutive equation of the fluids in the 
core and peripheral layer region are 

  12 if and ( ) ( )

0 if and 0 ( )

n
H H H P

H P

u R z r R z
r r R z

   
 

        
 

                                                                               (27) 

12 , if ( ) ( )N
N

u
R z r R z

r



   


                    (28) 

 

where PR is the plug core radius. The boundary 

conditions can be written in their non-dimensional 
form are  

is finite at 0H r                               (29) 

0 at 0Hu r r                                           (30) 

1at ( )H N r R z                             (31) 

1at ( )H Nu u r R z                                (32)                    

 0 atNu r R z  .                                   (33) 
 

The non-dimensional form of the expressions 
representing the geometry of the stenoses in 
peripheral layer region and core region are given 
below.

 
 

1 1 1 1

1 2 2 22

1

( ) 1 1 cos , if

( ) ( ) 1 1 cos , if

( )                                          otherwise

P

P

a t z S z S

R z a t z S z S

a t





                  



 

                                                                         (34)    

 
 

1 1 1 1

1 1 2 2 2

1

( ) 1 cos , if

( ) ( ) 1 cos , if

( )                                       otherwise

C

C

a t z S z S

R z a t z S z S

a t

 

 

                  



 

(35) 
 

where 1 2,P P   are the maximum height of the first 

and second stenosis in the peripheral layer region 
such that 1 0 1 ,P R    2 0 1P R  ; 

1 2,C C   are the maximum height of the first and 

second stenosis in the core region such that 

1 0 2 01 , 1C CR R    ;   is the ratio 

of the central core radius to the radius of the  
normal artery, 1 1 2 2, , , , ,z z S S S S       are defined 
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in section 2.1.1;  1a t represents the time 

dependent changes in the radius of the artery. The 
non-dimensional volume flow rate  Q t  is given by 

 
( )

0

, 4 ( , , )
R z

Q z t u z r t r dr                                   (36) 

2.2  Method of Solution 

Perturbation method is used to solve the system of 
partial differential equations (25) – (28) with the 
boundary conditions (29) - (33). Let us expand the 

plug core velocity Pu  and the velocity in the core 

region Hu  in the perturbation series about 
2
H  

(where 2 1H  ) as shown below. 

2
0 1( , ) ( , ) ( , ) ...P P H Pu z t u z t u z t                     (37) 

2
0 1( , , ) ( , , ) ( , , ) ...H H H Hu r z t u r z t u r z t         (38) 

Similarly, one can expand the other unknown 
quantities , ,P H Nu   and N in the perturbation 

series about 2
H  and 2

N . Substituting the 

perturbation series expansions of Hu and H  in 

Eq. (25) and then equating the constant terms and 
2
H  terms, we get 

     0 2 1 sin cos ,Hr r e t B t
r


       

   (39) 

 0
1

2
.H

H
u

r
t r r

 
 

 
                                  (40) 

Using the binomial series approximation in Eq. (27) 
and applying the perturbation series expansions of 

Hu  and H  in the resulting equation and then 

equating the constant terms and 2
H  terms, one can 

obtain 

 10
0 02 ,nH

H H
u

n
r

  
  


                               (41) 

 21
0 1 02 ( 1) .nH

H H H
u

n n
r

   
   


                (42) 

Using the perturbation series expansions of Nu  and 

N  in Eq. (26) and then equating the constant 

terms and 2
N  terms, one can obtain   

     0 2 1 sin cos ,Nr r e t B t
r

  
      

(43) 

 0
1

2
.N

N
u

r
t r r


 

 
 

                                        (44) 

On substituting the perturbation series expansion of 

Nu  and N  in Eq. (28) and then equating the 

constant terms and 2
N terms, we get 

0
02N

N
u

r


 


                                                 (45) 

1
12N

N
u

r



 


                                                  (46) 

 Applying the perturbation series expansions of 

, ,H H Nu u and N  in Eqs. (29) - (33) and then 

equating the constant terms and 2
H  and 2

N  terms, 

the boundary conditions reduce respectively to 

0 1and are finite at 0P P r                          (47)        

0 10 and 0 at 0P Pu r u r r                 (48)
 
 

0 0 1 1 1and at ( )H N H N r R z             (49) 

0 0 1 1 1and at ( )H N H Nu u u u r R z    (50) 

 0 10 0N Nu and u at r R z                      (51) 

Eqs (39) - (46) form a system of partial differential 
equations which can be solved for the unknowns 

0 1 0 1 0, , , , ,H H H H Nu u u  1 0,N Nu   and 1N  with 

the help of boundary conditions (47) - (51) and the 
expressions obtained for these quantities are given 
in Appendix C. The expression for correction in the 

plug  flow  velocity  1Pu   can  be  obtained  from  Eq. 

(33)  by  evaluating  it  at  2
0Pr R q  .  The 

expression for wall shear stress  w  is obtained by 

evaluating N  at  r R as given below. 

2 2
0 1 0 1( )w N N N r R w N w            

  42 2
1[ ( ) ] [ ( ) ] 1 8Ng t R g t R DR R R       

  

     2 2
1 1 1[ ( ) ] 2( 2)( 3)n

N g t R n n BR R R   

    32 2 2
1 1( 2) ( 1)( 3) 3( 2 2)

n
n n n n n q R n n q R

         
                                                                            (52) 
Using the expression obtained for velocity 
distribution in Eq. (36), the expression for the 
volumetric flow rate  ,Q z t can be obtained as in 

Appendix D. The two term approximated 

perturbation series expansion of PR  yields the 

expression for plug core radius as  

      22 2 2 2
14 [ ( ) ] 1P HR q D R g t R q R R R  

       2 2
1 12( 1) [ ( ) ]n

Hn D R n g t R     

      2 22 2 2 2
1 1 1( 1)

n
q R n n q R q R

     
 

  

(53) 
The longitudinal impedance to flow in the artery is 
defined as 

   , .g t Q z t                                                (54) 

3. RESULTS AND DISCUSSION 

The main objective of the present mathematical 
analysis is to compare the physiologically important 
flow quantities of single-phase H-B fluid model and 
two-phase H-B fluid model which are used to 
model the blood when it flows through a narrow 
artery with multiple mild stenoses at low shear rates 
under the influence of periodic body acceleration 
and to spell out the advantageous of using two-
phase H-B fluid model rather than single-phase    
H-B fluid model for blood flow modeling. Also, it 
is aimed to investigate the effects of various 
physiological parameters such as maximum depth 
of the stenoses, pressure gradient, body 
acceleration, pulsatile Reynolds number, time, 
angular frequency and lead angle on the flow 
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measurements such as plug core radius, velocity 
distribution, flow rate, wall shear stress and 
longitudinal impedance to flow. To analyze the 
aforesaid flow quantities and to validate the present 
study with the published results of others, we use 
the following range of parameters (Sankar and 
Ismail, 2010; Sankar, 2010c).      

Power law index n: 0.95 - 1.05; Yield stress θ: 0 – 
0.2;  Pressure gradient e: 0.5 - 0.7; Body 
acceleration parameter B: 0 – 2; Interface location 
parameter  : 0.95 – 1; Maximum projection of 

first stenosiss 1P  (= 1 in single-phase H-B fluid 

model) and second stenosis 2P  (= 2 in two-phase 

H-B fluid model)  in the peripheral layer region: 
0.05 – 0.15; Maximum projection of first stenosiss 

1 1C P   and second stenosis 2 2C P    in the 

core region; Length of segment of the artery: 60.6; 
Pulsatile Reynolds number H : 0.2 – 0.7; Pulsatile 

Reynolds number ratio  N H   takes the same 

value that is given to H ; N is calculated from 

N H   (Sankar, 2010b).  
 

3.1 Plug Core Radius 

The variation of plug core radius with axial distance 
of single-phase H-B fluid model and two-phase H-B 
fluid model for different values of ,   and e with 

n = 0.95, t = 296.47°, θ = 0.1, ω = 1,  δ1 = 0.15, δ2 = 
0.1 and B = 1 are shown in Fig. 2a and 2b 
respectively. One can easily note that all the 
distribution curves appear to follow the outline of 
the two stenoses where the plug core radius 
decreases from the beginning of the constriction ( z 
= 9.376, z = 32.9) until the peak of the stenoses ( z = 
18.85, z = 41.45) and then it increases until the 
offset of the constrictions (z = 28.325, z = 50) are 
reached. At non-stenotic region, plug core radius 
remain at maximum value. It is seen that when the 
pulsatile Reynolds number α increases, the plug 
core radius increases considerably and it decreases 
significantly with the increase of the pressure 
gradient and lead angle  . It is also clear that for a 

given set of values of the parameters, the plug core 
radius of the two-phase H-B fluid model is 
marginally higher than that of single-phase H-B 
fluid model. 
 

3.2 Plug flow Velocity 

The axial variation of plug flow velocity of single-
phase and two-phase H-B fluid models for different 
values of the parameters θ,  , 1P and 2P with n = 

0.95, ω = 1, t = 296.47˚, e = 0.5, α = 0.2 and B = 1 
are exhibited in Figs. 3a and 3b respectively. It is 
noted that plug flow velocity of the fluid decreases 
significantly when it moves from non-stenotic 
region to stenotic region and attains its minimum 
value at the mid-point of the stenoses ( z = 18.85, z 
= 41.45 ) where the depth of the stenoses are 
maximum and from there, the plug flow velocity 
increases significantly until it reaches the non-
stenotic region. It is also observed that for fixed 

value of  and increasing values of the yield stress 

 and the maximum depth of the stenoses 1P and 

2P , the plug flow velocity decreases marginally, 

but it increases marginally with the increase of the 

lead (phase) angle  while all the other parameters 

were treated as invariants. It is of important to note 
that the plug flow velocity of two-fluid H-B model 
is considerably higher than that of the single-fluid 
H-B fluid model.  
 

 
a. Single-phase H-B fluid model. 

 

 
b. Two-phase H-B fluid model with  = 0.95. 

Fig. 2. Variation of plug core radius with axial 
distance for different e, αH and  with n = 0.95, 
t = 296.47˚, θ = 0.1, α = 0.2 , ω = 1 , δ1P = 0.15 

, δ2P = 0.1, B = 1. 
  

 
a. Single-phase H-B fluid model. 

 
b. Two-phase H-B fluid model with  = 0.95. 

Fig. 3. Variation of plug flow velocity with axial 
distance for different values of θ, , δ1P and δ2P 

with n = 0.95, t = 296.47˚, e = 0.5, αH = 0.2, 
ω = 1, B = 1 and β = 0.95. 
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3.3 Velocity Distribution 

Velocity profiles of single-phase and two-phase H-
B fluid models for different values of B, n, 1P and 

  with z = 18.85, 2 , 0.2,P H     1  are 

depicted in Figs. 4a and 4b respectively. One can 
notice the flattened velocity distribution around the 
axis of the tube for both of the fluid models. It is 
clear that the velocity of both of the fluid models 
increases significantly with the increase of the body 
acceleration and it decreases considerably when the 
power law index n increases while all the other 
parameters were kept as constant. For fixed values 
of B and n and increasing values of  and 1P , the 

velocity decreases marginally. It is also observed 
that the velocity distribution of two-phase H-B fluid 
model is marginally higher than that of single-phase 
H-B fluid model. It is of important to mention that 
the plot of the velocity profile in Fig. 8a for single-
phase H-B fluid model is in good agreement with 
the corresponding plot in Fig. 6 of Sankar and 
Ismail (2010) and the plot of the velocity profile in 
Fig. 8b for two-phase H-B fluid model is in good 
agreement with the corresponding plot in Fig. 7 of 
Sankar (2010).    
 

 
a. Single-phase H-B fluid model. 

 
b. Two-phase H-B fluid model with β = 0.95. 

Fig. 4. Velocity distribution for different values 
of B, n, δ1P and θ with δ2P = 0.1, H  = 0.2 ,  = 

0.2, ω = 1, z = 18.85. 
 

3.4 Flow Rate 

Fig. 5 shows the variation of flow rate of single-
phase H-B fluid model with yield stress for 
different values of B, , α and δ1 with t = 296.47o, ω 
= 1, 2  = 0.1, n = 0.95, e = 0.5 and  z = 18.85. It is 

seen that the flow rate decreases linearly with 
increasing yield stress θ. For a given set of values of 

the parameters α and δ1, the flow rate increases 
considerably with the increase of the lead angle   

and it increases significantly with the increase of 
the body acceleration parameter B. It is also noted 
that the flow rate decreases slightly with the 
increase of the pulsatile Reynolds number ratio   
and it decreases significantly with the increase of 
the maximum depth of the first stenosis when all the 
other parameters were kept as invariables. The 
Variation of flow rate of two-phase H-B fluid 
model with yield stress for different values of 

, , HB   and e with ω = 1, t = 296.47˚, 

1 2 0.1P P   , n = 0.95, 0.95  and z = 18.85  

is depicted in Fig. 6. It is observed that flow rate 
decreases linearly with the increase of the yield 
stress of the fluid. For a given set of values of the 
parameters ,B e  and  , the flow rate decreases 

marginally with the increase of the pulsatile 
Reynolds number H of H-B fluid (fluid in the core 

region), whereas, the flow rate increases 
significantly with the increase of the body 
acceleration parameter B and it increases 
considerably with the increase of the lead angle 

 and pressure gradient parameter e  when all the 

other parameters were held fixed. From Figs. 5 and 
6, one can observe that the flow rate of two-phase 
H-B fluid model is significantly higher than that of 
the single-phase H-B fluid model.  
 

 
Fig.5. Variation of flow rate of single-phase H-B 
fluid model with yield stress for different values 
of B, , α and δ1 with t = 296.47o, ω = 1, δ2 = 0.1, 

n = 0.95, e = 0.5 and z = 18.85. 
 

 
Fig. 6. Variation of flow rate of two-phase H-B 

fluid model with yield stress for different values 
of , , HB   and e  with ω = 1, n = 0.95,   t = 

296.47˚, 1 2 0.1P P   , 0.95   and 

18.85z  . 
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Fig. 7. Variation of wall shear stress of two-

phase H-B fluid model in a time cycle for 
different values of B, δ1P, H  and θ with n = 0.95 

, δ2P = 0.1 ,  = 0, ω = 1, z = 18.85, β = 0.95  
and e = 0.5. 

 

3.5 Wall Shear Stress 

The variation of wall shear stress of two-phase H-B 
fluid model in a time cycle for different values of B, 

1P  and ω with n = 0.95, 2 0.1, 0.2P H   ,    

= 0, ω = 1, z = 18.85, β = 0.95 and e = 0.5 is 
exhibited in Fig. 7. One may observe that the wall 
shear stress decreases rapidly as time t increases 
from 0° to 140°and then it increases slowly with the 
increase of time t from 140° to 180° and then it 
decreases slowly with the increase of time t from 
180° to 220° and thereafter it increases rapidly as 
time t increases from 220° to 360°. One may notice 
that when the maximum depth of the first stenosis 
in the peripheral layer region 1P  increases, the 

wall shear stress decreases considerably in the time 
range 0° - 140° and  220° to 360° , decreases 
marginally in the time range 140° - 220°. It is also 
clear that the wall shear stress increases 
considerably with the increase of the body 
acceleration parameter B. When the parameters B 
and 1P  held constant and the frequency parameter 

 increases, the wall shear stress decreases very 
slightly in the time range 0° - 140°and 180° - 230° 
and then it increases very slightly in the time range 
140° - 180°and 230° - 360°. Fig. 8 depicts the 
variation of wall shear stress of single-phase and 
two-phase H-B fluid models in a time cycle. It is 
noted that the wall shear stress of two-phase H-B 
fluid model is considerably lower than that of 
single-phase H-B fluid model and in the flow of 
both of the fluid models, the wall shear stress 
increases marginally with the increase of the 
pressure gradient parameter. 
 

 
Fig. 8. Variation of wall shear stress with time 

for different fluid models with αH = 0.2, ,     
e =0.5, β = 0.95, n = 0.95, δ1P = 0.15, θ = 0.1, δ2P = 

0.1, ω = 1 and z = 18.85. 

3.6 Longitudinal Impedance to Flow 

The variation of longitudinal impedance to flow of 
single-fluid H-B model with pressure gradient 
parameter e for different values of B, and ω with θ 
= 0.1, n = 0.95, t = 296.47˚, 1 2 0.1   , z = 18.85 

and 0.2  is illustrated in Fig. 9. One can observe 
that the longitudinal impedance to flow decreases 
rapidly with the increase of pressure gradient 
parameter e from 0 to 1.5 and then it decreases very 
slowly when the pressure gradient parameter e 
increases from 1.5 to 6. It is noticed that the 
longitudinal impedance to flow decreases with the 
increase of the parameters ,B  and  ; but the 

decrease in the longitudinal impedance to flow  is 
marginal when lead angle  increases, considerable 

when the body acceleration parameter B  increases 
and significant when the frequency parameter 
 increases. The variation of longitudinal 
impedance to flow of single-phase and two-fluid H-
B models in a time cycle for different values of yield 
stress   with t = 296.47˚, B = 1, δ1P = 0.15, δ2P = 

0.1, n = 0.95, e = 0.5, ω = 1,  = 0.2, H  = 0.2 and 

β = 0.95 is shown in Fig. 10. It is noted that the 
impedance to flow of two-phase H-B fluid model is 
marginally lower than that of single-phase H-B fluid 
model. It is clear that the impedance to flow 
increases significantly with the increase of the 
fluid’s yield stress. 
 

 
Fig. 9. Variation of longitudinal impedance to 

flow of single-phase H-B fluid model with 
pressure gradient for different values of B, and 
ω with θ = 0.1, n = 0.95, t = 296.47˚, α = 0.2, δ1 = 

δ2 = 0.1 and z = 18.85. 
     

 
Fig. 10. Variation of longitudinal impedance to 

flow with axial distance for different fluid 
models when e = 0.5, αH =0.5, n = 0.95, t = 

296.47˚, α = 0.2, ω = 1, δ1P = 0.15, B = 1, δ2P = 0.1 
and β = 0.95. 

 

3.7 Physiological Applications 

To spell out some physiological applications of the 
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this study, the data (for different types of arteries, 
their corresponding radii, steady and pulsatile 
pressure gradient values) reported by Chaturani and 
Issac (1995) are reproduced in Table 1 and are used 
in our study to compute some important clinical 
measures of cardiovascular system. For arteries 
with different radii, the estimates of the mean 
velocity for two-phase and single-phase H-B fluid 
models for blood flow in narrow arteries with mild 
multiple-stenoses in the presence and absence of 
body acceleration with t = 296.47˚, B = 1, δ1P = 
0.15, δ2P = 0.1, n = 0.95,  e = 0.5, ω = 1,  = 0.2, 

0.2,H    and β = 0.95 are computed in Table 

2. One can note that for both of the fluid models, 
the estimates of the mean velocity decreases 
significantly with the increase of radius of the artery 
except for the arteriole. It is also recorded that that 
the presence of body acceleration influences the 
mean velocity by increasing its magnitude 
significantly. It is found that the estimates of the 
mean velocity of the two-phase flow of blood are 
marginally higher than that of the single-phase flow 
of blood.  
 
Table 1 Physiological data for different arteries. 

Artery 

Radius 

 2x 10 m

 

0A  

 x -2 -110 Kg m s

 

1A  

 x -2 -110 Kg m s

 
Aorta 1.0 7.3 1.46 

Femoral 0.5 32.0 6.4 
Carotid 0.4 50.0 10.0 

Coronary 0.15 698.65 139.74 
Arteriole 0.008 2000.0 400 

 
Table 2 Estimates of mean velocity for two-phase 
and single-phase blood flow models for arteries 

with different radii. 

Artery 

Mean velocity with 
body acceleration 

 210 m s  

Mean velocity 
without body 
acceleration 

 210 m s  

Two- 
phase 
fluid 
model 

Single- 
phase 
fluid 
model 

Two- 
phase 
fluid 
model 

Single-
phase  
fluid 
model 

Aorta 72.56 70.25 64.46 62.18 
Femoral 80.23 76.45 70.61 68.72 
Carotid 80.23 76.45 70.61 68.72 

Coronary 155.68 150.42 133.74 129.4 

Arteriole 1.3212 1.2732 1.1243 1.101 

 

3.8 Discussion on the Results  

The results obtained in this study bring out the 
following important observations. 

 The presence of body acceleration enhances the 
velocity and flow rate and reduces the wall 
shear stress and longitudinal impedance to flow. 

 The velocity and flow rate of the blood flow are 
considerably higher when is it modeled by two-
phase H-B model compared to the 

corresponding flow quantities when it is 
modeled by single-phase H-B model.   

 The wall shear stress and longitudinal 
impedance to flow of the blood flow are 
considerably lower when is it modeled by two-
phase H-B model compared to the 
corresponding flow quantities when it is 
modeled by single-phase H-B model.   

4. CONCLUSION 

The present mathematical analysis spells out 
several useful and interesting rheological properties 
of blood when it flows through narrow arteries with 
mild axi-symmetric multiple-stenoses in the 
presence of periodic body acceleration, treating it 
as (i) single-phase H-B fluid model and (ii) two-
phase H-B fluid model. Some major findings of this 
comparative analysis are listed below.  

 The velocity decreases significantly with the 
increase of the yield stress and the reverse 
behavior is observed for longitudinal 
impedance to flow. 

 The plug flow velocity, velocity distribution 
and flow rate are considerably higher for two-
phase H-B fluid model than those of the single-
phase H-B fluid model. 

 The plug core radius, wall shear stress and 
longitudinal impedance to flow are marginally 
lower for two-phase H-B fluid model than those 
of the single-phase    H-B fluid model. 

 The estimates of the mean velocity are 
considerably higher for two-phase H-B fluid 
model than those of the single-phase H-B fluid. 

From the results obtained in this investigation, it is 
observed that there is substantial difference 
between the flow quantities of single-fluid and two-
phase H-B fluid models. Thus, it is expected that 
the use of two-phase H-B fluid model for blood 
flow in diseased artery may provide better results 
which may be used by the physicians to predict the 
effects of periodic body accelerations and different 
depths of stenoses in the artery on the 
physiologically important flow quantities. Also, 
one may hope that this analysis may provide some 
useful information to surgeons to take some crucial 
decisions regarding the treatment of patients, 
whether the vascular diseases can be treated with 
medicines or should the patient undergo a surgery. 
Hence, it is concluded that the present study may 
be considered as an improvement in the analysis of 
blood flow in narrow arteries with mild multiple-
stenoses under periodic body accelerations.  
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Appendix A 

Solving Eqs. (9) and (11) with the help of the 
boundary conditions (12) and (13) and Eqs. (14) – 
(19), one can obtain the following expressions for 

1 1 1, ,P H Hu  and 1Pu  (Sankar and Ismail, 2010). 
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where   1 .D g dg dt  

Appendix B 

From Eq. (6) and the expressions for velocity, the 

expression for the volumetric flow rate  ,Q z t is 

obtained as below. 
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Appendix C 

Eqs (39) - (46) form a system of partial differential 
equations which can be solved for the unknowns 

0 1 0 1 0, , , , ,H H H H Nu u u  1 0,N Nu   and 1N  with 

the help of boundary conditions (47) - (51) and the 
expressions obtained for these quantities are 
obtained as below. 
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where  
0

2
0P P g tr = R = q    ,   2q g t , 

     1 cos Bcosg t e t      , 

  1 .B g dg dt  One can refer Sankar (2010c)  

for details of obtaining the above expressions. 

Appendix D 

Using the expression obtained for velocity 
distribution in Eq. (36), the expression for the 
volumetric flow rate  ,Q z t can be obtained as 

given below. 
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