
 Journal of Applied Fluid Mechanics, Vol. 8, No. 4, pp. 911-919, 2015.
 Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.
DOI: 10.18869/acadpub.jafm.67.223.23941

Dual Solutions for MHD Jeffery–Hamel Nano-Fluid Flow 
in Non-parallel Walls Using Predictor Homotopy  

Analysis Method 

N. Freidoonimehr1† and M. M. Rashidi2, 3 

1 Young Researchers & Elite Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran 
2 Mechanical Engineering Department, Engineering Faculty of Bu-Ali Sina University, Hamedan, Iran 

3 Mechanical Engineering Department, University of Michigan-Shanghai Jiao Tong University Joint Institute, 
Shanghai Jiao Tong University, Shanghai, Peoples Republic of China  

†Corresponding Author Email: nfreidoonimehr@yahoo.com 

(Received July 10, 2014; accepted August 16, 2014) 

ABSTRACT 

The main purpose of this study is to present dual solutions for the problem of magneto-hydrodynamic 
Jeffery–Hamel nano-fluid flow in non-parallel walls. To do so, we employ a new analytical technique, 
Predictor Homotopy Analysis Method (PHAM). This effective method is capable to calculate all branches of 
the multiple solutions simultaneously. Moreover, comparison of the PHAM results with numerical results 
obtained by the shooting method coupled with a Runge-Kutta integration method illustrates the high accuracy 
for this technique. For the current problem, it is found that the multiple (dual) solutions exist for some values 
of governing parameters especially for the convergent channel cases (α = -1). The fluid in the non-parallel 
walls, divergent and convergent channels, is the drinking water containing different nanoparticles; Copper 
oxide (CuO), Copper (Cu) and Silver (Ag). The effects of nanoparticle volume fraction parameter (φ), 
Reynolds number (Re), magnetic parameter (Mn), and angle of the channel (α) as well as different types of 
nanoparticles on the flow characteristics are discussed. 

Keywords: MHD; Nano-fluid; Jeffery–Hamel flow; Non-parallel walls; Predictor homotopy analysis method; 
Multiple solutions. 

NOMENCLATURE 

B0 electromagnetic induction 
ci arbitrary constant 
F self-similar velocity 
fmax dimensional constant 
Mn magnetic parameter 
P fluid pressure 
r radial direction in cylindrical polar coordinate 
Re Reynolds number 
u velocity component in the radial direction
x dimensionless degree 

α semi-angle between the two inclined walls 
σ electrical conductivity 

δ prescribed parameter  
 auxiliary function 

ћ auxiliary nonzero parameter 
L auxiliary linear operator 
N nonlinear operator 
φ nanoparticle volume fraction 
θ tangential direction in cylindrical polar 
 coordinate 
ρ density 
ν kinematic viscosity 
μ viscosity 

Subscripts 
f fluid 
nf nano-fluid 
s solid 

1. INTRODUCTION

Working fluids have great demands placed upon 
them in terms of increasing or decreasing energy 
release to systems, and their influences depend on 

thermal conductivity, heat capacity and other 
physical properties in modern thermal and 
manufacturing processes. A low thermal 
conductivity is one of the most remarkable 
parameters that can limit the heat transfer 
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performance. Suspending the ultrafine solid 
metallic particles in technological fluids causes an 
increase in the thermal conductivity. This is one of 
the most modern and appropriate methods for 
increasing the coefficient of heat transfer. It is 
expected that the ultrafine solid particle is able to 
increase the thermal conductivity and heat transfer 
performance, since the thermal conductivity of solid 
metals is higher than that of base fluids. Choi and 
Eastman (1995) were probably the first to employ a 
mixture of nanoparticles and base fluid that such 
fluids were designated as “Nano-fluid”. 
Experimental studies have displayed that with 1-5% 
volume of solid metallic or metallic oxide particles, 
the effective thermal conductivity of the resulting 
mixture can be increased by 20% compared to that 
of the base fluid, as stated by Eastman et al. (1999). 
Xuan and Li (2003) stated that the flow and heat 
transfer performance of nano-fluids under the 
turbulent flow in tubes. 

Their experimental results showed that the 
convective heat transfer coefficient and Nusselt 
number of nano-fluids are enhanced by increasing 
the Reynolds number and volume fraction of 
nanoparticles. A wide range of review papers on 
nano-fluids and their different applications can be 
found in Bachok et al. (2010), Mahian et al. (2012), 
Rashidi et al. (2013a), Rashidi et al. (2014a), 
Sheikholeslami and Ganji (2014a). 

The study of flows in converging/diverging channel 
is very important due to its vast engineering and 
industrial applications, such as enhancing heat 
transfer of heat exchangers for milk flowing, cold 
drawing operation in polymer industry, extrusion of 
molten polymers through converging dies, and 
many others, as stated by Kato and Shibanuma 
(1980), Hooper et al. (1982), Sadeghy et al. (2007). 
In recent years, this problem is extensively studied 
by several researchers. Moghimi et al. (2011) 
studied the MHD Jeffery–Hamel flows in non-
parallel walls analytically using Homotopy analysis 
method (HAM). Hatami et al. (2014), Hatami and 
Ganji (2014) investigated the MHD Jeffery–Hamel 
nano-fluid flow in non-parallel walls using 
Differential Transformation Method (DTM), Least 
square method (LSM) and Weighted Residual 
Method (WRM). In another study, Moradi et al. 
(2013) discussed the nonlinear Jeffery–Hamel flow 
problem in a nano-fluid. 

One of the most important methods for highly-
nonlinear problems is the homotopy analysis 
method (HAM) which was firstly employed by Liao 
(2004a), (2004b) for the nonlinear problems, which 
is of fundamental interest for practical using in 
science and engineering. This powerful method is 
being employed vastly by many researchers in 
different practical aspects of engineering and 
nonlinear problems. Rashidi et al. (2014b) 
employed HAM to investigate the free convective 
heat and mass transfer in a steady 2D magneto-
hydrodynamic fluid flow over a stretching vertical 
surface in porous medium. In another study, Rashidi 
et al. (2014c) investigated the MHD mixed 
convective heat transfer for an incompressible, 
laminar, and electrically conducting viscoelastic 

fluid flow past a permeable wedge with thermal 
radiation via HAM. Hayat et al. (2009) depicted the 
effects of MHD flow of an upper-convected (UCM) 
fluid over a stretching surface via HAM. Abbas et 
al. (2010) presented an analytical solution for the 
mixed convective flow in a Maxwell fluid over a 
stretching surface. Rashidi et al. (2013b) studied the 
first and second law analyzes of an electrically 
conducting fluid past a rotating disk in the presence 
of a uniform vertical magnetic field analytically and 
then applied artificial neural network and particle 
swarm optimization algorithm to minimize the 
entropy generation. 

Recently, a new method related to the homotopy 
analysis method has been presented by Abbasbandy 
and Shivanian (2011), Shivanian and Abbasbandy 
(2014), Vosoughi et al. (2012), Abbasbandy and 
Shivanian (2014) namely Predictor Homotopy 
Analysis Method (PHAM). The main idea of 
PHAM is to rebuild the homotopy analysis method 
by adding rule of multiplicity of solutions and so-
called prescribed parameter. This analytical 
technique can receive much more attention because 
of its accuracy and the ability to gain the solution 
for problems with multiplicity solutions (dual, 
triple, etc. solutions) (Bing-li and Yin-ping (2013)). 

In this article, we check and present the dual 
solutions for the MHD Jeffery–Hamel nano-fluid 
flow in non-parallel walls via a new analytical 
technique, PHAM. Although the problem of 
Jeffery–Hamel nano-fluid in non-parallel walls are 
already considered in several articles by Hatami et 
al. (2014), Moradi et al. (2013) and Sheikholeslami 
et al. (2012) using different numerical/analytical 
techniques as mentioned before, dual solutions for 
the problem of MHD Jeffery–Hamel nano-fluid 
flow in non-parallel walls are firstly presented in 
this study. Moreover, the effects of the nanoparticle 
volume fraction parameter, Reynolds number, 
magnetic parameter, and angle of the channel as 
well as different types of nanoparticles; Cuo, Cu 
and Ag, on the flow velocity are discussed. 

The content of this article is divided up as follows: 
in section 2 we derive the mathematical model that 
will be investigated in this study. In section 3 we 
implement the PHAM to solve the resulting system 
of nonlinear differential equations. Section 4 deals 
with the PHAM calculations of the multiplicity of 
solutions. Results are discussed in section 5. 
Conclusion section is also presented in section 6. 

2. PROBLEM FORMULATION 

Let us consider the system of cylindrical polar 
coordinates (r, θ, z) which steady 2D flow of an 
incompressible conducting viscous fluid from a 
source or sink at channel walls lies in planes, and 
intersect in z-axis. It is assumed that there are no 
changes with respect to z and the motion is purely 
in radial direction and just depends on r and θ, 
which means that there is no change in the flow 
parameter along the z direction or v = (u(r, θ), 0), 
and moreover there is no magnetic field along  
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a                                                                                  b 

 
c) 

Fig. 1. Geometry of the MHD Jeffery–Hamel flow with nano-fluid in divergent channel; 
a) 3-D view, b) 2-D view and c) Schematic setup of problem. 

 
z-axis. We consider that the converging/diverging 
channel has macro-scale and therefore no-slip 
condition holds at the wall. In addition, we assume 
that the base fluid and nanoparticles have the same 
velocity in an incompressible laminar flow. The 
coordinate system, 2D and 3D views of the problem 
geometry and schematic setup of problem are 
shown in figure 1. The equations of continuity and 
motion under the above considerations can be 
written as (Hatami and Ganji (2014), Moradi et al. 
(2013), Sheikholeslami et al. (2012), 
Sheikholeslami and Ganji (2014b)): 

   ( , )
( , ) 0,

nf r u r
r u r

r r

 






 (1) 

2

22
0

22

2 2 2

( , ) 1
( , )

( , ) 1 ( , )

( , ),
1 ( , ) ( , )

nf

nf
nf

nf

u r P
u r

r r

u r u r

Br rr
u r

ru r u r

r r






 


 

 



 
  

 

 






 



 
 
 
 
 
  

(2)

2

21 ( , )
0,

nf

nf

P u r

r r

 

  

 
 

 
 (3) 

Subjected to the bellow boundary conditions: 
At the channel centerline: 

( , )
0

u r 







 ( , ) maxu r U   

At the plates, making the body of the channel: 
( , ) 0u r    

where ρnf  is the fluid density, P is the fluid 
pressure, νnf is the coefficient of kinematic 
viscosity, σnf is the conductivity of the fluid, and B0 

is the electromagnetic induction. In addition, μnf and 
ρnf are the effective dynamic viscosity and effective 
density of the nano-fluid, where μnf has been 
proposed by Brinkman (1952). The mentioned 
physical nano-fluid parameters are introduced as 
(Hatami et al. (2014)): 
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(4) 
where φ is the nanoparticle volume fraction, the 
subscripts nf, f and s are the thermo-physical 
properties of the nano-fluids, base fluid and the 
solid nanoparticles, respectively. The physical 
properties of the base fluid (drinking water) and 
different nanoparticles are given in Table 1 (Hatami 
et al. (2014), Oztop and Abu-Nada (2008)). 
Considering    uθ = 0 for purely radial flow, the 
velocity parameter can be defined as: 

( ) ( )f r u r   (5) 
Introducing the x = θ / α as the dimensionless 
degree, the dimensionless form of the velocity 
parameter can be obtained by dividing that to its 
maximum value (fmax), a dimensional constant 
which can be related to the flow rate per unit length, 
as: 

( )
( )

max

f
F x

f


  (6) 

Eliminating P between Eqns. (2) and (3), we obtain 
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the following problem: 
 

Table 1 Thermo-physical properties of the base fluid and different nanoparticles 

Physical properties 
Fluid phase 

(Drinking water) 
CuO Cu Ag 

3
( )kg m   997.1 6320 8933 10500 

1
( )S m   0.05 4.93×107 5.96×107 6.28×107 

 

 
Fig. 2. Prescribed parameter δ via convergence controller parameter ћ in according to eq. (20) with        

M = 25 when α = - 1, Re = 10, φ = 0.025 and Mn = 1. 
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where 2

0f f
Mn B  is the magnetic parameter and 

the Reynolds number is: 

0, 0
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            (8) 

The reduced form of boundary conditions becomes: 
(0) 1, (0) 0, (1) 0,F F F  

                          (9) 

3. PREDICTOR HOMOTOPY 
ANALYSIS METHOD (PHAM) 

In order to gain PHAM solution, the boundary 
conditions in eq. (9) become as follows: 

(0) 1, (0) 0, (0) ,F F F                    (10) 

with the additional forcing condition which plays an 
important role in PHAM: 

(1) 0,F 
                                                            (11) 

Now, we use PHAM for the Eqns. (7) and (10) with 
prescribed parameter δ. According to the initial 
conditions: 

2
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(12) 

In this paper, the auxiliary function has been chosen 
to be ( ) 1x   and the linear operator is as 

follows: 
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with the properties: 
2

1 2 3( ) 0,F c c x c x  
                                       

(14) 

Therefore, after three subsequent integrations, the 
M th order deformation equation of PHAM yields 
for       M ≥ 1. 
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(16) 

and integration constants c1, c2 and c3 are obtained 
by the conditions 

(0, ) (0, ) (0, ) 0,m m mF F F     
                   (17) 

Using eq.(15), we obtain the functions ( , )
m

F x   

for m = 1, 2, 3, … successfully. Finally, we can 
obtain    M th order approximate solution: 

0

( , , ) ( , ),
M

M m

m

F x F x 


   (18) 

And the additional forcing condition (11) takes the 
form of: 

(1, , ) 0,MF    (19) 
Now, for example, we consider the convergent 
channel cases, α = -1, in figure 2. Due to the eq 
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Fig. 3. Prescribed parameter δ via convergence controller parameter ћ in according to eq. (20) with 

M = 25 when α = - 1, Re = 10, φ = 0.025 and Mn = 1 (Magnification of Fig. 2). 

 
Fig. 4. Dual velocity profile when Re = 10, φ = 

0.025 and Mn = 1. 

 
Fig. 5. The residual error for M = 25 when Re = 

10, φ = 0.025 and Mn = 1. 

 

(19) in this figure, δ (prescribed parameter) as a 
function of convergence parameter ћ, has been 
figured. In order to obtain the values of δ and ћ with 
high accuracy, the magnified forms of prescribed 
parameter as a function of convergence parameter 
are plotted in figure 3. Two δ-lands can be 
determined in this figure, namely δ = -0.5722 in the 
range [-1.6, -0.4] of ћ and δ = -26.612 in the range 
[-0.6, -0.3] of ћ. The approximate PHAM solutions 
of velocity profile correspond to δ = -0.5722 and 
δ = -26.612, given by (19), are displayed in figure 
4. In order to survey the accuracy of these dual 
approximate solutions, the residual errors of the 25th 
order of PHAM solutions are illustrated in figure 5. 
In addition, we compare some of our results with 
the numerical results obtained by the shooting 
method coupled with a Runge-Kutta integration 
method in table 2 to highlight the validity of the 
applied method for the convergent and divergent 
channel cases. A very excellent agreement can be 
observed between them. It should be mentioned that 
we present two branches of solution via PHAM in 
table 2, the first line refers to upper branch and the 
second line refers to lower branch solution. 

4. PHAM CALCULATION OF THE 
TWO BRANCHES OF 
SOLUTION 

In this problem, the multiplicity of solutions (dual 

solutions) of the eqns. (7) and (9) or equivalently 
(10), for the convergent channel cases, α = -1, in the 
parameter plane (ћ, δ), have been identified, we 
may turn to calculate them explicitly to any desired 
order M of PHAM-approximation according to eq. 
(18). We mention that both the upper and lower 
branches of solutions are calculated at the same 
time only by eq. (19) with different δ and ћ which 
are specified from Fig. 3, δ = -0.5722 and 
δ = -26.612, respectively for the first and second 
branches of solutions. As one of the most important 
advantages of PHAM, there is no need to employ 
more than one initial approximation guess, one 
auxiliary linear operator, and one auxiliary function 
that is in a sharp contrast to all approximation 
methods which are applied to converge to one 
solution. 

5. RESULTS AND DISCUSSION 

The nonlinear ordinary differential equation (7) 
subject to the boundary conditions (9) is solved 
analytically via a definitely new analytical 
technique, PHAM, for some values of the 
nanoparticle volume fraction parameter (φ), 
Reynolds number (Re), magnetic parameter (Mn), 
and angle of the channel (α). We considered three 
types of nanoparticles, namely, Copper oxide 
(CuO), Copper (Cu) and Silver (Ag) with water as 
the base fluid. We remark that the copper 
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Fig. 7 presents the effect of Reynolds number for 
the divergent and convergent channel with slope 1°, 

respectively. In the divergent channel cases, the  

a) b) 

 
Fig. 8. Effect of the nanoparticle volume fraction parameter on the velocity profile when Re = Mn = 10. 

 
a) b) 

 
Fig. 9. Effect of the magnetic parameter on the velocity profile when Re = 10 and φ = 0.025. 

 
a) b) 

 
Fig. 10. Effect of different nanoparticle types’ on the velocity profile when Re = Mn = 10 and φ = 0.025. 

 

 

results show that increasing in Reynolds number 
make a decrease in velocity profile. Furthermore, 
the flow moves reversely and a region of back flow 
near the wall is observed for the higher Reynolds 
number    (Re ≥ 20). In addition, for convergent 
channel, results are inversed and by increasing the 
Reynolds number, velocity profiles are enhanced. 
As the results illustrate, the dual solutions exist in 
the convergent channel cases. 

Fig. 8 depicts the effect of nanoparticle volume 
fraction parameter on the velocity profile for a 
divergent and convergent channel with 1° slope. It 
can be seen that increasing nanoparticle volume 
fraction parameter in divergent channel lead to 
decrease velocity profile. The results are inversed 

for the convergent channel cases. 

The effect of magnetic parameter for a divergent 
and convergent channel is illustrated in figure 9. 
The velocity profiles show that the rate of transport 
is considerably reduced with increase of M. This 
clearly display that the transverse magnetic field 
opposes the transport phenomena. Because of this 
fact that the variation of M leads to the variation of 
the Lorentz force due to magnetic field and the 
Lorentz force produces more resistance to transport 
phenomena. Increasing in the magnetic parameter 
makes an increase in velocity profile. In addition, 
the flow reversal disappears by the increasing of M 
for the divergent channel cases. 
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Finally, the effect of different nanoparticle types on 
the velocity profile is displayed in figure 10. It is 
obvious that selecting copper oxide (CuO) as a 
nanoparticle leads to maximum values in the 
velocity profile, but this treatment of nano-fluids 
structure is completely vice versa for convergent 
channels. 

6. CONCLUSION 

In this study, Predictor Homotopy Analysis Method 
(PHAM) as a new analytical technique was applied 
to solve the problem of MHD Jeffery–Hamel nano-
fluid flow in non-parallel walls for the divergent 
and convergent channels. This applied method is 
very powerful especially for those boundary value 
problems which admit multiple solutions and also is 
capable to calculate all branches of the solutions 
simultaneously. For the current problem, it was 
found that the dual solutions existed for the 
convergent channel cases (α = -1). The results of 
current study were compared with the numerical 
solution obtained using the shooting method, 
coupled with a Runge-Kutta scheme. We found that 
the analytical solution matches the numerical 
solution quite well. In continued, the effects of the 
nanoparticle volume fraction parameter, Reynolds 
number, magnetic parameter, and angle of the 
channel as well as different types of nanoparticles 
on the flow were discussed in details. 
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