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ABSTRACT 

A dual-time implicit mesh-less method is presented for unsteady compressible flow calculations. Polynomial 

least-square (PLS) and Taylor series least-square (TLS) procedures are used to estimate the spatial derivatives 

at each node and their computational efficiencies are compared. Also, the effect of the neighbor stencil 

selection on the accuracy of the method is investigated. As a new approach, different neighboring stencils are 

used for the highly stretched point distribution inside the boundary layer region and the inviscid isotropic 

point distribution outside this area. The unsteady flows over stationary and moving objects at subsonic and 

transonic flow conditions are solved. Results indicate the computational efficiency of the method in 

comparison with the alternative approaches. The convergence histories of the flow solution show that the PLS 

method is computationally faster than TLS method. In addition, the eight point neighboring stencil inside the 

viscous region is more efficient than other choices. 

 

Keywords: Navier-Stokes equations; Unsteady compressible flow; Mesh less method; Moving boundary; 

Implicit method. 

NOMENCLATURE 

ija  taylor least square coefficient in x direction 

ia  polynomial least square coefficient  

ijb  taylor least square coefficient in y direction 

c chord length 

D artificial dissipation 

ijd  distance between point i and j 

E total energy 

h plunging motion 

h  dimensionless form of h 

k reduced frequency 

m mass of the airfoil 

M
 Mach number in far field 

P pressure 

q heat flux component 

rij distance between point i and j 

rmax the maximum distance between point i and its 

neighbors 

Re  Reynolds number in far field 

ijs


 unit vector between i and j 

u velocity component in x direction 

U relative velocity in x direction 

U  free-stream velocity 

nu  normal velocity 

tu  tangential velocity 

V relative velocity in y direction 

nV  nodal velocity 

sw  point velocity 

tx  nodal velocity in x direction 

ty  nodal velocity in y direction 

v  velocity component in y direction 

ij  pressure sensor at any edges (ij) 

 2
 ,

 4
  local adaptive coefficients  

i  weighting factor 
  pitching angle 

m  mean angle 

0  oscillation amplitude 

  frequency of the system 

  ratio of the specific heats 

  density 

xx  viscous stress terms in x direction 

  fictitious pseudo-time 

1/2j   the average of gradients of any 

variable at midpoint 
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1. INTRODUCTION 

One of the main objectives in Computational 

Fluid Dynamics (CFD) is to solve the numerical 

computation of flows with complex stationary 

and/or moving boundaries by using Euler and 

Navier-Stokes equations. To achieve this goal the 

quality of the mesh is crucial. Lohner has shown 

that generating a point cloud distribution which 

can be applied in mesh-less methods is obviously 

faster than generating the unstructured grid which 

is usually used in mesh-based methods (Lohner, 

et al. 2004). It is usually accepted that mesh-less 

methods are more advantageous in comparison 

with the mesh based algorithms; especially in the 

moving and large deformations. 

 

The reason is that replacing and moving points 

are much simpler than changing or replacing the 

edges and volumes. Another attractive property 

of mesh-less methods is the ability of adding or 

subtracting nodes from the pre-existing nodes. 

Several mesh-less methods have been used (Liu 

and Gu 2005; Nguyen et al. 2008; Ding et al 

2004; Deshpande et al. 2002; Batina 2003) with 

different privileges and drawbacks. In these 

methods, the approximation of the characteristics 

or derivatives is based on a group of nodes which 

can be nominated as neighbors. Mesh-less 

methods need more nodes in comparison with the 

finite difference method to achieve the same 

order of accuracy. As a result, the Navier-Stokes 

equations are solved by great bandwidth of the 

matrix in these methods. Therefore, the 

computational memory is unavoidably extensive 

(Ding et al. 2004). In most mesh-less methods 

explicit time discretizations have been used for 

solution of the steady-state problems (Deshpande 

et al. 2002; Batina 2003). In the works by 

Hashemi and Jahangirian (2011) and Sattarzadeh 

and Jahangirian (2012) an implicit method was 

presented and it was shown that the method has 

better convergence behavior in comparison with 

the similar finite volume (FV) method. One of 

the main objectives of the present study is to 

extend the applicability of these  mesh-less 

methods to unsteady flows. 

 

As it is mentioned, the spatial derivatives at each 

node are normally computed by using least 

square method. Different approaches are used for 

this purpose including: Liu and Gu 2005; Ding et 

al 2004; Deshpande et al. 2002; Batina 2003; 

Hashemi and Jahangirian 2011; Katz and 

Jameson 2009. In this paper, two methods of 

polynomial least-square (PLS) and Taylor series 

least-square (TLS) are used and their results are 

compared in terms of accuracy and 

computational time in different cases. 

 

The other interested subject is to investigate the 

effect of neighboring stencils in the efficiency of 

the computations. In a new attempt different 

neighboring stencils are used inside and outside 

the viscous layer in this paper. 

 

2. GOVERNING FLOW 

EQUATIONS 

Navier-Stokes equations that govern the two-

dimensional motion of a viscous flow including 

point movements are: 

M

Re





    
             

  
 

   

w f g
w w

f g

I I

s
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t x y
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                                                                               (2) 

The superscripts I and V shows the inviscid and 

viscous terms (Hashemi and Jahangirian 2011). In 

this equation, the velocities (U and V) can be 
evaluated as: 

,   t tU u x V v y                                          (3) 

For a perfect gas (Sattarzadeh and Jahangirian 

2012): 

2 2

( 1)
2

u v
p E 

 
   

  

                                 (4) 

3. LEAST-SQUARE MESH-LESS 

METHOD 

3.1 Taylor Series Least-Square Method 

In this paper, the equations are solved in the 

conservation form and the least-square mesh-less 

algorithm is applied (Sattarzadeh and Jahangirian 

2012). It is considered that iC  is a group of points 

that are neighbors to point i (Fig. 1) and ij  is a 

value of any function  at the mid-point of each 

pair point ij (Katz and Jameson 2009). By using 

Taylor's formula for i and its neighbor (j) one can 

have: 

, ,

   
      

    

        

ij ij ij
i i

ij j i ij j i ij j i

x y
x y

x x x y y y

 


  

  (5) 
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Fig. 1. Schematic of point and its neighbors. 

 
Similar equations could be written for all neighbors 

related to the point i by considering an arbitrary 

weighting factor. Thus, the following matrix can be 

achieved (Hashemi and Jahangirian 2011; 

Sattarzadeh and Jahangirian 2012):  

1 1 1 1 1 1

..... ..... ......

 
      

    
    

        
  

i i i i i i
i

im im im im im im

i

x y
x

x y
y


   


   

           (6) 

Where weighting factor is chosen as the inverse 

distance between points i and j. By using the Taylor 

least-squares method in Eq. (6) the derivatives can 

be achieved as follows (Sattarzadeh and Jahangirian 

2012): 

1 1

,
m m

ij ij ij ij
i j ji

a b
x y

 
 

 

 
   

 
        (7) 

By counting weighting function, the coefficients in 

Eq. (7) can be calculated as (Hashemi and 

Jahangirian 2011; Katz and Jameson 2009; Luo et 
al. 2009): 

2

11

2

1

2

11

2

2

11

2

1

2

11

2













































m

k

ikikik

m

k

ikik

m

k

ijik

m

k

ikikikijij

m

k

ikikijij

ij

m

k

ikikik

m

k

ikik

m

k

ijik

m

k

ikikikijij

m

k

ikikijij

ij

yxyx

yxxxy

b

yxyx

yxyyx

a









  
                                                                               (8) 

 

3.2 Polynomial Series Least-Square 

Method 

Another way to obtain derivatives is the polynomial 

least square method. The major difference between 

PLS and TLS is that in PLS method, the computed 

polynomial is not forced to pass the point while the 

Taylor approximation always pass the point. In this 

method, a polynomial basis function is used as 
following (Katz and Jameson 2009): 

1 2 3  ij a a x a y                                             (9) 

By considering the least square method and 

minimizing the following equation with regard to 

Polynomial least square coefficient (Hashemi and 

Jahangirian 2011): 

2

1 2 3

1

    
n

ij ij ij ij

j

a a x a y                           (10) 

Using normalized Gaussian function, the weight 

function can then be calculated as: 

2

max

( )
4

41











ijr

r

ij

e e

e
                                          (11) 

By solving Eq. (10) for each node the Polynomial 

least square coefficient can be calculated (Hashemi 

and Jahangirian 2011). Then, the derivatives for 

parameter   at point i can be achieved as 

following: 

2 3,
 

 
 

i i
i i

a a
x y

 
                              (12) 

4. NUMERICAL 

IMPLEMENTATION 

After defining the least-square coefficient the semi-

discrete form of the Navier-Stokes equations at 

point i is presented as following: 

, ,

1 1

1 1

1 1

M

Re

 

 



  

  
     

  
  

 
    
  

 
    
  

 

 

 

w
w

f g

f g

m m
i

i ij t ij ij t ij

j j

m m
I I

ij ij ij ij

j j

m m
V V

ij ij ij ij
j j

a x b y
t

a b

a b

                 (13) 

Here   f f fij j i and   ij j ig g g . Then, a flux 

 H af bg  for each pair points such as ij is 

defined which is similar to flux calculation on 

mesh-base methods. So the Eq. (13) with the direct 

flux becomes (Hashemi and Jahangirian 2011): 
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                                                                          (14) 

It is proved that the discretization will be stable, if 

for any cloud point; the local Reynolds number is 

less than two. To assure this limitation, one way is 

to increase the number of points in the domain 

which is unnecessary and may lead to low 

computational efficiency. Another way to stabilize 

the method is to use artificial dissipation. In the 

present study, artificial dissipation is added in order 

to diminish the oscillations (Swanson et al. 1998): 
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Where iD  is dissipation term. In this investigation 

the JST method described in Hashemi and 

Jahangirian 2011 is used.   
 
By using Eq. (15) for all points in the domain, the 

following equations are achieved (Hashemi and 

Jahangirian 2011): 

  0
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w
R wi

i
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                                          (16) 

Where: 
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                (17) 

The discretization of the first term in Eq. (16) can 

be achieved by different methods such as explicit or 

implicit methods which are explained in the next 

section. 

 

4.1 Time Integration 

explicit time integration 

In the present study, the explicit four-stage Runge-

Kutta (R-K) scheme is used. Local time stepping at 

each node can be calculated by using its neighbor 

nodes. To increase the computational efficiency, the 

dissipation function is calculated only at the first 

and third stages. These values are then used for the 

subsequent second and fourth stages. Further details 

can be obtained from references (Hashemi and 

Jahangirian 2011; Sattarzadeh and Jahangirian 

2012). 

 

implicit time integration 

In the implicit method, the solution involves the 

current and later time. By applying a fully implicit 

time method, the flow Eq. (14) is integrated in time 

as follows (Jahangirian and Hadidoolabi, 2005): 
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                                  (18) 

A second order accurate time discretization is used 

in the present study (Hashemi and Jahangirian 

2011; Jahangirian and Hadidoolabi 2005). So, the 

Eq. (18) can be rewritten as follows: 
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Since Eq. (19) is nonlinear for parameter 
1

w
n
i  and 

so it cannot be solved analytically. To overcome 

this problem, a new residual is useful to redefine at 

this stage, which is equal to the left side of Eq. (19): 
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                                                                             (20) 

Eq. (20) can be considered as the solution of steady-

state and unsteady problems which can be solved 

with a time marching method as follows (Hashemi 

and Jahangirian 2011; Sattarzadeh and Jahangirian 

2012): 

 
1

* 1 0



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

w
R w

n
ni

i


                                      (21) 

The pseudo-time problem can be solved by using a 

time-marching method such as explicit method. In 

this paper, Eq. (21) is solved by using the explicit 

Runge-Kutta scheme (Jahangirian and Hadidoolabi 

2005).  

 

The Courant number (CFL) of 2-5 and 100000-

500000 is used for explicit and implicit iterations, 

respectively in this study (Hashemi and Jahangirian 

2011).  

 

4.2 Viscous Term 

Like the other flux terms, viscous terms are 

calculated at the middle of each pair point. In these 

terms the gradients of temperature and velocity 

components exist and therefore, to calculate the 

viscous terms, the average of these gradients at the 

midpoint is needed. In the present study the 

following equations which are applied in references 

(Hashemi and Jahangirian 2011; Katz and Jameson 

2009; Alonso et al. 2005) are used: 
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                                  (24) 

To solve equations at solid boundary, it is presumed 

that mass or other fluxes cannot penetrate to the 

solid body (Sattarzadeh and Jahangirian 2012; Katz 

and Jameson 2009). In addition for viscous flow, 

no-slip boundary condition is used (Hashemi and 

Jahangirian 2011). To increase the accuracy 

specially, in the solid region, the Ghost point 

method is used in this investigation (Hashemi and 

Jahangirian 2011; Katz and Jameson 2009). To 

satisfy the far field conditions, the Riemann 

invariants is applied (Sattarzadeh and Jahangirian 

2012; Katz and Jameson 2009; Jahangirian and 

Hadidoolabi 2005). ysis is theThe drawback of the 

characteristic anal assumption of zero circulation. 

To dominate this problem, the far field should be 



S. Sattarzadeh et al. / JAFM, Vol. 9, No. 1, pp. 233-241, 2016.  

 

237 

 (a)                      (b)  

(c)                              (d)  
Fig. 2. Different neighbor stencils in viscous region. a) point distribution b) 4 points c) 6 points d) 8 

points stencils. 

 
far enough from the solid boundary (Katz and 

Jameson 2009).  

 

4.3 Neighbor Selection 

One of the privileges of mesh-less method in 

comparison with mesh-based method, is their 

flexibility in choosing neighbors. In these methods, 

there is no connection between points so the 

neighbors of each point can be chosen in different 

ways without having any special problem. One of 

the critical zones in solving N-S equations is 

boundary layer zones which has its complexity in 

grid generation. Thus, in this paper special care has 

been taken in order to choose an efficient neighbor 

stencil for points inside the viscous layer. Three 

different neighbor stencils are selected and applied 

in this work that, are shown in Figure 2. As 

sketched in this figure 4 points, 6 points and 8 

points stencils are applied and the results are 

compared.  

 

Another aspect that applied in this work is the 

satisfaction of reciprocity condition. This condition 

means that in mesh-less method when a point (for 

example i) is chosen as a neighbor for the other 

point (for example j), the second point (j) is also 

necessarily a neighbor of the first point (i) (Fig.3a). 

This has proved to be a more accurate way for 

calculations. 

 

(a)    (b)  
Fig.3. Choosing neighbors for each pair points. 

5 RESULTS 

The first test case is chosen to show the validity of 

the method for unsteady flows. A subsonic inviscid 

flow around NACA0012 airfoil is considered at 

Mach number 0.5 and angle of attack zero degree. 

The point distribution is shown in Fig. 4. The 

domain includes 6509 points in which 280 points 

are on the solid boundary and 60 points are on the 

outer boundary. 

 

 
Fig. 4. Point distribution over NACA0012 airfoil 

(inviscid case). 
 

In this case, explicit CFL number of 5 and implicit 

CFL number of 100000 are used. The surface 

pressure coefficient distributions by two different 

methods (Lagrangian and Eulerian methods) are 

shown in Fig. 5. As it is seen, the results are in good 

agreements with AGARD (1982) data, confirming 

the acceptable accuracy of the present mesh-less 

method. 

 

 
Fig. 5. Surface pressure coefficients at M= 0.5 

and AOA= 0. 
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In this case TLS method is used. The convergence 

history for this case is shown in Fig.6, which 

demonstrates the computational efficiency of the 

implicit mesh-less method in comparison with the 

explicit approach (Sattarzadeh and Jahangirian 

2012). 

 

 
Fig. 6. Convergence history for NACA 0012 

airfoil at M =0.5 and AOA= 0. 
 

The second case is defined to show the effect of 

different neighbor stencils in viscous region. Three 

different neighboring stencils which are introduced 

in the previous section (Fig. 3) are applied. The 

number of neighbors for different choices is four, 

six and eight. The flow conditions around 

NACA0012 airfoil for this laminar case are 

Reynolds number 500, incidence angle 10 degrees 

and Mach number 0.8. The point distribution 

around NACA0012 is shown in Fig. 7. 
 

 
Fig. 7. Point distribution over NACA0012 airfoil 

(viscous case). 
 

In this case the number of points is 6169 in which 

200 points are on the boundary layer, and 126 points 

are on the outer boundary. Also in this case, the 

results of Polynomial least square (PLS) and Taylor 

series least square (TLS) are compared.  The surface 

pressure coefficients for different choices of 

neighbors using PLS and TLS methods are shown in 

Fig. 8. According to this figure the main effect due 

to different neighbor stencils is visible only near the 

leading edge on the upper surface of the airfoil. The 

PLS and TLS results are very compatible in this 

case.  The convergence histories for PLS and TLS 

methods with different neighbor stencils are 

presented in figures 9. As expected the eight-point 

stencil has better rate of convergence in comparison 

with the other two choices. Also, by comparing 

figures 9(a) and 9(b) the convergence rate in PLS 

method is better than TLS method. Thus, in the 

following computations PLS method is used. 

 

 
Polynomial least square 

 

 
Taylor least square 

 

Fig. 8. Surface pressure coefficients at M= 0.8, 

AOA= 10 and Re=500. 

 

 
Polynomial least square 

 
Taylor least square 

Fig. 9. Convergence history for NACA 0012 

airfoil at M =0.8, AOA= 10 and Re=500. 
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In order to further investigate the computational 

efficiency of the presented methods the 

convergence histories are shown against the 

computational time in figure 10. As it is shown the 

six and eight points stencils needs 50% less 

computational time to reach the steady state 

solution. 

 

 
Polynomial least square 

 

 
Taylor least square 

Fig. 10. Convergence history for NACA 0012 

airfoil at M =0.8, AOA= 10 and Re=500. 

 

The third test case is defined to show the potential 

of the presented mesh-less method to simulate the 

unsteady flow around a circular cylinder.  The flow 

condition for this test case is Re=500 at Mach 

number 0.2. The flow includes the unsteady vortices 

that alternatively shed from the body (Karman 

Vortex Street) and flow downstream. The point 

distribution is shown in Fig. 11. 

 

 
Fig. 11. Point distribution around circular 

cylinder at Re = 500. 

In this test case the eight point neighbors is chosen. 

There are 12347 points in the domain. The time 

history of the lift coefficient is shown in Fig. 12 

demonstrating the periodic behavior of the flow. 

The maximum and minimum converged lift 

coefficients in this case are -1.122 and 1.121 which 

show less than 1 percent difference with the 

numerical data reported by Alonso (2005). The 

pressure contours at different time steps are shown 

in Fig. 13.  

 

 
Fig. 12. Time history of the lift coefficient 

around circular cylinder, Re = 500. 

 

 (a)  

 

(b)  

 

(c)  

Fig. 13. Pressure contours at three different 

times, Re = 500. 
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The next case is an unsteady inviscid flow solution 

around oscillating NACA0012 airfoil at Mach 

number of 0.755. The point distribution is the same 

as the first test study. The points are moved by the 

movement of the solid boundary and the periodic 

angle about the quarter chord can be calculated as 

follows: 

 0( ) sin( ) mt t                                    (25) 

In this equation, the mean angle αm is chosen as 

0.016 and the oscillation amplitude α0 is taken as 

2.51. In this equation the frequency of the system is 

calculated as: 

2 
kU

c
                                                     (26) 

In this investigation k is chosen as 0.814. In Fig. 14, 

the pressure contours of the flow field in different 

time steps are shown. 

 

 
Fig. 14. A few snap shots of the flow field at 

Mach number of 0.755. 

 

Fig. 15 indicates normal force coefficient and 

pitching moment coefficients. In these figures, the 

results of inviscid flow are compared with the 

experimental data of the AGARD (1982) and 

Control Volume numerical results from Jahangirian 

and Hadidoolabi (2005). As illustrated the mesh 

less results are in good agreement with the finite-

volume results. 

 

 (a) 

 

(b)  

Fig. 15. (a) Normal force coefficient (b) Pitching 

moment coefficient at Mach number of 0.755. 

6 CONCLUSIONS 

In this study, a dual-time implicit mesh-less method 

for unsteady compressible flows including moving 

boundaries was presented. To estimate the spatial 

derivatives at each node, Polynomial and Taylor 

series least-square methods were used. Three 

different neighboring stencils are employed in the 

viscous region and it was concluded that the eight 

point stencil had better numerical behavior i.e. less 

computational time. The unsteady flows over 

stationary and moving objects at subsonic and 

transonic flow conditions were solved. Results 

indicated that the method is able to employ for 

different unsteady flow solutions with the 

comparable accuracy with the other known finite 

volume methods. The results also showed that the 

PLS method had better convergence rate in 

comparison with TLS method.  
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