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ABSTRACT

In this paper, we consider the magnetohydrodynamic (MHD) boundary layer flow and heat transfer
of power law fluid over a flat plate with slip boundary conditions. We use a similarity transformation
to convert the governing nonlinear partial differential equations into a system of ordinary differen-
tial equations and solve the resulting system numerically using MATLAB’s boundary value solver,
bvp4c, and the shooting method. We present velocity and temperature profiles within the bound-
ary layer and demonstrate the effect of changing the magnetic parameter, Prandtl number, and slip
parameters.

Keywords: Magnetohydrodynamic flow; Nonlinear boundary value problem; Slip flow; Non-
Newtonian fluid.

1. INTRODUCTION

The layer of fluid that flows directly adjacent
to its bounding surface is called the boundary
layer. The boundary layer is an extremely im-
portant concept in fluid mechanics and has been
studied extensively for decades. Fluid motion
in the boundary layer is influenced by a num-
ber of factors including fluid viscosity, bound-
ing surface characteristics, and external forces,
to name a few. Models are being continuously
developed and refined to demonstrate the inter-
action between these factors and their effect on
fluid flow in the boundary layer.

Some refinements of the boundary layer model
have focused on forced convection of viscous
fluids past their bounding surfaces, thus in-
corporating an analysis of heat transfer, such
as the study of vertical flat plates imbedded
in porous media by Pop and Takhar (Pop and
Takhar 1983). The inclusion of heat transfer
in studies of fluid flow has greatly expanded
the applicability of modeling to the aviation,
petroleum refinement, and food processing in-
dustries. These thermodynamic models were
further extended by the work of Damseh et
al. (Damseh, Duwairi, and Al-Odat 2006) who,
among others, demonstrated the effect of mag-

netic fields on the flow of electrically conduc-
tive fluids. This analysis of MHD fluids became
vitally important in the operation of pumps, tur-
bines, and bearings. Martin and Boyd (Martin
and Boyd 2006) and Bhattacharyya et al. (Bhat-
tacharyya, Mukhopadhyay, and Layek 2011) in-
corporated velocity and thermal slip conditions
in their studies of laminar flow across flat plates
to further refine our understanding of boundary
layer flow.

Many models consider only Newtonian fluids,
for which strain rate is linearly related to ap-
plied shear stress. As non-Newtonian fluids—
classified as either pseudoplastic or dilatant—
have become more common in industry, anal-
ysis of the boundary layer flow and heat trans-
fer characteristics of these so-called power law
fluids is now a priority. Dilatant fluids, or
shear thickening fluids, are liquids in which
viscosity increases as the applied stress in-
creases, whereas pseudoplastics, or shear thin-
ning fluids, are characterized by the oppo-
site relationship between viscosity and applied
stress. Two of the first studies that considered
power law fluids were performed by Acrivos
et al. (Acrivos, Shah, and Petersen 1960)
and Schowalter (Schowalter 1960). Howell et
al. (Howell, Jeng, and DeWitt 1997) provided a
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notable extension of these works with a study of
the flow of power law fluid over a continuously
moving and stretching surface. Recent addi-
tions considering magnetohydrodynamic flow
were given by Ghosh and Pop (Ghosh and Pop
2006), Mahapatra et al. (Mahapatra, Nandy, and
Gupta 2009) and Reddy et al. (Reddy, Kishan,
and Rajasekhar 2012).

In this article, we study MHD boundary layer
flow of power law fluid over a flat plate. We
consider a modified version of the slip model
by Anderson in (Anderson 2002) by incorpo-
rating features of the thermal slip model pre-
sented by Bhattacharyya et al. (Bhattacharyya,
Mukhopadhyay, and Layek 2011). The result-
ing system of equations is solved using MAT-
LAB’s boundary value solver, bvp4c, and by the
shooting method. We demonstrate the agree-
ment between the results obtained by these two
methods by plotting a direct comparison. In
this study, we seek to collect all of the factors
mentioned above into a single, comprehensive
model by incorporating MHD effects, velocity
and thermal slip boundary conditions, and flow
of a power law fluid. We present plots of the nu-
merically computed solutions and discuss some
of the interesting correlations observed between
the various physical parameters.

2. MATHEMATICAL FORMULATION

To construct our model, we consider steady,
laminar flow of an electrically conductive, vis-
cous fluid. As depicted in Figure 1, we place
this fluid in a two-dimensional environment
over a flat plate and in the presence of a trans-
verse magnetic field. We invoke conservation
of mass, momentum balance, and conservation
of energy to describe the fluid flow and heat
transfer in the boundary layer using the equa-
tions (Howell, Jeng, and DeWitt 1997)

∂u
∂x

+
∂u
∂y

= 0, (2..1)

u
∂u
∂x

+ v
∂u
∂y

=
1
ρ

∂τxy

∂y
− σB2

ρ
(u−U∞) ,(2..2)

u
∂T
∂x

+ v
∂T
∂y

=
κ

ρcp

∂2T
∂y2 , (2..3)

where u is the component of velocity along the
x-axis, v is the component of velocity along the
y-axis, ρ is the fluid density, τxy is the shear
stress, σ is the constant electrical conductivity
of the fluid, B is the magnetic field strength, U∞

is the free stream velocity, T is temperature, κ

is the thermal conductivity, and cp is the spe-
cific heat capacity of the fluid. Equations (2..1)
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Fig. 1. Schematic diagram of MHD bound-
ary layer flow over a flat plate.

- (2..3) are subject to the boundary conditions

u = L1 (∂u/∂y) , v = 0 at y = 0;
u→U∞ as y→ ∞, (2..4)
T = Tw +D1 (∂T/∂y) at y = 0;
T → T∞ as y→ ∞, (2..5)

where L1 = L
√

Rex is the velocity slip factor
with L being the initial value at the leading
edge and D1 = D

√
Rex is the thermal slip fac-

tor with D being the initial value at the lead-
ing edge. Here, Tw is the temperature of the
flat plate, T∞ is the free stream temperature, and
Rex =

U2−n
∞ xnρ

K is the local Reynolds number. We
further define the shear stress as (Mahapatra,
Nandy, and Gupta 2009)

τxy = K
∣∣∣∣∂u
∂y

∣∣∣∣n−1
∂u
∂y

, (2..6)

where n is the power law index and K is the con-
sistency coefficient. Note that K is a general-
ization of the dynamic viscosity µ, which would
take its place in the Newtonian case when n= 1.

We substitute equation (2..6) into equation
(2..2) to obtain

u
∂u
∂x

+ v
∂u
∂y

=
K
ρ

∂

∂y

(∣∣∣∣∂u
∂y

∣∣∣∣n−1
∂u
∂y

)

−σB2

ρ
(u−U∞) . (2..7)

Equations (2..1), (2..3), and (2..7) are then
mapped into a planar geometry by introducing
the stream function ψ(x,y)

u =
∂ψ

∂y
, v =−∂ψ

∂x
, (2..8)
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which identically satisfies equation (2..1) and
transforms equations (2..7) and (2..3) into

∂ψ

∂y
∂2ψ

∂x∂y
− ∂ψ

∂x
∂2ψ

∂y2 =
K
ρ

∂

∂y

(∣∣∣∣∂2ψ
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)
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(
∂ψ
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−U∞

)
, (2..9)

∂ψ

∂y
∂T
∂x
− ∂ψ

∂x
∂T
∂y

=
κ

ρcp

∂2T
∂y2 . (2..10)

Boundary condition (2..4) is likewise trans-
formed into

∂ψ

∂y
= L1

∂2ψ

∂y2 ,
∂ψ

∂x
= 0 at y = 0;

∂ψ

∂y
→U∞ as y→ ∞. (2..11)

3. METHOD OF SOLUTION

In order to obtain solutions, we apply similar-
ity transformations to equations (2..5) and (2..9)
- (2..11) to transform them into a non-linear
boundary value problem involving a system of
ordinary differential equations. Specifically, we
introduce the dimensionless similarity variables
used by Reddy et al. (Reddy, Kishan, and Ra-
jasekhar 2012) and defined as

ψ = `U∞

( x
`

Re

) 1
n+1

f (η), (3..12)

T = T∞ +(Tw−T∞)θ(η), (3..13)

where ` is the characteristic length and Re is the
generalized Reynolds number. We further de-
fine the similarity variable η and Re as

η =

(
Re
x
`

) 1
n+1 y

`
, (3..14)

Re =
ρU2−n

∞ `n

K
. (3..15)

Application of the similarity transformations to
equations (2..9) and (2..10) gives

n| f ′′|n−1 f ′′′+
1

n+1
f f ′′−M( f ′−1) = 0,(3..16)

θ
′′+

1
n+1

Pr f θ
′ = 0, (3..17)

where M is the magnetic parameter and Pr is
the Prantdl number, further defined as

M =
σB2x
ρU∞

, (3..18)

Pr =
(

U3
∞

x

) n−1
n+1 cpρ

κ

(
K
ρ

) 2
n+1

. (3..19)

Boundary conditions (2..11) and (2..5) are
transformed into

f (η) = 0, f ′(η) = δ f ′′(η) at η = 0;
f ′(η)→ 1 as η→ ∞, (3..20)
θ(η) = 1+βθ

′(η) at η = 0;
θ(η)→ 0 as η→ ∞, (3..21)

where δ is the velocity slip parameter and β is
the temperature slip parameter, which are fur-
ther defined as

δ = L
U∞ρ

K
, (3..22)

β = D
U∞ρ

K
. (3..23)

We now employ the MATLAB function bvp4c,
a numerical method designed to solve bound-
ary value problems similar to the one consid-
ered here. To utilize this function, we convert
equations (3..16) and (3..17) to the first order
system

f ′ = p, p′ = q,

q′ =
−1

n(n+1)
f q2−n +

M
n
(p−1)q1−n, (3..24)

θ
′ = z, z′ =

−1
n+1

Pr f z, (3..25)

along with the boundary conditions

f (η) = 0, p(η) = δq(η) at η = 0;
p(η)→ 1 as η→ ∞, (3..26)
θ(η) = 1+βz(η) at η = 0;
θ(η)→ 0 as η→ ∞. (3..27)

The function bvp4c requires initial guesses for
q(η) and z(η) at η = 0, and through iterative
comparison, we modify each guess until we ar-
rive at an appropriate solution for our problem.
Note that bvp4c uses these initial guesses to
generate solutions using a collocation method.
We verify the correctness of these solutions by
comparing them with those obtained using the
shooting method. We find the results to be in
good agreement as shown in Figure 2.

4. RESULTS AND DISCUSSION

We illustrate the effect of varying the power law
index n, the magnetic parameter M, the velocity
slip parameter δ, the temperature slip param-
eter β, and the Prandtl number Pr on bound-
ary layer velocity f ′(η) and temperature θ(η)
profiles. We present plots that demonstrate the
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Fig. 2. Agreement between velocity f ′(η)
profiles generated by the shooting method
and bvp4c.

meaningful relationships between the parame-
ters and provide a brief physical explanation for
each situation.

The effect of varying the magnetic parameter M
on fluid velocity f ′(η) is shown in Figure 3. By
comparing two curves with the same power law
index, it is clear that as the magnetic parameter
increases, the velocity also inreases for a given
distance from the flat plate. The presence of
a transverse magnetic field thins the boundary
layer by boosting fluid flow.
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Fig. 3. Velocity f ′(η) profiles for various val-
ues of magnetic parameter M and power law
index n.

However, interesting and less intuitive relation-
ships arise when comparing curves with the
same magnetic parameter M but different power
law index n. Observe that shear-thinning fluids
achieve the greatest fluid velocity f ′(η) as η in-
creases from zero, followed by shear-thickening
and Newtonian fluids. Shear-thinning fluid ve-
locity rises faster than that of shear-thickening
initially due to higher shear stress at that loca-
tion. Shear-thinning fluids have a smaller effec-
tive viscosity than shear-thickening fluids at that

point and thus achieve a higher strain rate and
velocity. The velocity of shear-thinning fluids
later decreases below that of shear-thickening
fluids, and soon below that of Newtonian flu-
ids. This trend is observed to be the oppo-
site of the previous process. As shear stress
decreases, the effective viscosity decreases for
shear-thickening fluids and increases for shear-
thinning fluids. The strain rate and velocity of
shear-thickening fluids therefore increases.

Varying the magnetic parameter M also affects
fluid temperature θ(η) as show in Figure 4. As
the magnetic parameter M increases, the tem-
perature of a power law fluid decreases for a
given distance from the flat plate. This is be-
cause the transverse magnetic field boosts fluid
flow, enhancing heat transfer to the fluid. It is
important to note that temperature is dependent
on velocity in situations where heat transfer is
accomplished by convection, as this principle
will also be important for following discussions.
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Fig. 4. Temperature θ(η) profiles for various
values of magnetic parameter M and power
law index n.

The effect of varying the velocity slip parame-
ter δ on fluid velocity f ′(η) is shown in Figure
4. As the velocity slip parameter increases, the
fluid velocity also increases for a given distance
from the flat plate. As expected the thickness of
the boundary layer decreases due to the positive
value of fluid velocity at the surface of the flat
plate.
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Fig. 5. Velocity f ′(η) profiles for various val-
ues of velocity slip parameter δ and power
law index n.

Values of the skin friction coefficient f ′′(0) are
shown in Table 1 for various parameter val-
ues. Observe that shear-thinning fluids have the
highest value of the skin friction coefficient fol-
lowed by Newtonian and shear-thickening flu-
ids when all other parameters are held constant.
This is consistent with the higher rate of shear-
thinning fluid velocity f ′(η) increase observed
at the surface of the flat plate. The skin fric-
tion coefficient increases for a power law fluid
as the magnetic parameter M is increased. Con-
versely, increasing the velocity slip parameter
δ decreases the value of the skin friction coef-
ficient. Note that as the velocity slip param-
eter approaches an infinite slip condition, the
fluid velocity at the flat plate approaches free
stream velocity, and the skin friction coefficient
approaches zero. For these reasons, it is clear
that an increase in the skin friction coefficient
corresponds to a thinning of the velocity bound-
ary layer.

Table 1. Values of the skin friction coefficient
f ′′(0).

n M δ f ′′(0)
0.4 0.6 0.3 0.82269
1 0.68047
1.4 0.67638
1.4 0.2 0.3 0.55685

0.6 0.67638
1 0.78586

1.4 0.6 0 0.80059
0.3 0.67638
0.6 0.58017

Because of its dependency on fluid velocity
f ′(η), fluid temperature θ(η) also varies with
the velocity slip parameter δ as shown in Figure
5. As the velocity slip parameter increases, the

temperature of a power law fluid decreases for
a given distance from the flat plate. This is be-
cause the positive value of fluid velocity at the
flat plate enhances heat transfer to the fluid.
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Fig. 6. Temperature θ(η) profiles for various
values of velocity slip parameter δ and power
law index n.

The effect of varying the temperature slip pa-
rameter β is shown in Figure 7. As the temper-
ature slip parameter increases, the temperature
θ(η) of a power law fluid decreases for a given
distance from the flat plate. The thickness of
the thermal boundary layer decreases due to the
fluid at the surface of the flat plate having a tem-
perature lower than that of the flat plate.
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Fig. 7. Temperature θ(η) profiles for various
values of temperature slip parameter β and
power law index n.

The effect of varying the Prandtl number Pr, a
ratio between momentum and thermal diffusiv-
ity, is shown in Figure 8. As the Prandtl num-
ber increases, the temperature θ(η) of a power
law fluid decreases for a given distance from the
flat plate. In general, it can be observed that
the thermal boundary layer is thinner for fluids
that transfer heat more effectively via convec-
tion than conduction.
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Fig. 8. Temperature θ(η) profiles for various
values of Prandtl number Pr and power law
index n.

Table 2 contains values of the Nusselt num-
ber −θ′(0), a ratio of convective to conduc-
tive heat transfer at the flat plate and normal
to its surface, under various conditions. Shear-
thinning fluids achieve the highest rate of fluid
temperature θ(η) decrease at the surface of the
flat plate, followed by Newtonian and shear-
thickening fluids. This behavior is consistent
with the observed increase in the Nusselt num-
ber as the power law index n is decreased, when
all other parameters are held constant. As ex-
pected, an increase in the magnetic parameter
M or decrease in the Prandtl number Pr results
in an increase in the Nusselt number. Increas-
ing the velocity slip parameter δ or temperature
slip parameter β has the effect of lowering the
Nusselt number. Note that as either the veloc-
ity or temperature slip parameter is increased
toward an infinite slip condition, the tempera-
ture of the fluid at the flat plate approaches the
bulk fluid temperature, and the Nusselt number
approaches zero. The preceding discussion con-
firms that an increase in the Nusselt number is
analogous to an increase in heat transfer and a
thinning of the thermal boundary layer.

5. CONCLUSION

In this article, we studied MHD flow and heat
transfer of power law fluid over a flat plate with
slip boundary conditions, an extension of pre-
vious work in the literature. Numerical solu-
tions were calculated using both bvp4c and the
shooting method. The agreement observed by
direct comparison of the two solutions gives us
confidence in our results. We presented veloc-
ity and temperature profiles for various physical
parameters to highlight the physics of the model
and included tables of the associated boundary
derivatives.

Table 2. Values of the Nusselt number −θ′(0).

n M Pr δ β −θ′(0)
0.4 0.6 0.7 0.3 0.3 0.39319
1 0.33497
1.4 0.31484
1.4 0.2 0.7 0.3 0.3 0.31189

0.6 0.31484
1 0.32410

1.4 0.6 0.7 0.3 0.3 0.31484
3 0.29362
7 0.25200

1.4 0.6 0.7 0 0.3 0.23281
0.3 0.31484
0.6 0.08990

1.4 0.6 0.7 0.3 0 0.34768
0.3 0.31484
0.6 0.28767

Generally, we found that increasing the mag-
netic parameter increases the velocity and de-
creases the temperature of a power law fluid in
the boundary layer. A similar trend in the veloc-
ity and temperature profiles is observed as the
velocity slip parameter is increased. Increasing
the temperature slip parameter results in a de-
crease in fluid temperature, for a given distance
from the flat plate. The fluid velocity is unaf-
fected by variations in the temperature slip pa-
rameter. Increasing the Prandtl number results
in a decrease in temperature of Newtonian and
non-Newtonian fluids, for a given distance from
the flat plate.

The basic features of this model may be in-
corporated in further studies on a variety of
flow scenarios in complex media. We antic-
ipate that incorporation of additional features
such as multidimensional MHD slip flow and
heat transfer of Newtonian and non-Newtonian
fluids may follow. We hope that further theoret-
ical and experimental studies may be motivated
by our work.
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