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ABSTRACT 

This article addresses the peristaltic transport of Eyring-Prandtl fluid in an inclined asymmetric channel. Heat 

and mass transfer phenomena along with Soret and Dufour effects is analyzed. Effects of inclined magnetic 

field and Joule heating are also discussed. Long wavelength approximation is adopted. Numerical 

computations for flow quantities of interest are analyzed. It is found that the parabolic velocity profile tends 

to shift from center of the channel towards the channel walls in the case of opposing flow. Velocity and 

temperature decrease whereas concentration increases by increasing the non-Newtonian parameter. Further 

the dependence of magnetic field on the angle is quite significant. 
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1. INTRODUCTION 

Fluid transport subject to the sinusoidal waves 

travelling on the walls of the channel/ tube is 

termed as peristaltic transport. Motivation about the 

peristalsis is due to its vast occurring in many 

physiological mechanisms such as passage of urine 

from kidney to bladder, spermatozoa transport in 

the ductus efferentes of the male reproductive tract, 

blood circulation in the small blood vessels, food 

stuffs through oesophagus and alimentary canal etc. 

Utility of such flows persuaded engineers to exploit 

these in many industrial applications. These include 

roller finger pumps, heart lung machines and 

corrosive fluids transport in nuclear industry. It is 

now well established fact that most of the fluids 

occurring in physiology and in industry are of non-

Newtonian type. Blood, bile, chyme, cosmetic 

products, mud at low shear rate etc. are examples of 

non-Newtonian fluids. There are numerous studies 

available now on the peristaltic motion of viscous 

and non-Newtonian fluids in a planar channel (see 

[1-9] and many refs. therein). Little attention has 

been given to the peristalsis in an inclined channel. 

For example [10-12]. 

Simultaneous effects of heat and mass transfer have 

a key role in processes such as drying, evaporation 

at the surface of a water body, energy transfer in a 

wet cooling tower, flow in desert cooler and blood 

pumps in heart lung machine. Industrial 

applications of such flows include the methods of 

generating electric power where electric energy is 

extracted directly from a moving conducting fluid. 

Besides this, the knowledge of biomagnetism is 

useful for diagnostic tests of various clinical 

disorders which include the utilization of radiations 

(X-rays, MRI, C.T scan etc.). Radiation therapy for 

the cure of several diseases (including cancer, 

removal of blockage in arteries, bleeding reduction 

in extreme injuries) is a well-known procedure now 

a days. This makes it worth to study the impact of 

applied magnetic field on the flows with different 

flow configurations.  Few relevant studies can be 

seen via attempts [13-21]. 

The purpose of present communication is to 

examine the simultaneous effects of heat and mass 

transfer on the peristaltic transport of Eyring-

Prandtl fluid in an inclined asymmetric channel. 

Inclined magnetic field is considered. In addition 

Joule heating effect is also included. The flow 

analysis is modelled and resulting equations are 

successfully computed. The influence of interesting 
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variables is explored by graphs and tables. 

2. MATHEMATICAL ANALYSIS 

Here we consider the flow in an asymmetric 

channel of width 1 2.d d  The channel is inclined at 

an angle  . The non-Newtonian fluid is 

electrically conducting in the presence of an applied 

magnetic field. The X and Y  axes in Cartesian 

coordinate system are normal to each other. The 

channel walls are assumed flexible. Peristaltic 

waves propagate on the channel walls with constant 

speed c. The geometries of upper and lower walls 

are 

  lower wall   ,d)t,X(H and upper wall   ,d)t,X(H 222111 

where 1  and 2  are the disturbances produced due 

to propagation of peristaltic waves at upper and 

lower walls respectively. These can be taken as 

follows 

1 1

2 1

2
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a X ct
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where a1, b1 are the amplitudes of the waves,   is 

phase difference and   is the wavelength. A 

constant magnetic field of magnitude 0B  making 

an angle   is incident at the channel, whereas the 

effects of the induced magnetic field are ignored 

under the low magnetic Reynolds number 

assumption. The channel walls are supposed to have 

temperature and concentration equal to T0, C0 (at 

H 1  ) and T1, C1 (at H2) respectively. In general the 

laws of conservation of mass and linear momentum 

for such a model can be written as 

. 0,V   

dV
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where [ ( , , ), ( , , ),0]V U X Y t V X Y t  is the 

velocity field, P  is the pressure, J  is the current 

density,   is the density of the fluid, g  is the 

gravitational acceleration and   is the extra stress 

tensor for the fluid. Here bar indicates the quantities 

in the fixed frame. These equations along with 

energy and concentration equations give 
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in which /d dt  is the material derivative, ij  are 

the components of the extra stress tensor, L  the 

gradient of velocity,  
 he coefficient of thermal 

expansion,  
 the coefficient of expansion due to 

concentration, pC  the specific heat, T  the 

temperature, K  the thermal conductivity of the 

fluid, D  the mass diffusivity, TK  the thermal 

diffusion ratio, sC  the concentration susceptibility, 

  the electric conductivity and C  the 

concentration. 

We transform our problem from fixed to moving 

frame through the transformations mentioned below 

[13-14, 20-21] 
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The transformed set of equations may be written as 
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Here we define the dimensionless quantities as 
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Where the continuity equation is identically 

satisfied,   denotes the stream function,   the 

kinematic viscosity, Re  the Reynolds number, mT  

the fluid mean temperature, G t  the local heat 

Grashoff number, G c  the local mass Grashoff 

number, Br  the Brinkman number, E  the Eckret 

number, Pr  the Prandtl number,   the wave 

number, 0  limiting viscosity at zero strain rate,   

dimensionless concentration and the dimensionless 

temperature is .   

We seek to analyze the behavior of non-Newtonian 

fluid namely Eyring-Prandtl fluid model. The 

corresponding extra stress tensor for this model is 

[22-23] 
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                          (13) 

where A   and B   are the material constants for 

the fluid model. The above equation yields 

  2
.xy yy yyA B                                     (14) 

In above equations A  and B  are the 

dimensionless forms of the material constants given 

by 

2
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The long wavelength approximation leads to the 

fact that the half channel width is small compared to 

the wavelength of peristaltic wave and the low 

Reynolds number corresponds to the inertia free 

flow. These considerations are significant for the 

case of chyme transport through small intestine [1] 

where   half width of the intestine is small in 

comparison to the wavelength of peristaltic wave. 

Further, Lew et al. [2] concluded that Reynolds 

number for the fluid mechanics in small intestine is 

small. Making use of the Eqs. (12) and (14), Eqs. 

(8-11) under long wavelength and low Reynolds 

number approximation [13-14, 20-21] yield 
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It should be noted that the dimensionless form of 

the equations for the Eyring-Prandtl fluid model can 

predict the result for the Sutterby fluid model when 

1.A   Only variation is in the value of the 

parameter B that it is defined in a different way for 

the Sutterby fluid model. We can recover the 

equations for viscous fluid when 1A   and 0B   

(in dimensionless form). 

Defining  and F as the dimensionless mean flows 

in fixed and moving frames we have 

1F d                                                          (19) 
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The dimensionless boundary conditions 
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where 

1 2( ) 1 cos(2 ),  ( ) cos(2 ) ,h x a x h x d b x       

                                                                             (22) 

Numerical solutions of the above system subject to 

the relevant boundary conditions are obtained using 

Mathematica. In the next section, the obtained 

results are analyzed. 

3. GRAPHICAL ANALYSIS 

Here analysis of flow quantities is presented via 

graphs and Tables. Graphs for the velocity profile, 

temperature and concentration are plotted in the 

Figs. 1-3. Numerical values of the heat and mass 

transfer rates at the wall are given in the Tables 1 

and 2. The obtained results are analyzed for both 

assisting and opposing flows. For assisting flows, 

the local Grashoff numbers are assigned positive 

values ( , 2t cG G   ) and for opposing flows the 

values are taken negative ( , 2t cG G   ). For the 

sake of simplicity, throughout the analysis we term 

the boundary at h 1   as the upper wall and that at 

h 2  as the lower wall. 

Table 1 Heat transfer rate at h 1  for assisting 

and opposing flows 

B A M  

Assisting

flow

Opposing

flow

0.0 3.5 1 

4



2
0.7029 0.8012

0.08 0.6956 0.7945

0.05 2.5 0.6101 0.7096

3.5 0.6984 0.7970

0 0.6715 0.7681

2 0.7790 1.468

1 0 0.7253 0.8258



2
0.6715 0.7681



4
0 0.7410 0.7410



2
0.6984 0.7970

 

Figs. 1 (a-e) are plotted to examine the behavior of 

velocity profile for change in certain parameters of 

interest. It is seen through these Figs. that velocity 

attains maximum value at the center of the channel 

for both assisting and opposing flows. However, for 

opposing flow the velocity profile tends to shift 

towards the upper wall by a considerable amount. 

Maximum value of the velocity is found to decrease 

with an increase in B  but remains unchanged for 

an increase in A. However near the channel walls 

the velocity profile is changed by A, i.e. the 

velocity decreases near the lower wall when there is 

an increase in A. Near the upper wall it increases in 

case of assisting flow. Such behavior of velocity is 

totally reversed for the case of opposing flow (see 

Fig. 1 b). Effect of channel inclination on the 

velocity is examined through Fig. 1 c. Variation in 

the velocity is observed near the channel walls 

when inclination angle is increased. Again the 

behavior of velocity is opposite for the case of 

assisting and opposing flows. Further it is also seen 

that the effects of channel inclination is more 

prominent when the local Grashoff numbers have 

higher values. Impact of applied magnetic field and 

its inclination on the velocity is seen through Figs. 1 

d and e. Maximum value of velocity is found to 

decrease with an increase in the value of Hartman 

number whereas the velocity increases by 

increasing .  Effects of M  and   greatly depend 

upon each other i.e. change in one quantity effects 

the behavior of other parameter as well. 
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Figs. 1(a-e). Effects of various embedded 

parameters on the velocity profile. 

 
Behavior of temperature is seen through Figs. 2 (a-

f). Change in temperature is more dominant near the 

channel walls when compared with the center for 

assisting and opposing cases. It is clear that the 

temperature decreases by increasing B and   

whereas it increases through increase in A , ,  

M  and Du . Change in temperature corresponding 

to B and   is small. Also the temperature near the 

lower wall is less for opposing flow. 

The concentration profile has been examined via 

Figs. 3 (a-e). Concentration at a particular part of 

the channel increases with increase in B but 

decreases with increase in ,A  ,Du  Sr  and Sc  . 

Decrease in concentration subject to an increase in 

A is less then corresponding increase in case of Du, 

Sc and Sr. Moreover, the concentration near the 

upper wall is higher when flow is assisting. 

Difference in concentration for assisting and 

opposing flows is enhanced by the variation in Sr 

and Sc. 

Numerical values of the heat and mass transfer rates 

are given through the Tables 1 and 2 respectively. 

The values for assisting and opposing flows are 

given separately. Results showed that the heat 

transfer rate at the upper wall ( 1( )h  ) decreases 

by increasing B and   whereas it increases through 

A and M. Impact of B on the heat transfer rate is 

small when compared with the other parameters. 

Also the value of heat transfer rate is higher in case 

of opposing flow. Increase in the inclination angle 

  tends to increase the heat transfer rate in case of 

opposing flow whereas it decreases the transfer rate 

for assisting flow. 
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Figs. 2(a-f). Variation of temperature subject to 

change in the values of embedded parameters. 
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Figs. 3(a-e). Influence of pertinent parameters on 

the concentration. 

 

Numerical values of mass transfer rate at the upper 

wall ( 1( )h  ) are given in Table 2. The value of 

mass transfer rate at the upper wall is found to 

increase when B and    are increased. However it 

decreases for large A and M. When the channel 

inclination is increased from 0 to  / 2   then the 

mass transfer rate increases for assisting flow and it 

decreases for opposing flow. 

MAIN FINDINGS 

This study examined the inclined magnetic field 

effects on the peristaltic flow in an inclined channel. 

Key findings of present study are summarized in 

following points 
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as we move from assisting to opposing flow. 

 Velocity and temperature decrease whereas 

concentration increases by increasing B. 

 The dependence of magnetic field on the angle 

is quite significant. 

 Temperature and concentration fields in 

opposing flow are reverse. 

 Effects of channel inclination on heat and mass 

transfer rates at the wall are opposite in the 

assisting and opposing flows 

Table 2 Mass transfer rate at h 1  for assisting 

and opposing flows 

0798.01597.0

1252.01252.00

1032.01814.0

0565.01379.001

4641.00943.02

1032.01814.00

0798.01597.05.3

1506.02312.05.205.0

0818.01619.008.0

07644.01560.015.30.0

flow
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