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ABSTRACT 

In the present study, the effects of chemical reaction on unsteady free convection flow of a viscous, 

electrically conducting, and incompressible fluid past a moving semi-infinite vertical cylinder with mass 

transfer and temperature oscillation is studied. The dimensionless governing partial differential equations are 

solved using an implicit finite-difference method of Crank–Nicolson type, which is stable and convergent.  

The transient velocity, transient temperature, and transient concentration profiles are studied for various 

parameters. The local as well as average skin-friction, Nusselt number, and Sherwood number are also 

analyzed and presented graphically. The results are compared with available computations in the literature, 

and are found to be in good agreement.  

 

Keywords: Free convection; MHD; Implicit finite-difference method; Heat and mass transfer; First order 

chemical reaction; Temperature oscillation.  

NOMENCLATURE 

0B   magnetic field strength; 

C    species concentration of the fluid near the 

cylinder; 

C  concentration of the fluid at infinity; 

wC   concentration of the cylinder; 

C  dimensionless species concentration; 

D mass diffusion coefficient; 

Gr thermal Grashof number; 

Gm mass Grashof number; 

g acceleration due to the gravity; 

Kr chemical reaction parameter;  

M magnetic parameter; 

Nu  average Nusselt number; 

Nux  local Nusselt number; 

Pr Prandtl number; 

r spatial coordinate normal to the 

 cylinder; 

0r  radius of the cylinder;  

R  dimensionless spatial coordinate normal to 

U dimensionless velocity component in 

the X-direction; 

V dimensionless velocity component in 

the R-direction; 

x spatial coordinate along the cylinder; 

X dimensionless spatial coordinate along 

the Cylinder 

 

v  velocity component in the r-direction; 

   thermal diffusivity; 

  volumetric thermal expansion 

coefficient; 
*  volumetric thermal expansion 

coefficient with concentration; 

t  grid size in the time; 

R  grid size in the radial direction; 

X  grid size in the axial direction; 

  kinematic viscosity; 

   density; 
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the cylinder; 

Sc  Schmidt number; 

Sh   average Sherwood number; 

Sh, local Sherwood number; 

T   temperature of the fluid near the cylinder; 

T  temperature of the fluid at infinity; 

wT   temperature of the cylinder; 

T dimensionless temperature; 

t  time; 

t  dimensionless time; 

u velocity component in the x-direction; 

  electrical conductivity of the fluid; 

x  dimensionless local skin-friction; 

  dimensionless average skin-friction; 

  frequency of oscillation; 

  dimensionless frequency of oscillation. 

Subscripts 
w conditions on the wall; 

  free stream condition; 

i grid point along the X-direction; 

j grid point along the R-direction. 

Superscript 

k time step level. 
 

 

1. INTRODUCTION 

Unsteady oscillatory free convective flows play an 

important role in chemical engineering, turbo-

machinery, and aerospace technology. The rise of 

such flows is due to unsteady motion of either the 

boundary or the boundary temperature. Besides, the 

unsteadiness may also be due to the oscillatory free 

stream velocity or temperature. The phenomenon of 

heat and mass transfer is also very common in 

chemical process industries such as food processing 

and polymer production. Also the study of magneto 

hydrodynamics (MHD) incompressible viscous 

flows has many important engineering applications 

in devices such as MHD power generators, cooling 

of nuclear reactors, geothermal systems, 

aerodynamic processes, and heat exchange designs.  

Hossain (1988) solved the problem of simultaneous 

heat and mass transfer in two-dimensional (2D) free 

convection from a semi-infinite vertical plate. An 

integral method was used to find a solution for zero 

wall velocity with the small amplitude oscillatory 

wall temperature. 

 

Several authors have studied the natural 

convection boundary layer flow of an electrically 

conducting fluid in the presence of a magnetic 

field. Emerly-Ashly (1963) presented the effect of 

a magnetic field upon the free convection of 

conducting fluids. An exact solution for the MHD 

flow between two rotating cylinders under a radial 

magnetic field was studied by Arora and Gupta 

(1972). Kumari and Nath (1999) studied the 

development of asymmetric flow of a viscous 

electrically conducting fluid in the forward 

stagnation point region of a 2D body and over a 

stretching surface with an applied magnetic field 

when the external stream or the stretching surface 

was set into impulsive motion from rest. The mass 

transfer effects on the flow past a vertical 

oscillating plate with variable temperature were 

given by Soundalgekar et al. (1994). It was 

observed that the skin friction increased with an 

increase in ωt. Shankar and Krishan (1997) 

presented the effect of mass transfer on the MHD 

flow past an impulsively started infinite vertical 

plate. Soundalgekar et al. (1995) studied the 

effects of mass transfer on the flow past an 

oscillating infinite vertical plate with a constant 

heat flux. They showed that the skin friction for air 

increased with the decrease in the molecular 

diffusivity of the species concentration when ωt < 

π/4. 

 

The situation, when the surface temperature on the 

vertical plate oscillates with the stream wise 

coordinate, has been investigated by many authors 

(Yang et al. (1982), Na (1978), Kao (1976), and 

Rees (1997)).  

 

Rees (1997) studied, both numerically and 

analytically, the situation when the sinusoidal 

surface temperature oscillated about a constant 

mean value which was held above the ambient 

temperature of the fluid. Das et al. (1999) 

addressed the transient free convection flow past 

an infinite vertical plate with a periodic oscillation 

of the surface temperature. Li et al. (2001) 

investigated the steady and unsteady free 

convections from a vertical wall with stream-wise 

surface temperature oscillation. For small Grashof 

numbers, they obtained an asymptotic formula for 

the average Nusselt number by using a 

perturbation method. Zhang et al. (2004) 

numerically investigated the laminar natural 

convection on a periodically oscillating vertical 

flat plate heated at a uniform temperature, in which 

the temperature of the core fluid was assumed to 

vary in the vertical direction instead of the 

horizontal direction. Saeid (2004) investigated the 

periodic oscillation effect of the surface 

temperature on the transient free convection from a 

vertical plate, and showed that increasing the 

amplitude and frequency of the oscillating surface 

temperature could decrease the free convection 

heat transfer from the plate. Ganesan and 

Loganathan (2001) presented a numerical solution 

for the transient natural convection flow over a 

vertical cylinder under the combined buoyancy 

effect of heat and mass transfer by using an 

implicit finite difference scheme. Kishore et. al. 

(2010) presented finite difference analysis of 

thermal radiation effects on the transient 

hydromagnetic natural convection flow past a 

vertical plate embedded in a porous medium with 

mass diffusion and fluctuating temperature about 

time at the plate, by taking into account the heat 

due to viscous dissipation. Loganathan et. al. 

(2011) presented numerical solutions of 

magnetodynamics (MHD) effects on the free 

convective flow of an incompressible viscous fluid 
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past a moving semi-infinite vertical cylinder with 

temperature oscillation.   

 

However, the present trend in the field of 

chemical reaction analysis is to give a 

mathematical model for the system to predict the 

reactor performance. A large amount of research 

has been reported in this field. In particular, the 

study of heat and mass transfer with chemical 

reaction is of considerable importance in chemical 

and hydrometallurgical industries. Chemical 

reaction can be codified as either heterogeneous 

or homogeneous processes. This depends on 

whether they occur at an interface or as a single 

phase volume reaction. A few representative 

fields of interest in which combined heat and 

mass transfer with chemical reaction effect play 

an important role are design of chemical 

processing equipment, formation and dispersion 

of fog, distribution of temperature and moisture 

over agricultural fields and groves of fruit trees, 

damage of crops due to freezing, food processing 

and cooling towers. For example, formation of 

smog is a first order homogeneous chemical 

reaction. Consider the emission of NO2 from 

automobiles and other smoke-stacks. This NO2 

reacts chemically in the atmosphere with 

unburned hydrocarbons (aided by sunlight) and 

produces peroxyacetylnitrate, which forms an 

envelope of what is termed as ‘photochemical 

smog’. All nature and most chemical fibers 

possess a shrinking potential, i.e., as soon as they 

with water and/or warmth come into contact, they 

change their form and run in. The order of the 

chemical reaction depends on several factors. The 

simplest chemical reaction is the first order 

reaction in which the rate of reaction is directly 

proportional to the species concentration.  

 

Chambre and Young (1958) have analyzed a first 

order chemical reaction in the neighbourhood of a 

horizontal plate. Dass et al. (1994) have studied 

the effect of homogeneous first order chemical 

reaction on the flow past an impulsively started 

infinite vertical plate with uniform heat flux and 

mass transfer. Again, mass transfer effects on 

moving isothermal vertical plate in the presence of 

chemical reaction was studied by Dass et al. 

(1999). The dimensionless governing equations 

were solved by the usual Laplace Transform 

technique. Muthucumaraswamy and Ganesan 

(2000) studied the problem of an impulsive 

motion of a vertical plate with heat flux and 

diffusion of chemically reactive species. Chamkha 

and Ahmed (2011) analyzed unsteady mixed 

convection heat and mass transfer near the 

stagnation point of a three-dimensional porous 

body in the presence of magnetic field, chemical 

reaction and heat source or sink. Bisht et al. 

(2011) investigated the steady incompressible 

mixed convection boundary layer flow with 

variable fluid properties and mass transfer inside a 

cone due to a point sink at the vertex of the cone. 

Uddin et al. (2011) studied the distribution of the 

chemically reactant solute in the MHD flow of an 

electrically conducting viscous incompressible 

fluid over a stretching surface. 

 

Rajesh (2012) studied the effects of mass transfer 

on flow past an impulsively started infinite vertical 

plate with Newtonian heating and chemical 

reaction. Rajesh et. al. (2013) numerically studied 

radiation and chemical reaction effects on unsteady 

MHD free convection flow of a dissipative fluid 

past an infinite vertical plate with Newtonian 

heating. Recently Choudhury and Das (2014) 

studied visco-elastic free convective transient MHD 

flow over a vertical porous plate through porous 

media in presence of radiation and chemical 

reaction with heat and mass transfer. 

 

The present study considers the chemical reaction 

effects on the transient MHD free convective flow 

of an incompressible viscous electrically conducting 

fluid past a semi-infinite moving vertical cylinder 

with temperature oscillation. The governing 

boundary layer equations along with the initial and 

boundary conditions are first cast into a 

dimensionless form, and the resulting equations are 

then solved by an implicit finite difference method 

of the Crank-Nicolson type. 

2. MATHEMATICAL THERMO FLUID 

DYNAMIC MODEL 

An unsteady, laminar, two-dimensional, combined 

heat and mass transfer boundary layer flow of a 

viscous incompressible fluid past a semi-infinite 

moving vertical cylinder of radius 0r  is considered. 

The x-axis is taken along the axis of the cylinder in 

the vertically upward direction, and the radial 

coordinate r  is taken along the direction of the 

magnetic field. x  and r  are mutually 

perpendicular as shown in Figure 1. The 

gravitational acceleration g is acting downward.  

Initially, both the cylinder and the fluid are 

stationary at the same temperature T  and the same 

concentration level C . They are maintained at the 

same level for all 0t  . At time 0t  , the cylinder 

starts moving in the vertical direction with a 

uniform velocity 0u . The temperature on the 

surface of the cylinder is raised to wT   and a 

periodic temperature is assumed to be superimposed 

on this mean constant temperature of the surface. 

Also, the concentration on the surface of the 

cylinder is raised to wC  . All the fluid properties are 

assumed to be constant except the influence of the 

density variation, which induces the buoyancy 

force. The effect of viscous dissipation is not 

considered in the energy equation. 

 

There exists a homogeneous first order chemical 

reaction between the fluid and species 

concentration. The system is considered to be axis 

symmetric. The induced current does not distort the 

magnetic field. The magnetic field is constant in a 

direction perpendicular to the cylinder. The 

coefficient of electrical conductivity is constant and 

scalar throughout the fluid.  
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Fig. 1. The physical model and coordinate 

system. 

 

Under the above assumptions and taking the usual 

Boussinesq approximation into account, the 

governing equations for continuity, momentum, 

energy, and concentration are as follows: 

 

( ) ( )
0

ru rv

x r

 
 

 
                                 (1) 

 

 
2
0

u u u
u v g T T

t x r

Bu
g C C r u

r r r













  
    

  

  
     

  

        

                   (2) 

T T T T
u v r

t x r r r r

        
         

                (3) 

 r

C C C D C
u v r

t x r r r r

K C C

        
         

   

                   (4) 

Equations (1)–(4) are subjected to the following 

initial and boundary conditions: 
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Then, Equations (1) – (4) can be reduced to the 

following forms: 
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The corresponding initial and boundary conditions 

in non-dimensional quantities are given by 
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for all and  
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3. NUMERICAL TECHNIQUE 

In order to solve these unsteady, non-linear coupled 

equations (7) to (10) under the boundary conditions 

(11), an implicit finite difference method of Crank–

Nicolson type has been employed. The finite 

difference equations corresponding to Eqns. (7) – 

(10) are as follows: 

 

 

1 1
, 1, , 1,

1 1
, 1 1, 1 , 1 1, 1

1 1
, , 1 , , 1

1
,

4

2

0
1 1

n n n n
i j i j i j i j

n n n n
i j i j i j i j

n n n n
i j i j i j i j

n
i j

U U U U

U U U U

X

V V V V

R

V

j R

 
 

 
     

 
 



   
 
    
 

 
 
 

   
 

 
 
 
  
   

 

           (12) 

1
, ,

1 1
, 1, , 1,

,

1 1
, 1 , 1 , 1 , 1

,

1 1
, , , ,

1 1 1
, 1 , , 1

,

2

4

2 2

2

n n
i j i j

n n n n
i j i j i j i jn

i j

n n n n
i j i j i j i jn

i j

n n n nmr
i j i j i j i j

n n n
i j i j i j

i j

U U

t

U U U U
U

X

U U U U
V

R

GG
T T C C

U U U

U



 
 

 
   

 

  
 



 
 

 
 

   
 

 
 
   
 

 
 

      
   

 




 

 

1 , , 1

2

1 1
, 1 , 1 , 1 , 1

2

2

4 1 1

n n n
i j i j

n n n n
i j i j i j i j

U U

R

U U U U

j R R



 
   

 
 

  
 

 
 
 
   
 

       

 



V. Rajesh et al. / JAFM, Vol. 9, No. 1, pp. 157-167, 2016.  

 

161 

1
, ,

2

n n
i j i jU U

M

 
 
 
 

                                         (13) 

 

1
, ,

1 1
, 1, , 1,

,

1 1
, 1 , 1 , 1 , 1

,

1 1 1
, 1 , , 1

, 1 , , 1

2

,

2

4

2

2

2Pr

n n
i j i j

n n n n
i j i j i j i jn

i j

n n n n
i j i j i j i jn

i j

n n n
i j i j i j

n n n
i j i j i j

i j

T T

t

T T T T
U

X

T T T T
V

R

T T T

T T T

R

T



 
 

 
   

  
 

 

 
 

 
 

   
 

 
 
   
 

 
 

  
 
   

  
 

 
 


 

1 1
1 , 1 , 1 , 1

4Pr 1 1

n n n n
i j i j i jT T T

j R R

 
   

   
 

       

     

                                                                             (14) 

 

1
, ,

1 1
, 1, , 1,

,

1 1
, 1 , 1 , 1 , 1

,

1 1 1
, 1 , , 1

, 1 , , 1

2

2

4

2

2

2

n n
i j i j

n n n n
i j i j i j i jn

i j

n n n n
i j i j i j i jn

i j

n n n
i j i j i j

n n n
i j i j i j

i

C C

t

C C C C
U

X

C C C C
V

R

C C C

C C C

Sc R

C



 
 

 
   

  
 

 

 
 

 
 

   
 

 
 

   
 

 
 

  
 
   
 
 
 
 
 


 

1 1
, 1 , 1 , 1 , 1

1
, ,

4 1 1

2

n n n n
j i j i j i j

n n
i j i j

C C C

Sc j R R

C C
Kr

 
   



   
 

       

 
 
 
 

 

                                                                            (15) 

The region of integration is considered as a 

rectangle with sides Xmax = 1.0 and Rmax = 20.0, 

where Rmax corresponds to Rwhich lies very 

well outside the momentum, thermal and 

concentration boundary layers. Here, the subscript 

i - designates the grid point along the X-direction, 

j - along the R-direction and the superscript n  

along the t-direction. During any one-time step, 

coefficients ,
n
i jU and ,

n
i jV  appearing in the 

difference equations are treated as constants. The 

values of U, V, T and C are known at all grid points 

at t = 0 from the initial conditions. The 

computations of U, V, T and C at time level (n+1) 

using the known values at previous time level (n) 

are calculated as follows: The finite difference 

equation (15) at every internal nodal point on a 

particular i -level, constitute a tri-diagonal system 

of equations. Such a system of equations is solved 

by Thomas algorithm as described in Carnahan et 

al. (1969). Thus, the values of C are found at every 

nodal point on a particular i  at (n+1) th time level. 

Similarly the values of T are calculated from Eq. 

(14). Using the values of C and T at (n+1) th time 

level in Eq. (13), the values of U at (n+1) th time 

level are found in a similar manner. Thus the values 

of C, T and U are known on a particular i -level. 

The values of V are calculated explicitly using Eq. 

(12) at every nodal point on a particular i -level at 

(n+1) th time level. This process is repeated for 

various i -levels. Thus the values of C, T, U and V 

are known at all grid points in the rectangular 

region at (n+1) th time level. After experimenting 

with a few sets of mesh sizes, the mesh sizes are 

fixed at the level ΔX = 0.02 and ΔR = 0.2 with the 

time step Δt = 0.02. In this case, the spatial mesh 

sizes are reduced by 50% in one direction. Then, the 

results in both directions X and R are compared. It is 

observed that, when the mesh size is reduced by 

50% in the R-direction, the results differ in the fifth 

place after the decimal point; while when the mesh 

sizes are reduced by 50% in the X-direction or in 

both directions X and R, the results are correct to the 

fourth decimal place. Therefore, these mesh sizes 

are considered to be appropriate for calculations.  

The finite difference scheme is unconditionally 

stable as discussed in Ganesan and Rani (1998). 

The truncation error in the finite-difference 

approximation is  2 2O t R X     and it tends 

to zero as Δt, ΔR, and ΔX tend to zero. Therefore, 

the scheme is compatible. The stability and the 

compatibility ensure the convergence.  

4. RESULTS AND DISCUSSION 

During the initial period, the body forces have not 

had sufficient time to generate any appreciable 

motion in the fluid. Hence, both velocity 

components are negligible for small time t. During 

this initial transient regime, the heat transfer process 

is dominated by pure heat conduction. The 

temperature distribution at early times is, therefore, 

the same as the transient conduction problem in a 

semi-infinite solid. The temperature distribution in a 

semi-infinite solid is given by the following 

equation (Schlichting (1979) and Carslaw and 

Jaeger (1959)), 

1/2
0 0

2

r r r
T erfc

r t

  
    

   
               (16) 

with the initial and boundary conditions: 

0t  :  T T   for all  r  

0t  :   wT T   at 0r r  

By introducing the non-dimensional quantities 

defined in Eq. (6), the transient temperature 

distribution in a semi-infinite solid can be written as 
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1/2 1

2 / Pr

R
T R erfc

t

  
  

 
               (17) 

with the initial and boundary conditions: 

0t  :  0T   for all  R  

0t  :   1T   at 1R   

Figure 2 shows the comparison between the 

transient temperature distribution calculated by Eq. 

(17) and by the current finite difference method 

(when / 2t   ) at two different early times. 

They are found to be in excellent agreement and 

this shows that the current finite difference method 

is valid for this type of transient problem. 

 

 
Fig. 2. Comparison of temperature profiles. 

 

In order to study the behaviour of velocity u, 

temperature T and concentration C fields, a 

comprehensive numerical computation is carried 

out for various values of the parameters that 

describe the flow characteristics and the results are 

reported in terms of graphs. To be more realistic, all 

the computations are carried out for Pr = 0.71 (i.e., 

for air), 7 (i.e., for water) and the corresponding 

values of Sc are chosen such that they represent 

water vapour (0.6), carbon dioxide (0.94) at 

temperature 25 C   and 1 atmospheric pressure. 

Grashof number (Gr) for heat transfer is chosen to 

be Gr = 2, 5, and the solutal Grashof number (Gm) 

for mass transfer Gm = 2, 5, which corresponds to 

the case of cooling of the surface. Magnetic field 

parameter M = 2, 5, Chemical reaction parameter 

K = 2, 5 and phase angle / 2, / 3.t     

 

The transient velocity profiles for various values of 

Magnetic field parameter M, Chemical reaction 

parameter Kr and phase angle t  are presented in 

Fig. 3. It is observed from Fig. 3 that as the 

magnetic parameter M increases, the flow rate 

retards and thereby results in to a decrease in the 

velocity profiles. Thus momentum boundary layer 

thickness decreases with increasing values of M. 

The reason behind this phenomenon is that 

application of magnetic field to an electrically 

conducting fluid gives rises to a resistive type force 

called the Lorentz force. This force has the 

tendency to slow down the motion of the fluid in 

the boundary layer. It is also observed from Fig. 3 

that fluid velocity u decreases on increasing 

Chemical reaction parameter in the boundary layer 

region. This implies that Chemical reaction 

parameter decelerates fluid velocity. It is found that 

an increase in the phase angle t  leads to a fall in 

the fluid velocity. It is also noticed from Fig.  3 that 

fluid velocity is maximum in the vicinity of the 

cylinder surface and then decreases properly on 

increasing boundary layer coordinate R to approach 

the free stream value for all M, Kr and t . 

 

 
Fig. 3. Transient velocity profiles at X=1.0 for 

different M, Kr, t . 

 

The transient velocity profiles for various values of 

thermal Grashof number Gr, mass Grashof number 

Gm and Schmidt number Sc are presented in Fig. 4. 

Since Grashof number Gr signifies the relative 

effects of thermal buoyancy force to viscous 

hydrodynamic force in the boundary layer region, it 

is observed from Fig. 4 that an increase in Gr leads 

to an increase in fluid velocity in the boundary layer 

region. This implies that thermal buoyancy force 

tends to accelerate fluid flow. It is also observed 

that the velocity of fluid increases with increase in 

Gm. It is due to the fact that increase in the values 

of mass Grashof number has the tendency to 

increase the mass buoyancy effect. This gives rise 

to an increase in the induced flow. It is also 

observed from Fig. 4 that the velocity decreases 

with increasing Schmidt number in the boundary 

layer region. An increasing Schmidt number implies 

that viscous forces dominate over the diffusion 

effects. Schmidt number in free convection flow 

regimes, in fact, represents the relative effectiveness 

of momentum and mass transport by diffusion in 

the velocity (momentum) and concentration 

(species) boundary layers. Therefore an increase in 

Sc will counter-act momentum diffusion since 

viscosity effects will increase and molecular 

diffusivity will be reduced. The flow will therefore 

be decelerated with a rise in Sc. 

 

Figure 5 reveals the effects of t and Pr on the transient 

velocity profiles. It is evident from the figure that the 

velocity increases with an increase in time for both air 

and water. Furthermore, the velocity attains its 

maximum value in the vicinity of the cylinder and 

then fades away. The magnitude of velocity for Pr = 

0.71 is much higher than that of Pr = 7. Physically, 

this is possible because fluids with high Prandtl 

numbers have high viscosity and hence move slowly. 
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Fig. 4. Transient velocity profiles at X=1.0 for 

different Gr, Gm, Sc. 

 

 
Fig. 5. Transient velocity profiles at X=1.0 for 

different Pr, t. 

 

Figure 6 displays the transient temperature profiles 

against R for different Pr, t  and t. The magnitude 

of temperature is maximum at the cylinder and then 

decays to zero asymptotically. The temperature falls 

owing to an increase in the value of ωt for air (Pr = 

0.71). The magnitude of temperature for air (Pr = 

0.71) is greater than that for water (Pr = 7); this is 

due to the fact that the thermal conductivity of fluid 

decreases with increasing Pr, resulting in a decrease 

in thermal boundary layer thickness. It is also 

evident from the figure that the temperature 

increases with an increase in time for air (Pr = 

0.71). 

 

 
Fig. 6. Transient temperature profiles at X=1.0 

for different Pr, ,t  t. 

The Concentration profiles for different values of Kr, 

Sc, t and time t and are presented in Fig.7. It is 

noticed from Fig. 7 that the fluid concentration is 

maximum at the surface of the cylinder and it 

decreases on increasing boundary layer coordinate R 

to approach free stream value. It is observed from Fig. 

7 that fluid concentration C decreases on increasing 

chemical reaction parameter Kr or Schmidt number Sc 

in the boundary layer region which implies that 

chemical reaction or Schmidt number tends to reduce 

fluid concentration. It is also noticed from Fig. 7 that 

fluid concentration C increases on increasing time t in 

the boundary layer region which implies that there is 

an enhancement in fluid concentration as time 

progresses. Also, it is found that the effect of t on 

concentration is negligible. 
 

 
Fig. 7. Transient concentration profiles at X=1.0 

for different Kr, Sc, ,t  t. 

 

Knowing the velocity, temperature and 

concentration profiles, it is important to study the 

local and average skin-friction, the rate of heat 

transfer and mass transfer. The local as well as 

average skin-friction, Nusselt number, and 

Sherwood number in terms of dimensionless 

quantities are given by 

1
x

R

U

R




 
  

 
                               (18) 

 

1

10 R

U
dX

R




  
       
                (19) 

 

1
x

R

T
Nu X

R 

 
   

 
               (20) 

 

1

10 R

T
Nu dX

R 

  
       
                               (21) 

 

1
x

R
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Sh X

R 

 
   

 
               (22) 

 

1

10 R

C
Sh dX

R 

  
       
                               (23) 
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The derivatives involved in Eqs. (18)– (23) are 

evaluated by using a five-point approximation 

formula. Then, the integrals are evaluated by using 

the Newton-Cotes formula. 

Figs. 8 - 13 present the local and average values of 

skin friction for different M, Kr, t , Gr, Gm, Sc 

and Pr values. It is observed from the Figs. 8-13, 

that the rise in M, Kr, Sc, Pr, t  increase the local 

and average values of the skin friction while an 

opposite effect is observed for Gr and Gm. It is also 

observed that the local skin friction is decreasing 

with increasing x or t values. But this decrease in 

local skin friction with t is negligible up to certain x 

value from x=0. Also the average skin friction is 

found to decrease exponentially with increasing 

time for all M, Kr, t , Gr, Gm, Sc and Pr values. 
 

 
Fig. 8. Local skin-friction for different M, 

Kr, t . 
 

 
Fig. 9. Local skin-friction for different 

Gr, Gm, Sc. 

 

 
Fig. 10. Local skin-friction for different Pr, t. 

 
Fig. 11. Average skin-friction for different M, 

Kr, t . 

 

 
Fig. 12. Average skin-friction for different 

Gr, Gm, Sc. 

 

 
Fig. 13. Average skin-friction for 

different Pr t . 

 

Figs. 14 - 15 show the distributions of local and 

average values of Nusselt number with different Pr 

and t values. Both local and average Nusselt 

number increase with the increasing values of Pr.  

Since an increase in Pr decreases the temperature 

profiles this will manifest with an escalation in the 

wall temperature gradient i.e. greater heat will be 

conveyed from the fluid to the wall. Heat transfer 

rates to the wall will therefore be elevated 

manifesting in a boost in Nusselt number. But the 

local and average values of Nusselt number 

decrease with the increasing values of t .  
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Fig. 14. Local Nusselt number for different 

Pr, t , t. 

 

 
Fig. 15. Average Nusselt number for different 

Pr, 
 

It is also noticed that local Nusselt number 

increases with increasing x and decreases with 

increasing time t. But this decrease in local Nusselt 

number in negligible up to certain x value from 

x=0. The average Nusselt number is found high 

initially and then it starts decreasing with increasing 

time up to certain value and then it remains 

constant. 

 

Finally Figs. 16-17 show the variation of local and 

average Sherwood number with different Kr, Sc and 

t values. Consistently there is an ascent in both 

local and average Sherwood number with a rise in 

Schmidt number or chemical reaction parameter. 

Increasing Schmidt number or chemical reaction 

parameter depresses the concentration profiles and 

this implies greater diffusion of species to the wall 

i.e. an increase in concentration gradients at the 

wall. This rise in the concentration gradient 

increases the mass transfer, and hence increases the 

Sherwood number. It is also noticed that the 

increases in phase angle t  decrease the average 

values of the Sherwood number while this effect is 

negligible on the local Sherwood number. It is also 

clear from Figures that the local Sherwood number 

increases with increasing x, and decreases with 

increasing time. Lastly, the average Sherwood 

number is found to decrease with increasing time up 

to certain value and after that it remains constant.  

 

 
Fig. 16. Local Sherwood number for different 

Kr, Sc, t, t . 
 

 
Fig. 17. Average Sherwood number for different 

Kr, Sc, t . 

5. CONCLUSIONS 

A detailed numerical study has been carried out for 

the effects of chemical reaction of first order on the 

transient magneto hydrodynamics (MHD) free 

convective flow of an incompressible viscous 

electrically conducting fluid past a moving semi-

infinite vertical cylinder with temperature 

oscillation. A family of governing partial 

differential equations is solved by an implicit finite 

difference scheme of Crank–Nicolson type, which 

is stable and convergent. The results are obtained 

for different values of chemical reaction parameter 

Kr, magnetic field parameter M, phase angle t , 

thermal Grashof number Gr, mass Grashof number 

Gm, Schmidt number Sc and prandtl number Pr. 

Conclusions of this study are as follows. 
 

1. Velocity increases with the increasing Gr, Gm 

and decreases with the increasing values of Kr, 

M, Sc, Pr and t . 

2. Temperature decreases with the increasing Pr 

and t . 

3. Concentration decreases with the increasing Kr 

and Sc. 

4. Local and average skin friction increase with 

increasing M, Kr, Sc, Pr and t .  

5. Local and average skin friction decrease with 

increasing Gr and Gm. 

6. Local and average Nusselt number increase 
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with the increasing values of Pr.   

7. Local and average Nusselt number decrease 

with the increasing values of t .  

8. Local and average values of Sherwood number 

increases with increasing Kr and Sc. 

9. An increase in phase angle t  decreases the 

average Sherwood number, while this effect is 

negligible on the local Sherwood number.  
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