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ABSTRACT 

A numerical investigation on mixed convection in a lid-driven square cavity has been performed in the 

presence of the uniform magnetic field. From the left-bottom corner of the cavity, three different lengths of 

heater are varied along bottom and left walls simultaneously. The finite volume method is employed to solve 

the governing equations. It is observed that the heater length in the x-direction is more effective than that of in 

the y-direction on the heat transfer and on the flow pattern. The magnetic field affects the average heat 

transfer rate more on vertical heaters than on the horizontal heaters. 
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1. INTRODUCTION  

Mixed convection is a combined result of two heat 

transfer mechanisms forced convection and natural 

convection and plays an important role in 

engineering, technology, and industries (Srivastava 

and Singh 2010, Bahlaoui et al. 2011). Guo and 

Sharif (2004) performed an analysis on mixed 

convection in a rectangular cavity. They found that 

the heat affected region becomes larger on 

increasing the length of the heat source and the 

temperature variation around the heat source is 

restricted in the free convection mode. Sharif 

(2007) explained the mixed convection in a shallow 

rectangular cavity for various Richardson numbers. 

It is found that the average Nusselt number 

increases more rapidly for Ri = 10 with the cavity 

inclination. Ji et al. (2007) studied the transient 

mixed convection in a lid-driven enclosure. It is 

observed that the temperature field shows weak 

fluctuating behavior at early times in the middle and 

upper portions of the cavity.  

 

Bhuvaneswari et al. (2011) numerically studied the 

mixed convection flow, heat and mass transfer with 

Soret effect in a two-sided lid-driven square cavity. 

They found that heat and mass transfer rates 

decrease with the increase in the Richardson 

number. Oztop and Abu-Nada (2008) performed a 

numerical analysis on free convection in a partially 

heated rectangular enclosure filled with nanofluids. 

It is obtained that the heater location affects the 

flow pattern and the temperature distributions. 

Sivakumar et al. (2010) investigated mixed 

convection in a lid-driven cavity with different 

lengths and locations of heater. It is observed that 

the heat transfer rate is boosted up when the 

location of heater is at top or middle on the left 

wall. Sivasankaran et al. (2010) numerically studied 

mixed convection heat transfer in a lid-driven cavity 

with sinusoidal temperature distributions on both 

vertical walls. It is observed that the heat transfer 

rate is increased as the Richardson number 

increases. Sivasankaran et al. (2011) examined the 

effects of discrete heating on natural convection in a 

rectangular porous enclosure with a heat-generating 

substance. They found that the heat transfer rates 

are high at both heaters for smaller heater length 

ratio.  

 

The study, Magneto-hydrodynamics (MHD), 

involving the influence of magnetic field on heat 

transfer and fluid flow within the cavity has 

received a considerable attention in recent years. 

The reason is the widespread practical applications 

of MHD convection in the fields such as solar 

technologies, material manufacturing technology, 

electromagnetic casting, liquid-metal cooling of 

nuclear reactors and plasma confinement (Patra et 

al. 2014, Rudraiah et al. 2014). Chamkha (2002) 

studied the mixed convection in a square cavity in 

the presence of a magnetic field with internal heat 

generation. The average Nusselt number is 

decreased on increasing the strength of magnetic 

field. Sarris et al. (2005) performed a numerical 
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study on magneto-convection of an electrically 

conducting fluid in a laterally and volumetrically 

heated square cavity. Hossain et al. (2005) 

examined the combined buoyancy and thermo-

capillary convection in an enclosure in the presence 

of the magnetic field. It is observed that the applied 

magnetic field resists the flow and retards the 

velocity field. Sivasankaran and Ho (2008) reported 

a numerical investigation on natural convection of 

water near its density maximum under a uniform 

magnetic field. The heat transfer rate increases 

according to the increase in the Rayleigh number 

and decreases with an increase in the Hartmann 

number. Sivasankaran et al. (2011), Sivasankaran et 

al. (2011) numerically examined convection in a 

square cavity in the presence of a uniform external 

magnetic field. 

Heaters take place over a narrow segment of the 

vertical walls in many engineering applications. In 

such cases, the size and location of the heater(s) 

play an important role on the fluid flow and heat 

transfer mechanisms. Hence, determining the 

optimum heater size and their location becomes 

noteworthy for better utilization of such systems. In 

fact, the corner heating during the mixed convection 

in square cavities has not received much attention. 

Hence, a numerical investigation involving MHD 

convection with corner heating would be helpful to 

enrich the ideology in thermally enhanced design of 

systems. The main objective of this paper is to 

provide the valid, essential and application oriented 

knowledge about the effects of corner heating on 

MHD mixed convection in a lid-driven cavity. 

2. MATHEMATICAL 

FORMULATION 

The physical situation is depicted by a schematic 

diagram of a two-dimensional square cavity of 

length L in Figure 1. It is assumed that the flow is 

unsteady, laminar, incompressible, and two-

dimensional. The velocity components u and v are, 

respectively, along x-direction and y-direction. 

Letting the lid of the cavity to move in its own 

plane with a constant speed  U0, a part of  the 

surfaces along left and bottom walls is maintained 

at a constant temperature h and the right sidewall is 

at a lower temperature c such that h>c. In fact, 

from the left-bottom corner of the cavity, three 

different lengths of heater are simultaneously 

considered along the bottom and left walls. For 

every length of the heater considered partly along 

the left wall of the cavity, three different constant 

lengths of heater are varied along its bottom wall. 

Thus, nine distinct configurations of corner heating 

are under investigation to examine the heat transfer 

characteristics and the flow behavior. The top wall 

and the remaining surfaces that are not heated on 

both left vertical wall and bottom wall are insulated. 

The gravity acts in the downward direction. The 

cavity is filled with an electrically conducting fluid 

of low Prandtl number. A uniform magnetic field is 

applied in the horizontal direction with a constant 

magnitude B0. The electric current J and the 

electromagnetic force F are defined by 

 BVJ e     and   BBVF e   , respectively. 

The induced magnetic field due to the motion of the 

electrically conducting fluid is very small compared 

to the applied magnetic field. Therefore the 

magnetic Reynolds number is too small and it is 

neglected. Further, the viscous dissipation and Joule 

heating are assumed to be negligible. The governing 

equations are described as follows: 
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where  is the temperature, o is the density, p is the 

pressure, k is the thermal conductivity,  is the 

kinematic viscosity, 
pc is the specific heat, g is the 

gravitational acceleration, and t is the time.  

 

 
Fig. 1. Schematic diagram. 

 

The appropriate initial and boundary conditions are 

expressed as follows: 

 

For  t=0:    u=v=0,     =0   0 ≤ (x, y) ≤ L          (5) 

 

For t>0: 

 

where ,4/& Lhyhx   4/2L  and 4/3L  denote the 

length of heaters along x-and y- directions, 

respectively. By varying heaters of constant length 



A. Malleswaran and S. Sivasankaran / JAFM, Vol. 9, No. 1, pp. 311-319, 2016.  

  

313 

from the left-bottom corner, on left and bottom 

sidewalls, there arise three different cases of corner 

heating. As a first case, the lengths of heater along 

bottom wall are varied as L/4, L/2 and 3L/4 while a 

constant length L/4 of heater along left vertical wall 

is considered. The remaining two cases are set up 

by changing the lengths along left wall as L/2 and 

3L/4 for the same heaters on bottom wall taken as in 

the earlier case. 

The governing Eqns. (1) to (5) are transformed into 

dimensionless form by using the following non-

dimensional variables 
L

x
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L

y
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0/UL   and 

0/ LU  . After non-dimensionalization, the 

following set of equations is obtained in the form of 

vorticity-stream function formulation. 
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The dimensionless parameters in the above 

equations (6) to (8) are defined as follows: 

 eLBa 0H  , the Hartmann number, 

ν/αPr  (=0.054), the Prandtl number, 

/0 LURe  , the Reynolds number, 

2ReGrRi / , where 23 / TLgGr  , the 

Grashof number. 

The initial and boundary conditions are expressed in 

dimensionless form as follows:  

For 0 :   

0 VU  0T  1),(0  YX  

For 0 : 

 1U , 0V , ,
2

2

Y


 0





Y

T  1Y  

0VU ,  ,
2

2

Y


 1T   0Y , HxX 0  

0VU , 
,

2

2

X




 1T  0X , 

HyY 0  

0VU , 
,

2

2

X




 
0





X

T   0X , 1 YHy    

0VU , 
,

2

2

Y




 
0





Y

T    0Y , 1 XHx  

0VU ,      
,

2

2

X




 0T    1X         (10) 

The local Nusselt numbers for heating surfaces 

along bottom and vertical walls are respectively 

given by 
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The average Nusselt number along the cold wall is 

computed by 

1

0

dYNuNu cc

.  

 

The non-dimensional equations (6)–(9) are solved 

by finite volume method. The detailed method of 

solution can be found in Sivasankaran et al. (2011). 

The validation of the present computational code is 

verified with convective flow in lid-driven cavities 

(Sharif 2007, Iwatsu et al. 1993) and shown in Table 1. 

The obtained results show a good agreement with 

the available results. 
 

Table 1 Comparison of average Nusselt number 

for lid-driven cavity 

Re Gr 
Average Nusselt number 

Present 
work 

Sharif  
(2007) 

Iwatsu et al. 
(1993) 

400 

102 4.08 4.05 3.84 

104 3.84 3.82 3.62 

106 1.10 1.17 1.22 

1000 

102 6.48 6.55 6.33 

104 6.47 6.50 6.29 

106 1.66 1.81 1.77 

3. RESULTS AND DISCUSSION 

The lengths of the corner heater along horizontal 

and vertical directions are taken as 0.25, 0.5, and 

0.75. For a fixed Grashof number 410Gr  and the 

variations of Reynolds number (Re) from 10 to 103, 

the range of Richardson number is set as 

0.01≤Ri≤100. The values of the Hartmann number 

are taken to be 0, 25 and 100. The value of Prandtl 

number is chosen as 0.054 corresponding to the 

liquid metal.  

 

3.1 Effects of Various Lengths of Heater 

Figures 2(a)-(c) illustrate the isotherms for different 

lengths of the heater which are varied from left-

bottom corner of the cavity along the left sidewall 

and bottom wall for various Richardson numbers 

and Ha=25. As a first case, keeping the length of 

heater along the left sidewall as Hy=0.25, the 

lengths of heater along bottom wall are varied from 

0.25 to 0.75; see Figures 2(a). The second and third 

cases occur for the vertical lengths of heater 0.5 and 

0.75, respectively, while the lengths of heater along 

bottom wall are varied as earlier. Obviously, for all 

the three cases, an enhanced temperature 

distribution is observed around the heated regions 

along both directions. Due to sharp temperature 

gradients near the left wall, a strong thermal 

boundary layer is formed along the heaters when 
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forced convection dominates. Further, the 

temperature distributions show curl like distribution 

due to strong convection. 
 

 
(a) Hy = 0.25 
 

 
(b) Hy = 0.5 

 

 
(c) Hy = 0.75 

Fig. 2(a-c). Isotherms of different heating regions 

on both x and y directions with different 

Richardson numbers with Ha = 25. 

The horizontal heated layer remains closer to the 

bottom wall of the cavity. When the lengths of heater 

along the bottom wall are 0.5 and 0.75, it seems that 

a thin boundary layer appears at the right-top corner 

of the cavity. For further increase in the lengths of 

heater along left sidewall, it is interesting to see that 

the formation of the thin boundary layer on the cold 

wall gradually increases; see Figures 2(b-c). Though 

the lengths of heater are equally considered along 

both directions, temperature distribution is getting 

better according to the increase in lengths of the 

heater. In general, the heat distribution is better when 

the vertical lengths of heater are increased than that 

of the increase in the bottom lengths of heater.  In the 

mixed convection regime, the formation of boundary 

layers along heaters gradually decreases. In the 

buoyancy-driven convection mode, i. e. for Ri=100, 

temperature gradients occur uniformly throughout 

the cavity and boundary layers on either side of the 

vertical walls disappear. The strong thermal 

boundary layer near the heaters along both directions 

and the thin boundary layer near cold wall formed in 

the forced convection regime disappear in the 

buoyancy-driven convection mode. In a differentially 

heated cavity, the thermal boundary layer is formed 

along the both hot and cold wall. Hence, it is 

confirmed that corner heating ideology is entirely 

different from differentially heated cavity. 

The fluid flow of the varied lengths of heater along 

left and bottom walls for various Richardson 

numbers is shown in Figures 3(a)-(c). In all the 

three cases of variations in length of heater along 

both directions, the flow field consists of single 

clockwise cell. Since the cavity is heated partly 

along both vertically and horizontally, the heated 

particles near bottom wall are also raised adjacent 

to the heater on left sidewall and fall along the 

opposite cold wall. The clustered streamlines near 

the top wall indicate that steep velocity gradients 

occur near the top wall. Hence, the center of the cell 

is near the top wall for all the Richardson numbers. 

The cell is slightly elongated in all the cases of 

length variation while natural convection 

dominates. Particularly, the speed of the flow is 

almost uniform throughout the cavity and the 

increase in the lengths of heater shows no 

significant change in the flow field. 

 

Figure 4(a-b) depicts the influence of vertical 

lengths of heater on heat transfer rate while Hx is 

kept constant at 0.5. It can be understood that the 

heat transfer is enhanced well at Hy=0.75 and it 

becomes low at Hy=0.25 in the dominance of forced 

convection. But, in the case of natural convection, 

high heat transfer occurs at Hy=0.5 and heat transfer 

is observed to be low for Hy=0.75. On the other 

hand, these results turn out opposite when the 

horizontal lengths of heater are varied while 

Hy=0.5. i.e. highest local Nusselt number occurs at 

Hx=0.5 when Ri = 0.01 and the length Hx=0.5 

results the lowest local Nusselt number for Ri=100. 

These can be witnessed in Figures 4(c-d). 

The overall heat transfer rate of cold wall for 

various lengths of heater along horizontal and 

vertical directions against the Richardson numbers 

with Ha=25 is exemplified in Figures 5(a)-(c). It 

can be observed that the average heat transfer rate is 

strictly increased when the horizontal lengths of 

heater is increased. Particularly, for all vertical 

lengths Hy, the average Nusselt number gets its 

highest value for the maximum horizontal length 

Hx=0.75 compared with the others. Moreover, it 
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can be verified that overall heat transfer rate is 

firmly increased while increasing the vertical 

lengths of heater. Generally, it can be concluded 

that the increase in lengths of heater along either of 

the directions result in the increase of overall heat 

transfer rate. Also, it is observed that the heater 

length in the x-direction is more effective than that 

of in the y-direction on the heat transfer and on the 

flow pattern. The average heat transfer decreases 

when the Richardson number is increased.  
 

 
(a) Hy = 0.25 

 

 
(b) Hy = 0.5 

 

 
(c) Hy = 0.75 
 

Fig. 3(a-c). Streamlines of different heating 

regions on both x and y directions with different 

Richardson numbers with Ha = 25. 

However, the overall heat transfer is better and 

independent of the variations in the Richardson 

numbers for the maximum heater length 0.75 along 

both directions. 
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Fig. 4 (a-d). Local Nusselt numbers for different 

heating regions and for different Richardson 

numbers with Ha = 25. 

Figures 6(a)-(c) exhibit the influence of various 

Hartmann numbers on temperature distribution 

and fluid flow for Ri=0.01 and Ri=100 when the 

lengths of heater are considered equally on both 

vertical and horizontal directions. Either Ha=0 or 

Ha=25, the temperature distribution is enhanced 

through convection mode due to the shear force 

generated by the moving top wall at Ri=0.01. For 

these values of the Hartmann number, no 



A. Malleswaran and S. Sivasankaran / JAFM, Vol. 9, No. 1, pp. 311-319, 2016.  

  

316 

remarkable changes are noticed in the isotherms. 

This reveals the fact that still forced convection 

dominates the heat transfer mechanism and weak 

magnetic field does not create any impact on the 

heat distribution remarkably. On the other hand, if 

the Hartmann number is increased to 100, the 

isotherms seem to be straightened out, i.e., the 

energy transportation is changed to conduction 

mode. Since the convective heat distribution is 

affected by the strong magnetic field Ha=100, the 

thermal boundary layers near hot and cold walls 

vanish. During the forced convection dominance, 

the flow is described by a single clockwise 

rotating cell in the entire cavity at Ha=0 and 25. 

The speed of the fluid flow decreases owing to the 

increase in the magnetic field. A resistive force 

due to strong magnetic field controls the speed of 

the fluid particles and results in the suppression of 

fluid flow.  
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Fig. 5(a-c). Average Nusselt number of cold wall 

for various Richardson numbers and different 

lengths of heating region along both x and y 

directions. 

 

 
(a) Hx = 0.25; Hy = 0.25 

 
(b) Hx = 0.5; Hy = 0.5 

               Ha=0            Ha=25           Ha=100 

 
(c) Hx = 0.75; Hy = 0.75 

Fig. 6. Isotherms and streamlines of different 

Hartmann numbers and Richardson numbers. 
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3.2 Effects of the Hartmann Number 

On the other hand, when the buoyancy-driven 

convection dominates, i.e. at Ri=100, the 

isotherms are almost parallel to the vertical walls, 

indicating that most of the heat transfer process is 

carried out by conduction. No other notable 

change is observed in the heat transfer though the 

Hartmann numbers are varied for the considered 

lengths of heater. But, noteworthy changes can be 

viewed in the fluid flow. For all the lengths of 

heater, when Ha=0 or 25, a similar behavior in the 

flow is sighted. But, on imposing a strong 

magnetic field such as Ha=100, the core region of 

the eddy is inhibited very close to the top wall of 

the cavity. Meanwhile, the vortex is elongated 

vertically for both the lengths 0.25 and 0.75 of the 

heater along both directions. When the length of 

heater is Hx=Hy=0.5, there exists consistency in 

the flow speed and so is in the flow pattern. The 

flow becomes broadly stagnated in the lower part 

of the cavity. It is observed that the convective 

motion is totally inhibited with the increase of the 

Hartmann numbers. Further, it is proved that the 

fluid flow is independent on the lengths of heater 

since effect of magnetic field is significant in 

either of the cases, the forced convection and the 

natural convection. 
 

The changes on overall heat transfer rate along cold 

wall are shown in Figures 7(a)-(e) for different 

lengths of heater and the Hartmann numbers. As a 

general behavior, it is observed that the average 

Nusselt numbers are decreased when the Hartmann 

number is increased. When Hx=Hy=0.25, the effects 

for low Hartmann numbers such as 0 and 25 vanish 

up to Ri=0.1 and a sudden increase in the average 

heat transfer rate is shown with the increase in the 

Richardson numbers. Thereafter, it is gradually 

decreased while the Richardson numbers are 

increased; see Figures 7(a-c). From forced 

convection regime to mixed convection regime, the 

average heat transfer rate is independent of the 

magnetic field and is not even affected a little for the 

Hartmann numbers 0, 25 and 100 when Hy=0.25 

and Hx= 0.75. It is seen that the overall heat transfer 

rate is reduced as the Hartmann number increases 

when Hy=0.75 and Hx= 0.25. The average heat 

transfer rate is very low for Ha=100 and the lengths 

of heater on bottom and left walls are 0.25. 
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Fig. 7. Average Nusselt number of cold wall 

versus Richardson numbers for different lengths 

of heating region along both x and y directions 

and Hartmann numbers. 
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4. CONCLUSION 

The effects of corner heating on mixed convection 

under the influence of a uniform magnetic field in a 

lid-driven square cavity are discussed. The 

following conclusions are drawn. 
 

1. When the vertical (horizontal) length of the 

heater is kept constant and the horizontal 

(vertical) length is varied, the average heat 

transfer is higher for the maximum horizontal 

(vertical) heater length Hx= 0.75 (Hy= 0.75). 

It is observed that the heater length in the x-

direction is more effective than that of in the 

y-direction on heat transfer. 

 

2. For the equal lengths of heater considered 

simultaneously along bottom and left walls, it 

is shown that the overall heat transfer rate is 

enhanced (on increasing the heater size) for 

the maximum length Hx=Hy=0.75 of heater. 

 

3. The applied magnetic field affects the overall 

heat transfer more on vertical heaters than 

along the horizontal heaters. Generally, the 

average heat transfer decreases on increasing 

the Richardson number. The overall heat 

transfer is better at forced convection mode 

than at free convection mode. 
 

4. Cavity with corner heaters is completely 

different from differentially heated cavity in 

which the thermal boundary layer occurs near 

both hot and cold walls whereas no such 

boundary layer exist in the cavity with corner 

heaters at forced convection mode. 
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